/* * Mesa 3-D graphics library * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /** * \file imports.h * Standard C library function wrappers. * * This file provides wrappers for all the standard C library functions * like malloc(), free(), printf(), getenv(), etc. */ #ifndef IMPORTS_H #define IMPORTS_H #include #include #include #include "compiler.h" #include "glheader.h" #include "errors.h" #include "util/bitscan.h" #ifdef __cplusplus extern "C" { #endif /**********************************************************************/ /** Memory macros */ /*@{*/ /** Allocate a structure of type \p T */ #define MALLOC_STRUCT(T) (struct T *) malloc(sizeof(struct T)) /** Allocate and zero a structure of type \p T */ #define CALLOC_STRUCT(T) (struct T *) calloc(1, sizeof(struct T)) /*@}*/ /* * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers * as offsets into buffer stores. Since the vertex array pointer and * buffer store pointer are both pointers and we need to add them, we use * this macro. * Both pointers/offsets are expressed in bytes. */ #define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) ) /** * Sometimes we treat GLfloats as GLints. On x86 systems, moving a float * as an int (thereby using integer registers instead of FP registers) is * a performance win. Typically, this can be done with ordinary casts. * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0) * these casts generate warnings. * The following union typedef is used to solve that. */ typedef union { GLfloat f; GLint i; GLuint u; } fi_type; #if defined(_MSC_VER) #define strcasecmp(s1, s2) _stricmp(s1, s2) #endif /*@}*/ /*** *** LOG2: Log base 2 of float ***/ static inline GLfloat LOG2(GLfloat x) { #if 0 /* This is pretty fast, but not accurate enough (only 2 fractional bits). * Based on code from http://www.stereopsis.com/log2.html */ const GLfloat y = x * x * x * x; const GLuint ix = *((GLuint *) &y); const GLuint exp = (ix >> 23) & 0xFF; const GLint log2 = ((GLint) exp) - 127; return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */ #endif /* Pretty fast, and accurate. * Based on code from http://www.flipcode.com/totd/ */ fi_type num; GLint log_2; num.f = x; log_2 = ((num.i >> 23) & 255) - 128; num.i &= ~(255 << 23); num.i += 127 << 23; num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3; return num.f + log_2; } /** * finite macro. */ #if defined(_MSC_VER) # define finite _finite #endif /*** *** IS_INF_OR_NAN: test if float is infinite or NaN ***/ #if defined(isfinite) #define IS_INF_OR_NAN(x) (!isfinite(x)) #elif defined(finite) #define IS_INF_OR_NAN(x) (!finite(x)) #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define IS_INF_OR_NAN(x) (!isfinite(x)) #else #define IS_INF_OR_NAN(x) (!finite(x)) #endif /** * Convert float to int by rounding to nearest integer, away from zero. */ static inline int IROUND(float f) { return (int) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F)); } /** * Convert double to int by rounding to nearest integer, away from zero. */ static inline int IROUNDD(double d) { return (int) ((d >= 0.0) ? (d + 0.5) : (d - 0.5)); } /** * Convert float to int64 by rounding to nearest integer. */ static inline GLint64 IROUND64(float f) { return (GLint64) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F)); } /** * Convert positive float to int by rounding to nearest integer. */ static inline int IROUND_POS(float f) { assert(f >= 0.0F); return (int) (f + 0.5F); } /** Return (as an integer) floor of float */ static inline int IFLOOR(float f) { #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) /* * IEEE floor for computers that round to nearest or even. * 'f' must be between -4194304 and 4194303. * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1", * but uses some IEEE specific tricks for better speed. * Contributed by Josh Vanderhoof */ int ai, bi; double af, bf; af = (3 << 22) + 0.5 + (double)f; bf = (3 << 22) + 0.5 - (double)f; /* GCC generates an extra fstp/fld without this. */ __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st"); __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st"); return (ai - bi) >> 1; #else int ai, bi; double af, bf; fi_type u; af = (3 << 22) + 0.5 + (double)f; bf = (3 << 22) + 0.5 - (double)f; u.f = (float) af; ai = u.i; u.f = (float) bf; bi = u.i; return (ai - bi) >> 1; #endif } /** * Is x a power of two? */ static inline int _mesa_is_pow_two(int x) { return !(x & (x - 1)); } /** * Round given integer to next higer power of two * If X is zero result is undefined. * * Source for the fallback implementation is * Sean Eron Anderson's webpage "Bit Twiddling Hacks" * http://graphics.stanford.edu/~seander/bithacks.html * * When using builtin function have to do some work * for case when passed values 1 to prevent hiting * undefined result from __builtin_clz. Undefined * results would be different depending on optimization * level used for build. */ static inline int32_t _mesa_next_pow_two_32(uint32_t x) { #ifdef HAVE___BUILTIN_CLZ uint32_t y = (x != 1); return (1 + y) << ((__builtin_clz(x - y) ^ 31) ); #else x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x++; return x; #endif } static inline int64_t _mesa_next_pow_two_64(uint64_t x) { #ifdef HAVE___BUILTIN_CLZLL uint64_t y = (x != 1); STATIC_ASSERT(sizeof(x) == sizeof(long long)); return (1 + y) << ((__builtin_clzll(x - y) ^ 63)); #else x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x |= x >> 32; x++; return x; #endif } /* * Returns the floor form of binary logarithm for a 32-bit integer. */ static inline GLuint _mesa_logbase2(GLuint n) { #ifdef HAVE___BUILTIN_CLZ return (31 - __builtin_clz(n | 1)); #else GLuint pos = 0; if (n >= 1<<16) { n >>= 16; pos += 16; } if (n >= 1<< 8) { n >>= 8; pos += 8; } if (n >= 1<< 4) { n >>= 4; pos += 4; } if (n >= 1<< 2) { n >>= 2; pos += 2; } if (n >= 1<< 1) { pos += 1; } return pos; #endif } /** * Return 1 if this is a little endian machine, 0 if big endian. */ static inline GLboolean _mesa_little_endian(void) { const GLuint ui = 1; /* intentionally not static */ return *((const GLubyte *) &ui); } /********************************************************************** * Functions */ extern void * _mesa_align_malloc( size_t bytes, unsigned long alignment ); extern void * _mesa_align_calloc( size_t bytes, unsigned long alignment ); extern void _mesa_align_free( void *ptr ); extern void * _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize, unsigned long alignment); extern void * _mesa_exec_malloc( GLuint size ); extern void _mesa_exec_free( void *addr ); #ifdef HAVE___BUILTIN_POPCOUNT #define _mesa_bitcount(i) __builtin_popcount(i) #else extern unsigned int _mesa_bitcount(unsigned int n); #endif #ifdef HAVE___BUILTIN_POPCOUNTLL #define _mesa_bitcount_64(i) __builtin_popcountll(i) #else extern unsigned int _mesa_bitcount_64(uint64_t n); #endif /** * Find the last (most significant) bit set in a word. * * Essentially ffs() in the reverse direction. */ static inline unsigned int _mesa_fls(unsigned int n) { #ifdef HAVE___BUILTIN_CLZ return n == 0 ? 0 : 32 - __builtin_clz(n); #else unsigned int v = 1; if (n == 0) return 0; while (n >>= 1) v++; return v; #endif } /** * Find the last (most significant) bit set in a uint64_t value. * * Essentially ffsll() in the reverse direction. */ static inline unsigned int _mesa_flsll(uint64_t n) { #ifdef HAVE___BUILTIN_CLZLL return n == 0 ? 0 : 64 - __builtin_clzll(n); #else unsigned int v = 1; if (n == 0) return 0; while (n >>= 1) v++; return v; #endif } static inline bool _mesa_half_is_negative(GLhalfARB h) { return h & 0x8000; } extern unsigned int _mesa_str_checksum(const char *str); extern int _mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4); extern int _mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list arg); #if defined(_MSC_VER) && !defined(snprintf) #define snprintf _snprintf #endif #if defined(_WIN32) && !defined(strtok_r) #define strtok_r strtok_s #endif #ifdef __cplusplus } #endif #endif /* IMPORTS_H */