/* $Id: light.c,v 1.36 2001/02/13 23:55:30 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 3.5 * * Copyright (C) 1999-2000 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifdef PC_HEADER #include "all.h" #else #include "glheader.h" #include "colormac.h" #include "context.h" #include "enums.h" #include "light.h" #include "macros.h" #include "mem.h" #include "mmath.h" #include "simple_list.h" #include "mtypes.h" #include "math/m_xform.h" #include "math/m_matrix.h" #endif /* XXX this is a bit of a hack needed for compilation within XFree86 */ #ifndef FLT_MIN #define FLT_MIN 1e-37 #endif void _mesa_ShadeModel( GLenum mode ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); if (MESA_VERBOSE & VERBOSE_API) fprintf(stderr, "glShadeModel %s\n", gl_lookup_enum_by_nr(mode)); if (mode != GL_FLAT && mode != GL_SMOOTH) { gl_error( ctx, GL_INVALID_ENUM, "glShadeModel" ); return; } if (ctx->Light.ShadeModel == mode) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.ShadeModel = mode; ctx->_TriangleCaps ^= DD_FLATSHADE; if (ctx->Driver.ShadeModel) (*ctx->Driver.ShadeModel)( ctx, mode ); } void _mesa_Lightf( GLenum light, GLenum pname, GLfloat param ) { _mesa_Lightfv( light, pname, ¶m ); } void _mesa_Lightfv( GLenum light, GLenum pname, const GLfloat *params ) { GET_CURRENT_CONTEXT(ctx); GLint i = (GLint) (light - GL_LIGHT0); struct gl_light *l = &ctx->Light.Light[i]; if (i < 0 || i >= ctx->Const.MaxLights) { gl_error( ctx, GL_INVALID_ENUM, "glLight" ); return; } switch (pname) { case GL_AMBIENT: if (TEST_EQ_4V(l->Ambient, params)) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); COPY_4V( l->Ambient, params ); break; case GL_DIFFUSE: if (TEST_EQ_4V(l->Diffuse, params)) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); COPY_4V( l->Diffuse, params ); break; case GL_SPECULAR: if (TEST_EQ_4V(l->Specular, params)) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); COPY_4V( l->Specular, params ); break; case GL_POSITION: { GLfloat tmp[4]; /* transform position by ModelView matrix */ TRANSFORM_POINT( tmp, ctx->ModelView.m, params ); if (TEST_EQ_4V(l->EyePosition, tmp)) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); COPY_4V(l->EyePosition, tmp); if (l->EyePosition[3] != 0.0F) l->_Flags |= LIGHT_POSITIONAL; else l->_Flags &= ~LIGHT_POSITIONAL; break; } case GL_SPOT_DIRECTION: { GLfloat tmp[4]; /* transform direction by inverse modelview */ if (ctx->ModelView.flags & MAT_DIRTY_INVERSE) { _math_matrix_analyse( &ctx->ModelView ); } TRANSFORM_NORMAL( tmp, params, ctx->ModelView.inv ); if (TEST_EQ_3V(l->EyeDirection, tmp)) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); COPY_3V(l->EyeDirection, tmp); break; } case GL_SPOT_EXPONENT: if (params[0]<0.0 || params[0]>128.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } if (l->SpotExponent == params[0]) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); l->SpotExponent = params[0]; gl_invalidate_spot_exp_table( l ); break; case GL_SPOT_CUTOFF: if ((params[0]<0.0 || params[0]>90.0) && params[0]!=180.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } if (l->SpotCutoff == params[0]) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); l->SpotCutoff = params[0]; l->_CosCutoff = cos(params[0]*DEG2RAD); if (l->_CosCutoff < 0) l->_CosCutoff = 0; if (l->SpotCutoff != 180.0F) l->_Flags |= LIGHT_SPOT; else l->_Flags &= ~LIGHT_SPOT; break; case GL_CONSTANT_ATTENUATION: if (params[0]<0.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } if (l->ConstantAttenuation == params[0]) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); l->ConstantAttenuation = params[0]; break; case GL_LINEAR_ATTENUATION: if (params[0]<0.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } if (l->LinearAttenuation == params[0]) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); l->LinearAttenuation = params[0]; break; case GL_QUADRATIC_ATTENUATION: if (params[0]<0.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } if (l->QuadraticAttenuation == params[0]) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); l->QuadraticAttenuation = params[0]; break; default: gl_error( ctx, GL_INVALID_ENUM, "glLight" ); return; } if (ctx->Driver.Lightfv) ctx->Driver.Lightfv( ctx, light, pname, params ); } void _mesa_Lighti( GLenum light, GLenum pname, GLint param ) { _mesa_Lightiv( light, pname, ¶m ); } void _mesa_Lightiv( GLenum light, GLenum pname, const GLint *params ) { GLfloat fparam[4]; switch (pname) { case GL_AMBIENT: case GL_DIFFUSE: case GL_SPECULAR: fparam[0] = INT_TO_FLOAT( params[0] ); fparam[1] = INT_TO_FLOAT( params[1] ); fparam[2] = INT_TO_FLOAT( params[2] ); fparam[3] = INT_TO_FLOAT( params[3] ); break; case GL_POSITION: fparam[0] = (GLfloat) params[0]; fparam[1] = (GLfloat) params[1]; fparam[2] = (GLfloat) params[2]; fparam[3] = (GLfloat) params[3]; break; case GL_SPOT_DIRECTION: fparam[0] = (GLfloat) params[0]; fparam[1] = (GLfloat) params[1]; fparam[2] = (GLfloat) params[2]; break; case GL_SPOT_EXPONENT: case GL_SPOT_CUTOFF: case GL_CONSTANT_ATTENUATION: case GL_LINEAR_ATTENUATION: case GL_QUADRATIC_ATTENUATION: fparam[0] = (GLfloat) params[0]; break; default: /* error will be caught later in gl_Lightfv */ ; } _mesa_Lightfv( light, pname, fparam ); } void _mesa_GetLightfv( GLenum light, GLenum pname, GLfloat *params ) { GET_CURRENT_CONTEXT(ctx); GLint l = (GLint) (light - GL_LIGHT0); ASSERT_OUTSIDE_BEGIN_END(ctx); if (l < 0 || l >= ctx->Const.MaxLights) { gl_error( ctx, GL_INVALID_ENUM, "glGetLightfv" ); return; } switch (pname) { case GL_AMBIENT: COPY_4V( params, ctx->Light.Light[l].Ambient ); break; case GL_DIFFUSE: COPY_4V( params, ctx->Light.Light[l].Diffuse ); break; case GL_SPECULAR: COPY_4V( params, ctx->Light.Light[l].Specular ); break; case GL_POSITION: COPY_4V( params, ctx->Light.Light[l].EyePosition ); break; case GL_SPOT_DIRECTION: COPY_3V( params, ctx->Light.Light[l].EyeDirection ); break; case GL_SPOT_EXPONENT: params[0] = ctx->Light.Light[l].SpotExponent; break; case GL_SPOT_CUTOFF: params[0] = ctx->Light.Light[l].SpotCutoff; break; case GL_CONSTANT_ATTENUATION: params[0] = ctx->Light.Light[l].ConstantAttenuation; break; case GL_LINEAR_ATTENUATION: params[0] = ctx->Light.Light[l].LinearAttenuation; break; case GL_QUADRATIC_ATTENUATION: params[0] = ctx->Light.Light[l].QuadraticAttenuation; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetLightfv" ); break; } } void _mesa_GetLightiv( GLenum light, GLenum pname, GLint *params ) { GET_CURRENT_CONTEXT(ctx); GLint l = (GLint) (light - GL_LIGHT0); ASSERT_OUTSIDE_BEGIN_END(ctx); if (l < 0 || l >= ctx->Const.MaxLights) { gl_error( ctx, GL_INVALID_ENUM, "glGetLightiv" ); return; } switch (pname) { case GL_AMBIENT: params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[0]); params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[1]); params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[2]); params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[3]); break; case GL_DIFFUSE: params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[0]); params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[1]); params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[2]); params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[3]); break; case GL_SPECULAR: params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[0]); params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[1]); params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[2]); params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[3]); break; case GL_POSITION: params[0] = (GLint) ctx->Light.Light[l].EyePosition[0]; params[1] = (GLint) ctx->Light.Light[l].EyePosition[1]; params[2] = (GLint) ctx->Light.Light[l].EyePosition[2]; params[3] = (GLint) ctx->Light.Light[l].EyePosition[3]; break; case GL_SPOT_DIRECTION: params[0] = (GLint) ctx->Light.Light[l].EyeDirection[0]; params[1] = (GLint) ctx->Light.Light[l].EyeDirection[1]; params[2] = (GLint) ctx->Light.Light[l].EyeDirection[2]; break; case GL_SPOT_EXPONENT: params[0] = (GLint) ctx->Light.Light[l].SpotExponent; break; case GL_SPOT_CUTOFF: params[0] = (GLint) ctx->Light.Light[l].SpotCutoff; break; case GL_CONSTANT_ATTENUATION: params[0] = (GLint) ctx->Light.Light[l].ConstantAttenuation; break; case GL_LINEAR_ATTENUATION: params[0] = (GLint) ctx->Light.Light[l].LinearAttenuation; break; case GL_QUADRATIC_ATTENUATION: params[0] = (GLint) ctx->Light.Light[l].QuadraticAttenuation; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetLightiv" ); break; } } /**********************************************************************/ /*** Light Model ***/ /**********************************************************************/ void _mesa_LightModelfv( GLenum pname, const GLfloat *params ) { GLenum newenum; GLboolean newbool; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); switch (pname) { case GL_LIGHT_MODEL_AMBIENT: if (TEST_EQ_4V( ctx->Light.Model.Ambient, params )) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); COPY_4V( ctx->Light.Model.Ambient, params ); break; case GL_LIGHT_MODEL_LOCAL_VIEWER: newbool = (params[0]!=0.0); if (ctx->Light.Model.LocalViewer == newbool) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.Model.LocalViewer = newbool; break; case GL_LIGHT_MODEL_TWO_SIDE: newbool = (params[0]!=0.0); if (ctx->Light.Model.TwoSide == newbool) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.Model.TwoSide = newbool; break; case GL_LIGHT_MODEL_COLOR_CONTROL: if (params[0] == (GLfloat) GL_SINGLE_COLOR) newenum = GL_SINGLE_COLOR; else if (params[0] == (GLfloat) GL_SEPARATE_SPECULAR_COLOR) newenum = GL_SEPARATE_SPECULAR_COLOR; else { gl_error( ctx, GL_INVALID_ENUM, "glLightModel(param)" ); return; } if (ctx->Light.Model.ColorControl == newenum) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.Model.ColorControl = newenum; ctx->_TriangleCaps ^= DD_SEPERATE_SPECULAR; break; default: gl_error( ctx, GL_INVALID_ENUM, "glLightModel" ); break; } if (ctx->Driver.LightModelfv) ctx->Driver.LightModelfv( ctx, pname, params ); } void _mesa_LightModeliv( GLenum pname, const GLint *params ) { GLfloat fparam[4]; switch (pname) { case GL_LIGHT_MODEL_AMBIENT: fparam[0] = INT_TO_FLOAT( params[0] ); fparam[1] = INT_TO_FLOAT( params[1] ); fparam[2] = INT_TO_FLOAT( params[2] ); fparam[3] = INT_TO_FLOAT( params[3] ); break; case GL_LIGHT_MODEL_LOCAL_VIEWER: case GL_LIGHT_MODEL_TWO_SIDE: case GL_LIGHT_MODEL_COLOR_CONTROL: fparam[0] = (GLfloat) params[0]; break; default: /* Error will be caught later in gl_LightModelfv */ ; } _mesa_LightModelfv( pname, fparam ); } void _mesa_LightModeli( GLenum pname, GLint param ) { _mesa_LightModeliv( pname, ¶m ); } void _mesa_LightModelf( GLenum pname, GLfloat param ) { _mesa_LightModelfv( pname, ¶m ); } /********** MATERIAL **********/ /* * Given a face and pname value (ala glColorMaterial), compute a bitmask * of the targeted material values. */ GLuint gl_material_bitmask( GLcontext *ctx, GLenum face, GLenum pname, GLuint legal, const char *where ) { GLuint bitmask = 0; /* Make a bitmask indicating what material attribute(s) we're updating */ switch (pname) { case GL_EMISSION: bitmask |= FRONT_EMISSION_BIT | BACK_EMISSION_BIT; break; case GL_AMBIENT: bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT; break; case GL_DIFFUSE: bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT; break; case GL_SPECULAR: bitmask |= FRONT_SPECULAR_BIT | BACK_SPECULAR_BIT; break; case GL_SHININESS: bitmask |= FRONT_SHININESS_BIT | BACK_SHININESS_BIT; break; case GL_AMBIENT_AND_DIFFUSE: bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT; bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT; break; case GL_COLOR_INDEXES: bitmask |= FRONT_INDEXES_BIT | BACK_INDEXES_BIT; break; default: gl_error( ctx, GL_INVALID_ENUM, where ); return 0; } if (face==GL_FRONT) { bitmask &= FRONT_MATERIAL_BITS; } else if (face==GL_BACK) { bitmask &= BACK_MATERIAL_BITS; } else if (face != GL_FRONT_AND_BACK) { gl_error( ctx, GL_INVALID_ENUM, where ); return 0; } if (bitmask & ~legal) { gl_error( ctx, GL_INVALID_ENUM, where ); return 0; } return bitmask; } /* * Check if the global material has to be updated with info that was * associated with a vertex via glMaterial. * This function is used when any material values get changed between * glBegin/glEnd either by calling glMaterial() or by calling glColor() * when GL_COLOR_MATERIAL is enabled. * * src[0] is front material, src[1] is back material * * KW: Added code here to keep the precomputed variables uptodate. * This means we can use the faster shade functions when using * GL_COLOR_MATERIAL, and we can also now use the precomputed * values in the slower shading functions, which further offsets * the cost of doing this here. */ void gl_update_material( GLcontext *ctx, const struct gl_material src[2], GLuint bitmask ) { struct gl_light *light, *list = &ctx->Light.EnabledList; if (ctx->Light.ColorMaterialEnabled) bitmask &= ~ctx->Light.ColorMaterialBitmask; if (MESA_VERBOSE&VERBOSE_IMMEDIATE) fprintf(stderr, "gl_update_material, mask 0x%x\n", bitmask); if (!bitmask) return; /* update material emission */ if (bitmask & FRONT_EMISSION_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_4FV( mat->Emission, src[0].Emission ); } if (bitmask & BACK_EMISSION_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_4FV( mat->Emission, src[1].Emission ); } /* update material ambience */ if (bitmask & FRONT_AMBIENT_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_4FV( mat->Ambient, src[0].Ambient ); foreach (light, list) { SCALE_3V( light->_MatAmbient[0], light->Ambient, src[0].Ambient); } } if (bitmask & BACK_AMBIENT_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_4FV( mat->Ambient, src[1].Ambient ); foreach (light, list) { SCALE_3V( light->_MatAmbient[1], light->Ambient, src[1].Ambient); } } /* update BaseColor = emission + scene's ambience * material's ambience */ if (bitmask & (FRONT_EMISSION_BIT | FRONT_AMBIENT_BIT)) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_3V( ctx->Light._BaseColor[0], mat->Emission ); ACC_SCALE_3V( ctx->Light._BaseColor[0], mat->Ambient, ctx->Light.Model.Ambient ); } if (bitmask & (BACK_EMISSION_BIT | BACK_AMBIENT_BIT)) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_3V( ctx->Light._BaseColor[1], mat->Emission ); ACC_SCALE_3V( ctx->Light._BaseColor[1], mat->Ambient, ctx->Light.Model.Ambient ); } /* update material diffuse values */ if (bitmask & FRONT_DIFFUSE_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_4FV( mat->Diffuse, src[0].Diffuse ); /* fprintf(stderr, "FRONT_DIFFUSE %f %f %f %f\n", */ /* mat->Diffuse[0], mat->Diffuse[1], */ /* mat->Diffuse[2], mat->Diffuse[3]); */ foreach (light, list) { SCALE_3V( light->_MatDiffuse[0], light->Diffuse, mat->Diffuse ); } UNCLAMPED_FLOAT_TO_CHAN(ctx->Light._BaseAlpha[0], mat->Diffuse[3]); } if (bitmask & BACK_DIFFUSE_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_4FV( mat->Diffuse, src[1].Diffuse ); /* fprintf(stderr, "BACK_DIFFUSE %f %f %f %f\n", */ /* mat->Diffuse[0], mat->Diffuse[1], */ /* mat->Diffuse[2], mat->Diffuse[3]); */ foreach (light, list) { SCALE_3V( light->_MatDiffuse[1], light->Diffuse, mat->Diffuse ); } UNCLAMPED_FLOAT_TO_CHAN(ctx->Light._BaseAlpha[1], mat->Diffuse[3]); } /* update material specular values */ if (bitmask & FRONT_SPECULAR_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_4FV( mat->Specular, src[0].Specular ); foreach (light, list) { SCALE_3V( light->_MatSpecular[0], light->Specular, mat->Specular); } } if (bitmask & BACK_SPECULAR_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_4FV( mat->Specular, src[1].Specular ); foreach (light, list) { SCALE_3V( light->_MatSpecular[1], light->Specular, mat->Specular); } } if (bitmask & FRONT_SHININESS_BIT) { /* fprintf(stderr, "FRONT_SHININESS_BIT %f\n", src[0].Shininess); */ ctx->Light.Material[0].Shininess = src[0].Shininess; gl_invalidate_shine_table( ctx, 0 ); } if (bitmask & BACK_SHININESS_BIT) { ctx->Light.Material[1].Shininess = src[1].Shininess; gl_invalidate_shine_table( ctx, 1 ); } if (bitmask & FRONT_INDEXES_BIT) { ctx->Light.Material[0].AmbientIndex = src[0].AmbientIndex; ctx->Light.Material[0].DiffuseIndex = src[0].DiffuseIndex; ctx->Light.Material[0].SpecularIndex = src[0].SpecularIndex; } if (bitmask & BACK_INDEXES_BIT) { ctx->Light.Material[1].AmbientIndex = src[1].AmbientIndex; ctx->Light.Material[1].DiffuseIndex = src[1].DiffuseIndex; ctx->Light.Material[1].SpecularIndex = src[1].SpecularIndex; } if (0) { struct gl_material *mat = &ctx->Light.Material[0]; fprintf(stderr, "update_mat emission : %f %f %f\n", mat->Emission[0], mat->Emission[1], mat->Emission[2]); fprintf(stderr, "update_mat specular : %f %f %f\n", mat->Specular[0], mat->Specular[1], mat->Specular[2]); fprintf(stderr, "update_mat diffuse : %f %f %f\n", mat->Diffuse[0], mat->Diffuse[1], mat->Diffuse[2]); fprintf(stderr, "update_mat ambient : %f %f %f\n", mat->Ambient[0], mat->Ambient[1], mat->Ambient[2]); } } /* * Update the current materials from the given rgba color * according to the bitmask in ColorMaterialBitmask, which is * set by glColorMaterial(). */ void gl_update_color_material( GLcontext *ctx, const GLchan rgba[4] ) { struct gl_light *light, *list = &ctx->Light.EnabledList; GLuint bitmask = ctx->Light.ColorMaterialBitmask; GLfloat color[4]; color[0] = CHAN_TO_FLOAT(rgba[0]); color[1] = CHAN_TO_FLOAT(rgba[1]); color[2] = CHAN_TO_FLOAT(rgba[2]); color[3] = CHAN_TO_FLOAT(rgba[3]); if (MESA_VERBOSE&VERBOSE_IMMEDIATE) fprintf(stderr, "gl_update_color_material, mask 0x%x\n", bitmask); /* update emissive colors */ if (bitmask & FRONT_EMISSION_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_4FV( mat->Emission, color ); } if (bitmask & BACK_EMISSION_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_4FV( mat->Emission, color ); } /* update light->_MatAmbient = light's ambient * material's ambient */ if (bitmask & FRONT_AMBIENT_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; foreach (light, list) { SCALE_3V( light->_MatAmbient[0], light->Ambient, color); } COPY_4FV( mat->Ambient, color ); } if (bitmask & BACK_AMBIENT_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; foreach (light, list) { SCALE_3V( light->_MatAmbient[1], light->Ambient, color); } COPY_4FV( mat->Ambient, color ); } /* update BaseColor = emission + scene's ambience * material's ambience */ if (bitmask & (FRONT_EMISSION_BIT | FRONT_AMBIENT_BIT)) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_3V( ctx->Light._BaseColor[0], mat->Emission ); ACC_SCALE_3V( ctx->Light._BaseColor[0], mat->Ambient, ctx->Light.Model.Ambient ); } if (bitmask & (BACK_EMISSION_BIT | BACK_AMBIENT_BIT)) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_3V( ctx->Light._BaseColor[1], mat->Emission ); ACC_SCALE_3V( ctx->Light._BaseColor[1], mat->Ambient, ctx->Light.Model.Ambient ); } /* update light->_MatDiffuse = light's diffuse * material's diffuse */ if (bitmask & FRONT_DIFFUSE_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_4FV( mat->Diffuse, color ); foreach (light, list) { SCALE_3V( light->_MatDiffuse[0], light->Diffuse, mat->Diffuse ); } UNCLAMPED_FLOAT_TO_CHAN(ctx->Light._BaseAlpha[0], mat->Diffuse[3]); } if (bitmask & BACK_DIFFUSE_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_4FV( mat->Diffuse, color ); foreach (light, list) { SCALE_3V( light->_MatDiffuse[1], light->Diffuse, mat->Diffuse ); } UNCLAMPED_FLOAT_TO_CHAN(ctx->Light._BaseAlpha[1], mat->Diffuse[3]); } /* update light->_MatSpecular = light's specular * material's specular */ if (bitmask & FRONT_SPECULAR_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_4FV( mat->Specular, color ); foreach (light, list) { ACC_SCALE_3V( light->_MatSpecular[0], light->Specular, mat->Specular); } } if (bitmask & BACK_SPECULAR_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_4FV( mat->Specular, color ); foreach (light, list) { ACC_SCALE_3V( light->_MatSpecular[1], light->Specular, mat->Specular); } } if (0) { struct gl_material *mat = &ctx->Light.Material[0]; fprintf(stderr, "update_color_mat emission : %f %f %f\n", mat->Emission[0], mat->Emission[1], mat->Emission[2]); fprintf(stderr, "update_color_mat specular : %f %f %f\n", mat->Specular[0], mat->Specular[1], mat->Specular[2]); fprintf(stderr, "update_color_mat diffuse : %f %f %f\n", mat->Diffuse[0], mat->Diffuse[1], mat->Diffuse[2]); fprintf(stderr, "update_color_mat ambient : %f %f %f\n", mat->Ambient[0], mat->Ambient[1], mat->Ambient[2]); } } void _mesa_ColorMaterial( GLenum face, GLenum mode ) { GET_CURRENT_CONTEXT(ctx); GLuint bitmask; GLuint legal = (FRONT_EMISSION_BIT | BACK_EMISSION_BIT | FRONT_SPECULAR_BIT | BACK_SPECULAR_BIT | FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT | FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT); ASSERT_OUTSIDE_BEGIN_END(ctx); if (MESA_VERBOSE&VERBOSE_API) fprintf(stderr, "glColorMaterial %s %s\n", gl_lookup_enum_by_nr(face), gl_lookup_enum_by_nr(mode)); bitmask = gl_material_bitmask( ctx, face, mode, legal, "glColorMaterial" ); if (ctx->Light.ColorMaterialBitmask == bitmask && ctx->Light.ColorMaterialFace == face && ctx->Light.ColorMaterialMode == mode) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.ColorMaterialBitmask = bitmask; ctx->Light.ColorMaterialFace = face; ctx->Light.ColorMaterialMode = mode; if (ctx->Light.ColorMaterialEnabled) { FLUSH_CURRENT( ctx, 0 ); gl_update_color_material( ctx, ctx->Current.Color ); } } void _mesa_GetMaterialfv( GLenum face, GLenum pname, GLfloat *params ) { GET_CURRENT_CONTEXT(ctx); GLuint f; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */ if (face==GL_FRONT) { f = 0; } else if (face==GL_BACK) { f = 1; } else { gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(face)" ); return; } switch (pname) { case GL_AMBIENT: COPY_4FV( params, ctx->Light.Material[f].Ambient ); break; case GL_DIFFUSE: COPY_4FV( params, ctx->Light.Material[f].Diffuse ); break; case GL_SPECULAR: COPY_4FV( params, ctx->Light.Material[f].Specular ); break; case GL_EMISSION: COPY_4FV( params, ctx->Light.Material[f].Emission ); break; case GL_SHININESS: *params = ctx->Light.Material[f].Shininess; break; case GL_COLOR_INDEXES: params[0] = ctx->Light.Material[f].AmbientIndex; params[1] = ctx->Light.Material[f].DiffuseIndex; params[2] = ctx->Light.Material[f].SpecularIndex; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" ); } } void _mesa_GetMaterialiv( GLenum face, GLenum pname, GLint *params ) { GET_CURRENT_CONTEXT(ctx); GLuint f; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */ if (face==GL_FRONT) { f = 0; } else if (face==GL_BACK) { f = 1; } else { gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialiv(face)" ); return; } switch (pname) { case GL_AMBIENT: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[3] ); break; case GL_DIFFUSE: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[3] ); break; case GL_SPECULAR: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[3] ); break; case GL_EMISSION: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[3] ); break; case GL_SHININESS: *params = ROUNDF( ctx->Light.Material[f].Shininess ); break; case GL_COLOR_INDEXES: params[0] = ROUNDF( ctx->Light.Material[f].AmbientIndex ); params[1] = ROUNDF( ctx->Light.Material[f].DiffuseIndex ); params[2] = ROUNDF( ctx->Light.Material[f].SpecularIndex ); break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" ); } } /**********************************************************************/ /***** Lighting computation *****/ /**********************************************************************/ /* * Notes: * When two-sided lighting is enabled we compute the color (or index) * for both the front and back side of the primitive. Then, when the * orientation of the facet is later learned, we can determine which * color (or index) to use for rendering. * * KW: We now know orientation in advance and only shade for * the side or sides which are actually required. * * Variables: * n = normal vector * V = vertex position * P = light source position * Pe = (0,0,0,1) * * Precomputed: * IF P[3]==0 THEN * // light at infinity * IF local_viewer THEN * _VP_inf_norm = unit vector from V to P // Precompute * ELSE * // eye at infinity * _h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute * ENDIF * ENDIF * * Functions: * Normalize( v ) = normalized vector v * Magnitude( v ) = length of vector v */ /* * Whenever the spotlight exponent for a light changes we must call * this function to recompute the exponent lookup table. */ void gl_invalidate_spot_exp_table( struct gl_light *l ) { l->_SpotExpTable[0][0] = -1; } static void validate_spot_exp_table( struct gl_light *l ) { GLint i; GLdouble exponent = l->SpotExponent; GLdouble tmp = 0; GLint clamp = 0; l->_SpotExpTable[0][0] = 0.0; for (i = EXP_TABLE_SIZE - 1; i > 0 ;i--) { if (clamp == 0) { tmp = pow(i / (GLdouble) (EXP_TABLE_SIZE - 1), exponent); if (tmp < FLT_MIN * 100.0) { tmp = 0.0; clamp = 1; } } l->_SpotExpTable[i][0] = tmp; } for (i = 0; i < EXP_TABLE_SIZE - 1; i++) { l->_SpotExpTable[i][1] = (l->_SpotExpTable[i+1][0] - l->_SpotExpTable[i][0]); } l->_SpotExpTable[EXP_TABLE_SIZE-1][1] = 0.0; } /* Calculate a new shine table. Doing this here saves a branch in * lighting, and the cost of doing it early may be partially offset * by keeping a MRU cache of shine tables for various shine values. */ void gl_invalidate_shine_table( GLcontext *ctx, GLuint i ) { if (ctx->_ShineTable[i]) ctx->_ShineTable[i]->refcount--; ctx->_ShineTable[i] = 0; } static void validate_shine_table( GLcontext *ctx, GLuint i, GLfloat shininess ) { struct gl_shine_tab *list = ctx->_ShineTabList; struct gl_shine_tab *s; foreach(s, list) if ( s->shininess == shininess ) break; if (s == list) { GLint j; GLfloat *m; foreach(s, list) if (s->refcount == 0) break; m = s->tab; m[0] = 0.0; if (shininess == 0.0) { for (j = 1 ; j <= SHINE_TABLE_SIZE ; j++) m[j] = 1.0; } else { for (j = 1 ; j < SHINE_TABLE_SIZE ; j++) { GLdouble t, x = j / (GLfloat) (SHINE_TABLE_SIZE - 1); if (x < 0.005) /* underflow check */ x = 0.005; t = pow(x, shininess); if (t > 1e-20) m[j] = t; else m[j] = 0.0; } m[SHINE_TABLE_SIZE] = 1.0; } s->shininess = shininess; } if (ctx->_ShineTable[i]) ctx->_ShineTable[i]->refcount--; ctx->_ShineTable[i] = s; move_to_tail( list, s ); s->refcount++; } void gl_validate_all_lighting_tables( GLcontext *ctx ) { GLint i; GLfloat shininess; shininess = ctx->Light.Material[0].Shininess; if (!ctx->_ShineTable[0] || ctx->_ShineTable[0]->shininess != shininess) validate_shine_table( ctx, 0, shininess ); shininess = ctx->Light.Material[1].Shininess; if (!ctx->_ShineTable[1] || ctx->_ShineTable[1]->shininess != shininess) validate_shine_table( ctx, 1, shininess ); for (i = 0 ; i < MAX_LIGHTS ; i++) if (ctx->Light.Light[i]._SpotExpTable[0][0] == -1) validate_spot_exp_table( &ctx->Light.Light[i] ); } /* * Examine current lighting parameters to determine if the optimized lighting * function can be used. * Also, precompute some lighting values such as the products of light * source and material ambient, diffuse and specular coefficients. */ void gl_update_lighting( GLcontext *ctx ) { struct gl_light *light; ctx->_TriangleCaps &= ~DD_TRI_LIGHT_TWOSIDE; ctx->_NeedEyeCoords &= ~NEED_EYE_LIGHT; ctx->_NeedNormals &= ~NEED_NORMALS_LIGHT; ctx->Light._Flags = 0; if (!ctx->Light.Enabled) return; ctx->_NeedNormals |= NEED_NORMALS_LIGHT; if (ctx->Light.Model.TwoSide) ctx->_TriangleCaps |= DD_TRI_LIGHT_TWOSIDE; foreach(light, &ctx->Light.EnabledList) { ctx->Light._Flags |= light->_Flags; } ctx->Light._NeedVertices = ((ctx->Light._Flags & (LIGHT_POSITIONAL|LIGHT_SPOT)) || ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR || ctx->Light.Model.LocalViewer); if ((ctx->Light._Flags & LIGHT_POSITIONAL) || ctx->Light.Model.LocalViewer) ctx->_NeedEyeCoords |= NEED_EYE_LIGHT; /* XXX: This test is overkill & needs to be fixed both for software and * hardware t&l drivers. The above should be sufficient & should * be tested to verify this. */ if (ctx->Light._NeedVertices) ctx->_NeedEyeCoords |= NEED_EYE_LIGHT; /* Precompute some shading values. Although we reference * Light.Material here, we can get away without flushing * FLUSH_UPDATE_CURRENT, as when any outstanding material changes * are flushed, they will update the derived state at that time. */ if (ctx->Visual.rgbMode) { GLuint sides = ctx->Light.Model.TwoSide ? 2 : 1; GLuint side; for (side=0; side < sides; side++) { struct gl_material *mat = &ctx->Light.Material[side]; COPY_3V(ctx->Light._BaseColor[side], mat->Emission); ACC_SCALE_3V(ctx->Light._BaseColor[side], ctx->Light.Model.Ambient, mat->Ambient); UNCLAMPED_FLOAT_TO_CHAN(ctx->Light._BaseAlpha[side], ctx->Light.Material[side].Diffuse[3] ); } foreach (light, &ctx->Light.EnabledList) { for (side=0; side< sides; side++) { const struct gl_material *mat = &ctx->Light.Material[side]; SCALE_3V( light->_MatDiffuse[side], light->Diffuse, mat->Diffuse ); SCALE_3V( light->_MatAmbient[side], light->Ambient, mat->Ambient ); SCALE_3V( light->_MatSpecular[side], light->Specular, mat->Specular); } } } else { static const GLfloat ci[3] = { .30, .59, .11 }; foreach(light, &ctx->Light.EnabledList) { light->_dli = DOT3(ci, light->Diffuse); light->_sli = DOT3(ci, light->Specular); } } } /* _NEW_MODELVIEW * _NEW_LIGHT * _TNL_NEW_NEED_EYE_COORDS * * Update on (_NEW_MODELVIEW | _NEW_LIGHT) when lighting is enabled. * Also update on lighting space changes. */ void gl_compute_light_positions( GLcontext *ctx ) { struct gl_light *light; static const GLfloat eye_z[3] = { 0, 0, 1 }; if (!ctx->Light.Enabled) return; if (ctx->_NeedEyeCoords) { COPY_3V( ctx->_EyeZDir, eye_z ); } else { TRANSFORM_NORMAL( ctx->_EyeZDir, eye_z, ctx->ModelView.m ); } foreach (light, &ctx->Light.EnabledList) { if (ctx->_NeedEyeCoords) { COPY_4FV( light->_Position, light->EyePosition ); } else { TRANSFORM_POINT( light->_Position, ctx->ModelView.inv, light->EyePosition ); } if (!(light->_Flags & LIGHT_POSITIONAL)) { /* VP (VP) = Normalize( Position ) */ COPY_3V( light->_VP_inf_norm, light->_Position ); NORMALIZE_3FV( light->_VP_inf_norm ); if (!ctx->Light.Model.LocalViewer) { /* _h_inf_norm = Normalize( V_to_P + <0,0,1> ) */ ADD_3V( light->_h_inf_norm, light->_VP_inf_norm, ctx->_EyeZDir); NORMALIZE_3FV( light->_h_inf_norm ); } light->_VP_inf_spot_attenuation = 1.0; } if (light->_Flags & LIGHT_SPOT) { if (ctx->_NeedEyeCoords) { COPY_3V( light->_NormDirection, light->EyeDirection ); } else { TRANSFORM_NORMAL( light->_NormDirection, light->EyeDirection, ctx->ModelView.m); } NORMALIZE_3FV( light->_NormDirection ); if (!(light->_Flags & LIGHT_POSITIONAL)) { GLfloat PV_dot_dir = - DOT3(light->_VP_inf_norm, light->_NormDirection); if (PV_dot_dir > light->_CosCutoff) { double x = PV_dot_dir * (EXP_TABLE_SIZE-1); int k = (int) x; light->_VP_inf_spot_attenuation = (light->_SpotExpTable[k][0] + (x-k)*light->_SpotExpTable[k][1]); } else { light->_VP_inf_spot_attenuation = 0; } } } } }