/************************************************************************** * * Copyright 2007 VMware, Inc. * All Rights Reserved. * Copyright 2009 VMware, Inc. All Rights Reserved. * Copyright © 2010-2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "main/glheader.h" #include "main/context.h" #include "main/imports.h" #include "main/macros.h" #include "main/samplerobj.h" #include "main/shaderobj.h" #include "main/texenvprogram.h" #include "main/texobj.h" #include "main/uniforms.h" #include "compiler/glsl/ir_builder.h" #include "compiler/glsl/ir_optimization.h" #include "compiler/glsl/glsl_parser_extras.h" #include "compiler/glsl/glsl_symbol_table.h" #include "compiler/glsl_types.h" #include "program/ir_to_mesa.h" #include "program/program.h" #include "program/programopt.h" #include "program/prog_cache.h" #include "program/prog_instruction.h" #include "program/prog_parameter.h" #include "program/prog_print.h" #include "program/prog_statevars.h" #include "util/bitscan.h" using namespace ir_builder; /* * Note on texture units: * * The number of texture units supported by fixed-function fragment * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS. * That's because there's a one-to-one correspondence between texture * coordinates and samplers in fixed-function processing. * * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS * sets of texcoords, so is fixed-function fragment processing. * * We can safely use ctx->Const.MaxTextureUnits for loop bounds. */ static GLboolean texenv_doing_secondary_color(struct gl_context *ctx) { if (ctx->Light.Enabled && (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) return GL_TRUE; if (ctx->Fog.ColorSumEnabled) return GL_TRUE; return GL_FALSE; } struct mode_opt { #ifdef __GNUC__ __extension__ GLubyte Source:4; /**< SRC_x */ __extension__ GLubyte Operand:3; /**< OPR_x */ #else GLubyte Source; /**< SRC_x */ GLubyte Operand; /**< OPR_x */ #endif }; struct state_key { GLuint nr_enabled_units:4; GLuint separate_specular:1; GLuint fog_mode:2; /**< FOG_x */ GLuint inputs_available:12; GLuint num_draw_buffers:4; /* NOTE: This array of structs must be last! (see "keySize" below) */ struct { GLuint enabled:1; GLuint source_index:4; /**< TEXTURE_x_INDEX */ GLuint shadow:1; GLuint ScaleShiftRGB:2; GLuint ScaleShiftA:2; GLuint NumArgsRGB:3; /**< up to MAX_COMBINER_TERMS */ GLuint ModeRGB:5; /**< MODE_x */ GLuint NumArgsA:3; /**< up to MAX_COMBINER_TERMS */ GLuint ModeA:5; /**< MODE_x */ struct mode_opt OptRGB[MAX_COMBINER_TERMS]; struct mode_opt OptA[MAX_COMBINER_TERMS]; } unit[MAX_TEXTURE_COORD_UNITS]; }; #define FOG_NONE 0 #define FOG_LINEAR 1 #define FOG_EXP 2 #define FOG_EXP2 3 static GLuint translate_fog_mode( GLenum mode ) { switch (mode) { case GL_LINEAR: return FOG_LINEAR; case GL_EXP: return FOG_EXP; case GL_EXP2: return FOG_EXP2; default: return FOG_NONE; } } #define OPR_SRC_COLOR 0 #define OPR_ONE_MINUS_SRC_COLOR 1 #define OPR_SRC_ALPHA 2 #define OPR_ONE_MINUS_SRC_ALPHA 3 #define OPR_ZERO 4 #define OPR_ONE 5 #define OPR_UNKNOWN 7 static GLuint translate_operand( GLenum operand ) { switch (operand) { case GL_SRC_COLOR: return OPR_SRC_COLOR; case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR; case GL_SRC_ALPHA: return OPR_SRC_ALPHA; case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA; case GL_ZERO: return OPR_ZERO; case GL_ONE: return OPR_ONE; default: assert(0); return OPR_UNKNOWN; } } #define SRC_TEXTURE 0 #define SRC_TEXTURE0 1 #define SRC_TEXTURE1 2 #define SRC_TEXTURE2 3 #define SRC_TEXTURE3 4 #define SRC_TEXTURE4 5 #define SRC_TEXTURE5 6 #define SRC_TEXTURE6 7 #define SRC_TEXTURE7 8 #define SRC_CONSTANT 9 #define SRC_PRIMARY_COLOR 10 #define SRC_PREVIOUS 11 #define SRC_ZERO 12 #define SRC_UNKNOWN 15 static GLuint translate_source( GLenum src ) { switch (src) { case GL_TEXTURE: return SRC_TEXTURE; case GL_TEXTURE0: case GL_TEXTURE1: case GL_TEXTURE2: case GL_TEXTURE3: case GL_TEXTURE4: case GL_TEXTURE5: case GL_TEXTURE6: case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0); case GL_CONSTANT: return SRC_CONSTANT; case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR; case GL_PREVIOUS: return SRC_PREVIOUS; case GL_ZERO: return SRC_ZERO; default: assert(0); return SRC_UNKNOWN; } } #define MODE_REPLACE 0 /* r = a0 */ #define MODE_MODULATE 1 /* r = a0 * a1 */ #define MODE_ADD 2 /* r = a0 + a1 */ #define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */ #define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */ #define MODE_SUBTRACT 5 /* r = a0 - a1 */ #define MODE_DOT3_RGB 6 /* r = a0 . a1 */ #define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */ #define MODE_DOT3_RGBA 8 /* r = a0 . a1 */ #define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */ #define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */ #define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */ #define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */ #define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */ #define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */ #define MODE_UNKNOWN 16 /** * Translate GL combiner state into a MODE_x value */ static GLuint translate_mode( GLenum envMode, GLenum mode ) { switch (mode) { case GL_REPLACE: return MODE_REPLACE; case GL_MODULATE: return MODE_MODULATE; case GL_ADD: if (envMode == GL_COMBINE4_NV) return MODE_ADD_PRODUCTS; else return MODE_ADD; case GL_ADD_SIGNED: if (envMode == GL_COMBINE4_NV) return MODE_ADD_PRODUCTS_SIGNED; else return MODE_ADD_SIGNED; case GL_INTERPOLATE: return MODE_INTERPOLATE; case GL_SUBTRACT: return MODE_SUBTRACT; case GL_DOT3_RGB: return MODE_DOT3_RGB; case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT; case GL_DOT3_RGBA: return MODE_DOT3_RGBA; case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT; case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI; case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI; case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI; default: assert(0); return MODE_UNKNOWN; } } /** * Do we need to clamp the results of the given texture env/combine mode? * If the inputs to the mode are in [0,1] we don't always have to clamp * the results. */ static GLboolean need_saturate( GLuint mode ) { switch (mode) { case MODE_REPLACE: case MODE_MODULATE: case MODE_INTERPOLATE: return GL_FALSE; case MODE_ADD: case MODE_ADD_SIGNED: case MODE_SUBTRACT: case MODE_DOT3_RGB: case MODE_DOT3_RGB_EXT: case MODE_DOT3_RGBA: case MODE_DOT3_RGBA_EXT: case MODE_MODULATE_ADD_ATI: case MODE_MODULATE_SIGNED_ADD_ATI: case MODE_MODULATE_SUBTRACT_ATI: case MODE_ADD_PRODUCTS: case MODE_ADD_PRODUCTS_SIGNED: return GL_TRUE; default: assert(0); return GL_FALSE; } } #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0) /** * Identify all possible varying inputs. The fragment program will * never reference non-varying inputs, but will track them via state * constants instead. * * This function figures out all the inputs that the fragment program * has access to and filters input bitmask. */ static GLbitfield filter_fp_input_mask( GLbitfield fp_inputs, struct gl_context *ctx ) { if (ctx->VertexProgram._Overriden) { /* Somebody's messing with the vertex program and we don't have * a clue what's happening. Assume that it could be producing * all possible outputs. */ return fp_inputs; } if (ctx->RenderMode == GL_FEEDBACK) { /* _NEW_RENDERMODE */ return fp_inputs & (VARYING_BIT_COL0 | VARYING_BIT_TEX0); } /* _NEW_PROGRAM */ const GLboolean vertexShader = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX] != NULL; const GLboolean vertexProgram = ctx->VertexProgram._Enabled; if (!(vertexProgram || vertexShader)) { /* Fixed function vertex logic */ GLbitfield possible_inputs = 0; /* _NEW_VARYING_VP_INPUTS */ GLbitfield64 varying_inputs = ctx->varying_vp_inputs; /* These get generated in the setup routine regardless of the * vertex program: */ /* _NEW_POINT */ if (ctx->Point.PointSprite) { /* All texture varyings are possible to use */ possible_inputs = VARYING_BITS_TEX_ANY; } else { /* _NEW_TEXTURE_STATE */ const GLbitfield possible_tex_inputs = ctx->Texture._TexGenEnabled | ctx->Texture._TexMatEnabled | ((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0); possible_inputs = (possible_tex_inputs << VARYING_SLOT_TEX0); } /* First look at what values may be computed by the generated * vertex program: */ /* _NEW_LIGHT */ if (ctx->Light.Enabled) { possible_inputs |= VARYING_BIT_COL0; if (texenv_doing_secondary_color(ctx)) possible_inputs |= VARYING_BIT_COL1; } /* Then look at what might be varying as a result of enabled * arrays, etc: */ if (varying_inputs & VERT_BIT_COLOR0) possible_inputs |= VARYING_BIT_COL0; if (varying_inputs & VERT_BIT_COLOR1) possible_inputs |= VARYING_BIT_COL1; return fp_inputs & possible_inputs; } /* calculate from vp->outputs */ struct gl_program *vprog; /* Choose GLSL vertex shader over ARB vertex program. Need this * since vertex shader state validation comes after fragment state * validation (see additional comments in state.c). */ if (vertexShader) vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]; else vprog = ctx->VertexProgram.Current; GLbitfield possible_inputs = vprog->info.outputs_written; /* These get generated in the setup routine regardless of the * vertex program: */ /* _NEW_POINT */ if (ctx->Point.PointSprite) { /* All texture varyings are possible to use */ possible_inputs |= VARYING_BITS_TEX_ANY; } return fp_inputs & possible_inputs; } /** * Examine current texture environment state and generate a unique * key to identify it. */ static GLuint make_state_key( struct gl_context *ctx, struct state_key *key ) { GLuint j; GLbitfield inputs_referenced = VARYING_BIT_COL0; GLbitfield mask; GLuint keySize; memset(key, 0, sizeof(*key)); /* _NEW_TEXTURE_OBJECT */ mask = ctx->Texture._EnabledCoordUnits; int i = -1; while (mask) { i = u_bit_scan(&mask); const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i]; const struct gl_texture_object *texObj = texUnit->_Current; const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine; const struct gl_sampler_object *samp; GLenum format; if (!texObj) continue; samp = _mesa_get_samplerobj(ctx, i); format = _mesa_texture_base_format(texObj); key->unit[i].enabled = 1; inputs_referenced |= VARYING_BIT_TEX(i); key->unit[i].source_index = texObj->TargetIndex; key->unit[i].shadow = ((samp->CompareMode == GL_COMPARE_R_TO_TEXTURE) && ((format == GL_DEPTH_COMPONENT) || (format == GL_DEPTH_STENCIL_EXT))); key->unit[i].NumArgsRGB = comb->_NumArgsRGB; key->unit[i].NumArgsA = comb->_NumArgsA; key->unit[i].ModeRGB = translate_mode(texUnit->EnvMode, comb->ModeRGB); key->unit[i].ModeA = translate_mode(texUnit->EnvMode, comb->ModeA); key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB; key->unit[i].ScaleShiftA = comb->ScaleShiftA; for (j = 0; j < MAX_COMBINER_TERMS; j++) { key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]); key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]); key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]); key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]); } } key->nr_enabled_units = i + 1; /* _NEW_LIGHT | _NEW_FOG */ if (texenv_doing_secondary_color(ctx)) { key->separate_specular = 1; inputs_referenced |= VARYING_BIT_COL1; } /* _NEW_FOG */ if (ctx->Fog.Enabled) key->fog_mode = translate_fog_mode(ctx->Fog.Mode); /* _NEW_BUFFERS */ key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers; /* _NEW_COLOR */ if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) { /* if alpha test is enabled we need to emit at least one color */ key->num_draw_buffers = 1; } key->inputs_available = filter_fp_input_mask(inputs_referenced, ctx); /* compute size of state key, ignoring unused texture units */ keySize = sizeof(*key) - sizeof(key->unit) + key->nr_enabled_units * sizeof(key->unit[0]); return keySize; } /** State used to build the fragment program: */ class texenv_fragment_program : public ir_factory { public: struct gl_shader_program *shader_program; struct gl_shader *shader; exec_list *top_instructions; struct state_key *state; ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS]; /* Reg containing each texture unit's sampled texture color, * else undef. */ /* Texcoord override from bumpmapping. */ ir_variable *texcoord_tex[MAX_TEXTURE_COORD_UNITS]; /* Reg containing texcoord for a texture unit, * needed for bump mapping, else undef. */ ir_rvalue *src_previous; /**< Reg containing color from previous * stage. May need to be decl'd. */ }; static ir_rvalue * get_current_attrib(texenv_fragment_program *p, GLuint attrib) { ir_variable *current; ir_rvalue *val; current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA"); assert(current); current->data.max_array_access = MAX2(current->data.max_array_access, (int)attrib); val = new(p->mem_ctx) ir_dereference_variable(current); ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib); return new(p->mem_ctx) ir_dereference_array(val, index); } static ir_rvalue * get_gl_Color(texenv_fragment_program *p) { if (p->state->inputs_available & VARYING_BIT_COL0) { ir_variable *var = p->shader->symbols->get_variable("gl_Color"); assert(var); return new(p->mem_ctx) ir_dereference_variable(var); } else { return get_current_attrib(p, VERT_ATTRIB_COLOR0); } } static ir_rvalue * get_source(texenv_fragment_program *p, GLuint src, GLuint unit) { ir_variable *var; ir_dereference *deref; switch (src) { case SRC_TEXTURE: return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]); case SRC_TEXTURE0: case SRC_TEXTURE1: case SRC_TEXTURE2: case SRC_TEXTURE3: case SRC_TEXTURE4: case SRC_TEXTURE5: case SRC_TEXTURE6: case SRC_TEXTURE7: return new(p->mem_ctx) ir_dereference_variable(p->src_texture[src - SRC_TEXTURE0]); case SRC_CONSTANT: var = p->shader->symbols->get_variable("gl_TextureEnvColor"); assert(var); deref = new(p->mem_ctx) ir_dereference_variable(var); var->data.max_array_access = MAX2(var->data.max_array_access, (int)unit); return new(p->mem_ctx) ir_dereference_array(deref, new(p->mem_ctx) ir_constant(unit)); case SRC_PRIMARY_COLOR: var = p->shader->symbols->get_variable("gl_Color"); assert(var); return new(p->mem_ctx) ir_dereference_variable(var); case SRC_ZERO: return new(p->mem_ctx) ir_constant(0.0f); case SRC_PREVIOUS: if (!p->src_previous) { return get_gl_Color(p); } else { return p->src_previous->clone(p->mem_ctx, NULL); } default: assert(0); return NULL; } } static ir_rvalue * emit_combine_source(texenv_fragment_program *p, GLuint unit, GLuint source, GLuint operand) { ir_rvalue *src; src = get_source(p, source, unit); switch (operand) { case OPR_ONE_MINUS_SRC_COLOR: return sub(new(p->mem_ctx) ir_constant(1.0f), src); case OPR_SRC_ALPHA: return src->type->is_scalar() ? src : swizzle_w(src); case OPR_ONE_MINUS_SRC_ALPHA: { ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src); return sub(new(p->mem_ctx) ir_constant(1.0f), scalar); } case OPR_ZERO: return new(p->mem_ctx) ir_constant(0.0f); case OPR_ONE: return new(p->mem_ctx) ir_constant(1.0f); case OPR_SRC_COLOR: return src; default: assert(0); return src; } } /** * Check if the RGB and Alpha sources and operands match for the given * texture unit's combinder state. When the RGB and A sources and * operands match, we can emit fewer instructions. */ static GLboolean args_match( const struct state_key *key, GLuint unit ) { GLuint i, numArgs = key->unit[unit].NumArgsRGB; for (i = 0; i < numArgs; i++) { if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source) return GL_FALSE; switch (key->unit[unit].OptA[i].Operand) { case OPR_SRC_ALPHA: switch (key->unit[unit].OptRGB[i].Operand) { case OPR_SRC_COLOR: case OPR_SRC_ALPHA: break; default: return GL_FALSE; } break; case OPR_ONE_MINUS_SRC_ALPHA: switch (key->unit[unit].OptRGB[i].Operand) { case OPR_ONE_MINUS_SRC_COLOR: case OPR_ONE_MINUS_SRC_ALPHA: break; default: return GL_FALSE; } break; default: return GL_FALSE; /* impossible */ } } return GL_TRUE; } static ir_rvalue * smear(ir_rvalue *val) { if (!val->type->is_scalar()) return val; return swizzle_xxxx(val); } static ir_rvalue * emit_combine(texenv_fragment_program *p, GLuint unit, GLuint nr, GLuint mode, const struct mode_opt *opt) { ir_rvalue *src[MAX_COMBINER_TERMS]; ir_rvalue *tmp0, *tmp1; GLuint i; assert(nr <= MAX_COMBINER_TERMS); for (i = 0; i < nr; i++) src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand ); switch (mode) { case MODE_REPLACE: return src[0]; case MODE_MODULATE: return mul(src[0], src[1]); case MODE_ADD: return add(src[0], src[1]); case MODE_ADD_SIGNED: return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f)); case MODE_INTERPOLATE: /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */ tmp0 = mul(src[0], src[2]); tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f), src[2]->clone(p->mem_ctx, NULL))); return add(tmp0, tmp1); case MODE_SUBTRACT: return sub(src[0], src[1]); case MODE_DOT3_RGBA: case MODE_DOT3_RGBA_EXT: case MODE_DOT3_RGB_EXT: case MODE_DOT3_RGB: { tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f)); tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f)); tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f)); tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f)); return dot(swizzle_xyz(smear(tmp0)), swizzle_xyz(smear(tmp1))); } case MODE_MODULATE_ADD_ATI: return add(mul(src[0], src[2]), src[1]); case MODE_MODULATE_SIGNED_ADD_ATI: return add(add(mul(src[0], src[2]), src[1]), new(p->mem_ctx) ir_constant(-0.5f)); case MODE_MODULATE_SUBTRACT_ATI: return sub(mul(src[0], src[2]), src[1]); case MODE_ADD_PRODUCTS: return add(mul(src[0], src[1]), mul(src[2], src[3])); case MODE_ADD_PRODUCTS_SIGNED: return add(add(mul(src[0], src[1]), mul(src[2], src[3])), new(p->mem_ctx) ir_constant(-0.5f)); default: assert(0); return src[0]; } } /** * Generate instructions for one texture unit's env/combiner mode. */ static ir_rvalue * emit_texenv(texenv_fragment_program *p, GLuint unit) { const struct state_key *key = p->state; GLboolean rgb_saturate, alpha_saturate; GLuint rgb_shift, alpha_shift; if (!key->unit[unit].enabled) { return get_source(p, SRC_PREVIOUS, 0); } switch (key->unit[unit].ModeRGB) { case MODE_DOT3_RGB_EXT: alpha_shift = key->unit[unit].ScaleShiftA; rgb_shift = 0; break; case MODE_DOT3_RGBA_EXT: alpha_shift = 0; rgb_shift = 0; break; default: rgb_shift = key->unit[unit].ScaleShiftRGB; alpha_shift = key->unit[unit].ScaleShiftA; break; } /* If we'll do rgb/alpha shifting don't saturate in emit_combine(). * We don't want to clamp twice. */ if (rgb_shift) rgb_saturate = GL_FALSE; /* saturate after rgb shift */ else if (need_saturate(key->unit[unit].ModeRGB)) rgb_saturate = GL_TRUE; else rgb_saturate = GL_FALSE; if (alpha_shift) alpha_saturate = GL_FALSE; /* saturate after alpha shift */ else if (need_saturate(key->unit[unit].ModeA)) alpha_saturate = GL_TRUE; else alpha_saturate = GL_FALSE; ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine"); ir_dereference *deref; ir_rvalue *val; /* Emit the RGB and A combine ops */ if (key->unit[unit].ModeRGB == key->unit[unit].ModeA && args_match(key, unit)) { val = emit_combine(p, unit, key->unit[unit].NumArgsRGB, key->unit[unit].ModeRGB, key->unit[unit].OptRGB); val = smear(val); if (rgb_saturate) val = saturate(val); p->emit(assign(temp_var, val)); } else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT || key->unit[unit].ModeRGB == MODE_DOT3_RGBA) { ir_rvalue *val = emit_combine(p, unit, key->unit[unit].NumArgsRGB, key->unit[unit].ModeRGB, key->unit[unit].OptRGB); val = smear(val); if (rgb_saturate) val = saturate(val); p->emit(assign(temp_var, val)); } else { /* Need to do something to stop from re-emitting identical * argument calculations here: */ val = emit_combine(p, unit, key->unit[unit].NumArgsRGB, key->unit[unit].ModeRGB, key->unit[unit].OptRGB); val = swizzle_xyz(smear(val)); if (rgb_saturate) val = saturate(val); p->emit(assign(temp_var, val, WRITEMASK_XYZ)); val = emit_combine(p, unit, key->unit[unit].NumArgsA, key->unit[unit].ModeA, key->unit[unit].OptA); val = swizzle_w(smear(val)); if (alpha_saturate) val = saturate(val); p->emit(assign(temp_var, val, WRITEMASK_W)); } deref = new(p->mem_ctx) ir_dereference_variable(temp_var); /* Deal with the final shift: */ if (alpha_shift || rgb_shift) { ir_constant *shift; if (rgb_shift == alpha_shift) { shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift)); } else { ir_constant_data const_data; const_data.f[0] = float(1 << rgb_shift); const_data.f[1] = float(1 << rgb_shift); const_data.f[2] = float(1 << rgb_shift); const_data.f[3] = float(1 << alpha_shift); shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type, &const_data); } return saturate(mul(deref, shift)); } else return deref; } /** * Generate instruction for getting a texture source term. */ static void load_texture( texenv_fragment_program *p, GLuint unit ) { ir_dereference *deref; if (p->src_texture[unit]) return; const GLuint texTarget = p->state->unit[unit].source_index; ir_rvalue *texcoord; if (!(p->state->inputs_available & (VARYING_BIT_TEX0 << unit))) { texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit); } else if (p->texcoord_tex[unit]) { texcoord = new(p->mem_ctx) ir_dereference_variable(p->texcoord_tex[unit]); } else { ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord"); assert(tc_array); texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array); ir_rvalue *index = new(p->mem_ctx) ir_constant(unit); texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index); tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, (int)unit); } if (!p->state->unit[unit].enabled) { p->src_texture[unit] = p->make_temp(glsl_type::vec4_type, "dummy_tex"); p->emit(p->src_texture[unit]); p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f))); return ; } const glsl_type *sampler_type = NULL; int coords = 0; switch (texTarget) { case TEXTURE_1D_INDEX: if (p->state->unit[unit].shadow) sampler_type = glsl_type::sampler1DShadow_type; else sampler_type = glsl_type::sampler1D_type; coords = 1; break; case TEXTURE_1D_ARRAY_INDEX: if (p->state->unit[unit].shadow) sampler_type = glsl_type::sampler1DArrayShadow_type; else sampler_type = glsl_type::sampler1DArray_type; coords = 2; break; case TEXTURE_2D_INDEX: if (p->state->unit[unit].shadow) sampler_type = glsl_type::sampler2DShadow_type; else sampler_type = glsl_type::sampler2D_type; coords = 2; break; case TEXTURE_2D_ARRAY_INDEX: if (p->state->unit[unit].shadow) sampler_type = glsl_type::sampler2DArrayShadow_type; else sampler_type = glsl_type::sampler2DArray_type; coords = 3; break; case TEXTURE_RECT_INDEX: if (p->state->unit[unit].shadow) sampler_type = glsl_type::sampler2DRectShadow_type; else sampler_type = glsl_type::sampler2DRect_type; coords = 2; break; case TEXTURE_3D_INDEX: assert(!p->state->unit[unit].shadow); sampler_type = glsl_type::sampler3D_type; coords = 3; break; case TEXTURE_CUBE_INDEX: if (p->state->unit[unit].shadow) sampler_type = glsl_type::samplerCubeShadow_type; else sampler_type = glsl_type::samplerCube_type; coords = 3; break; case TEXTURE_EXTERNAL_INDEX: assert(!p->state->unit[unit].shadow); sampler_type = glsl_type::samplerExternalOES_type; coords = 2; break; } p->src_texture[unit] = p->make_temp(glsl_type::vec4_type, "tex"); ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex); char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit); ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type, sampler_name, ir_var_uniform); p->top_instructions->push_head(sampler); /* Set the texture unit for this sampler in the same way that * layout(binding=X) would. */ sampler->data.explicit_binding = true; sampler->data.binding = unit; deref = new(p->mem_ctx) ir_dereference_variable(sampler); tex->set_sampler(deref, glsl_type::vec4_type); tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords); if (p->state->unit[unit].shadow) { texcoord = texcoord->clone(p->mem_ctx, NULL); tex->shadow_comparator = new(p->mem_ctx) ir_swizzle(texcoord, coords, 0, 0, 0, 1); coords++; } texcoord = texcoord->clone(p->mem_ctx, NULL); tex->projector = swizzle_w(texcoord); p->emit(assign(p->src_texture[unit], tex)); } static void load_texenv_source(texenv_fragment_program *p, GLuint src, GLuint unit) { switch (src) { case SRC_TEXTURE: load_texture(p, unit); break; case SRC_TEXTURE0: case SRC_TEXTURE1: case SRC_TEXTURE2: case SRC_TEXTURE3: case SRC_TEXTURE4: case SRC_TEXTURE5: case SRC_TEXTURE6: case SRC_TEXTURE7: load_texture(p, src - SRC_TEXTURE0); break; default: /* not a texture src - do nothing */ break; } } /** * Generate instructions for loading all texture source terms. */ static GLboolean load_texunit_sources( texenv_fragment_program *p, GLuint unit ) { const struct state_key *key = p->state; GLuint i; for (i = 0; i < key->unit[unit].NumArgsRGB; i++) { load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit ); } for (i = 0; i < key->unit[unit].NumArgsA; i++) { load_texenv_source( p, key->unit[unit].OptA[i].Source, unit ); } return GL_TRUE; } /** * Applies the fog calculations. * * This is basically like the ARB_fragment_prorgam fog options. Note * that ffvertex_prog.c produces fogcoord for us when * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT. */ static ir_rvalue * emit_fog_instructions(texenv_fragment_program *p, ir_rvalue *fragcolor) { struct state_key *key = p->state; ir_rvalue *f, *temp; ir_variable *params, *oparams; ir_variable *fogcoord; /* Temporary storage for the whole fog result. Fog calculations * only affect rgb so we're hanging on to the .a value of fragcolor * this way. */ ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result"); p->emit(assign(fog_result, fragcolor)); fragcolor = swizzle_xyz(fog_result); oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA"); assert(oparams); fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord"); assert(fogcoord); params = p->shader->symbols->get_variable("gl_Fog"); assert(params); f = new(p->mem_ctx) ir_dereference_variable(fogcoord); ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor"); switch (key->fog_mode) { case FOG_LINEAR: /* f = (end - z) / (end - start) * * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and * (end / (end - start)) so we can generate a single MAD. */ f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams)); break; case FOG_EXP: /* f = e^(-(density * fogcoord)) * * gl_MesaFogParamsOptimized gives us density/ln(2) so we can * use EXP2 which is generally the native instruction without * having to do any further math on the fog density uniform. */ f = mul(f, swizzle_z(oparams)); f = new(p->mem_ctx) ir_expression(ir_unop_neg, f); f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f); break; case FOG_EXP2: /* f = e^(-(density * fogcoord)^2) * * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we * can do this like FOG_EXP but with a squaring after the * multiply by density. */ ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp"); p->emit(assign(temp_var, mul(f, swizzle_w(oparams)))); f = mul(temp_var, temp_var); f = new(p->mem_ctx) ir_expression(ir_unop_neg, f); f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f); break; } p->emit(assign(f_var, saturate(f))); f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var); temp = new(p->mem_ctx) ir_dereference_variable(params); temp = new(p->mem_ctx) ir_dereference_record(temp, "color"); temp = mul(swizzle_xyz(temp), f); p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ)); return new(p->mem_ctx) ir_dereference_variable(fog_result); } static void emit_instructions(texenv_fragment_program *p) { struct state_key *key = p->state; GLuint unit; if (key->nr_enabled_units) { /* First pass - to support texture_env_crossbar, first identify * all referenced texture sources and emit texld instructions * for each: */ for (unit = 0; unit < key->nr_enabled_units; unit++) if (key->unit[unit].enabled) { load_texunit_sources(p, unit); } /* Second pass - emit combine instructions to build final color: */ for (unit = 0; unit < key->nr_enabled_units; unit++) { if (key->unit[unit].enabled) { p->src_previous = emit_texenv(p, unit); } } } ir_rvalue *cf = get_source(p, SRC_PREVIOUS, 0); if (key->separate_specular) { ir_variable *spec_result = p->make_temp(glsl_type::vec4_type, "specular_add"); p->emit(assign(spec_result, cf)); ir_rvalue *secondary; if (p->state->inputs_available & VARYING_BIT_COL1) { ir_variable *var = p->shader->symbols->get_variable("gl_SecondaryColor"); assert(var); secondary = swizzle_xyz(var); } else { secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1)); } p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary), WRITEMASK_XYZ)); cf = new(p->mem_ctx) ir_dereference_variable(spec_result); } if (key->fog_mode) { cf = emit_fog_instructions(p, cf); } ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor"); assert(frag_color); p->emit(assign(frag_color, cf)); } /** * Generate a new fragment program which implements the context's * current texture env/combine mode. */ static struct gl_shader_program * create_new_program(struct gl_context *ctx, struct state_key *key) { texenv_fragment_program p; unsigned int unit; _mesa_glsl_parse_state *state; p.mem_ctx = ralloc_context(NULL); p.shader = _mesa_new_shader(0, MESA_SHADER_FRAGMENT); #ifdef DEBUG p.shader->SourceChecksum = 0xf18ed; /* fixed */ #endif p.shader->ir = new(p.shader) exec_list; state = new(p.shader) _mesa_glsl_parse_state(ctx, MESA_SHADER_FRAGMENT, p.shader); p.shader->symbols = state->symbols; p.top_instructions = p.shader->ir; p.instructions = p.shader->ir; p.state = key; p.shader_program = _mesa_new_shader_program(0); /* Tell the linker to ignore the fact that we're building a * separate shader, in case we're in a GLES2 context that would * normally reject that. The real problem is that we're building a * fixed function program in a GLES2 context at all, but that's a * big mess to clean up. */ p.shader_program->SeparateShader = GL_TRUE; /* The legacy GLSL shadow functions follow the depth texture * mode and return vec4. The GLSL 1.30 shadow functions return float and * ignore the depth texture mode. That's a shader and state dependency * that's difficult to deal with. st/mesa uses a simple but not * completely correct solution: if the shader declares GLSL >= 1.30 and * the depth texture mode is GL_ALPHA (000X), it sets the XXXX swizzle * instead. Thus, the GLSL 1.30 shadow function will get the result in .x * and legacy shadow functions will get it in .w as expected. * For the fixed-function fragment shader, use 120 to get correct behavior * for GL_ALPHA. */ state->language_version = 120; state->es_shader = false; if (_mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external) state->OES_EGL_image_external_enable = true; _mesa_glsl_initialize_types(state); _mesa_glsl_initialize_variables(p.instructions, state); for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { p.src_texture[unit] = NULL; p.texcoord_tex[unit] = NULL; } p.src_previous = NULL; ir_function *main_f = new(p.mem_ctx) ir_function("main"); p.emit(main_f); state->symbols->add_function(main_f); ir_function_signature *main_sig = new(p.mem_ctx) ir_function_signature(glsl_type::void_type); main_sig->is_defined = true; main_f->add_signature(main_sig); p.instructions = &main_sig->body; if (key->num_draw_buffers) emit_instructions(&p); validate_ir_tree(p.shader->ir); const struct gl_shader_compiler_options *options = &ctx->Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT]; /* Conservative approach: Don't optimize here, the linker does it too. */ if (!ctx->Const.GLSLOptimizeConservatively) { while (do_common_optimization(p.shader->ir, false, false, options, ctx->Const.NativeIntegers)) ; } reparent_ir(p.shader->ir, p.shader->ir); p.shader->CompileStatus = compile_success; p.shader->Version = state->language_version; p.shader_program->Shaders = (gl_shader **)malloc(sizeof(*p.shader_program->Shaders)); p.shader_program->Shaders[0] = p.shader; p.shader_program->NumShaders = 1; _mesa_glsl_link_shader(ctx, p.shader_program); if (!p.shader_program->data->LinkStatus) _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n", p.shader_program->data->InfoLog); ralloc_free(p.mem_ctx); return p.shader_program; } extern "C" { /** * Return a fragment program which implements the current * fixed-function texture, fog and color-sum operations. */ struct gl_shader_program * _mesa_get_fixed_func_fragment_program(struct gl_context *ctx) { struct gl_shader_program *shader_program; struct state_key key; GLuint keySize; keySize = make_state_key(ctx, &key); shader_program = (struct gl_shader_program *) _mesa_search_program_cache(ctx->FragmentProgram.Cache, &key, keySize); if (!shader_program) { shader_program = create_new_program(ctx, &key); _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache, &key, keySize, shader_program); } return shader_program; } }