/** * \file enable.c * Enable/disable/query GL capabilities. */ /* * Mesa 3-D graphics library * Version: 6.5.1 * * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "glheader.h" #include "context.h" #include "enable.h" #include "light.h" #include "macros.h" #include "simple_list.h" #include "mtypes.h" #include "enums.h" #include "math/m_matrix.h" #include "math/m_xform.h" #define CHECK_EXTENSION(EXTNAME, CAP) \ if (!ctx->Extensions.EXTNAME) { \ _mesa_error(ctx, GL_INVALID_ENUM, "gl%sClientState(0x%x)", \ state ? "Enable" : "Disable", CAP); \ return; \ } /** * Helper to enable/disable client-side state. */ static void client_state(GLcontext *ctx, GLenum cap, GLboolean state) { GLuint flag; GLboolean *var; switch (cap) { case GL_VERTEX_ARRAY: var = &ctx->Array.ArrayObj->Vertex.Enabled; flag = _NEW_ARRAY_VERTEX; break; case GL_NORMAL_ARRAY: var = &ctx->Array.ArrayObj->Normal.Enabled; flag = _NEW_ARRAY_NORMAL; break; case GL_COLOR_ARRAY: var = &ctx->Array.ArrayObj->Color.Enabled; flag = _NEW_ARRAY_COLOR0; break; case GL_INDEX_ARRAY: var = &ctx->Array.ArrayObj->Index.Enabled; flag = _NEW_ARRAY_INDEX; break; case GL_TEXTURE_COORD_ARRAY: var = &ctx->Array.ArrayObj->TexCoord[ctx->Array.ActiveTexture].Enabled; flag = _NEW_ARRAY_TEXCOORD(ctx->Array.ActiveTexture); break; case GL_EDGE_FLAG_ARRAY: var = &ctx->Array.ArrayObj->EdgeFlag.Enabled; flag = _NEW_ARRAY_EDGEFLAG; break; case GL_FOG_COORDINATE_ARRAY_EXT: var = &ctx->Array.ArrayObj->FogCoord.Enabled; flag = _NEW_ARRAY_FOGCOORD; break; case GL_SECONDARY_COLOR_ARRAY_EXT: var = &ctx->Array.ArrayObj->SecondaryColor.Enabled; flag = _NEW_ARRAY_COLOR1; break; #if FEATURE_NV_vertex_program case GL_VERTEX_ATTRIB_ARRAY0_NV: case GL_VERTEX_ATTRIB_ARRAY1_NV: case GL_VERTEX_ATTRIB_ARRAY2_NV: case GL_VERTEX_ATTRIB_ARRAY3_NV: case GL_VERTEX_ATTRIB_ARRAY4_NV: case GL_VERTEX_ATTRIB_ARRAY5_NV: case GL_VERTEX_ATTRIB_ARRAY6_NV: case GL_VERTEX_ATTRIB_ARRAY7_NV: case GL_VERTEX_ATTRIB_ARRAY8_NV: case GL_VERTEX_ATTRIB_ARRAY9_NV: case GL_VERTEX_ATTRIB_ARRAY10_NV: case GL_VERTEX_ATTRIB_ARRAY11_NV: case GL_VERTEX_ATTRIB_ARRAY12_NV: case GL_VERTEX_ATTRIB_ARRAY13_NV: case GL_VERTEX_ATTRIB_ARRAY14_NV: case GL_VERTEX_ATTRIB_ARRAY15_NV: CHECK_EXTENSION(NV_vertex_program, cap); { GLint n = (GLint) cap - GL_VERTEX_ATTRIB_ARRAY0_NV; var = &ctx->Array.ArrayObj->VertexAttrib[n].Enabled; flag = _NEW_ARRAY_ATTRIB(n); } break; #endif /* FEATURE_NV_vertex_program */ default: _mesa_error( ctx, GL_INVALID_ENUM, "glEnable/DisableClientState(0x%x)", cap); return; } if (*var == state) return; FLUSH_VERTICES(ctx, _NEW_ARRAY); ctx->Array.NewState |= flag; *var = state; if (state) ctx->Array.ArrayObj->_Enabled |= flag; else ctx->Array.ArrayObj->_Enabled &= ~flag; if (ctx->Driver.Enable) { ctx->Driver.Enable( ctx, cap, state ); } } /** * Enable GL capability. * \param cap state to enable/disable. * * Get's the current context, assures that we're outside glBegin()/glEnd() and * calls client_state(). */ void GLAPIENTRY _mesa_EnableClientState( GLenum cap ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); client_state( ctx, cap, GL_TRUE ); } /** * Disable GL capability. * \param cap state to enable/disable. * * Get's the current context, assures that we're outside glBegin()/glEnd() and * calls client_state(). */ void GLAPIENTRY _mesa_DisableClientState( GLenum cap ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); client_state( ctx, cap, GL_FALSE ); } #undef CHECK_EXTENSION #define CHECK_EXTENSION(EXTNAME, CAP) \ if (!ctx->Extensions.EXTNAME) { \ _mesa_error(ctx, GL_INVALID_ENUM, "gl%s(0x%x)", \ state ? "Enable" : "Disable", CAP); \ return; \ } #define CHECK_EXTENSION2(EXT1, EXT2, CAP) \ if (!ctx->Extensions.EXT1 && !ctx->Extensions.EXT2) { \ _mesa_error(ctx, GL_INVALID_ENUM, "gl%s(0x%x)", \ state ? "Enable" : "Disable", CAP); \ return; \ } /** * Helper function to enable or disable a texture target. */ static GLboolean enable_texture(GLcontext *ctx, GLboolean state, GLbitfield bit) { const GLuint curr = ctx->Texture.CurrentUnit; struct gl_texture_unit *texUnit = &ctx->Texture.Unit[curr]; const GLuint newenabled = (!state) ? (texUnit->Enabled & ~bit) : (texUnit->Enabled | bit); if (!ctx->DrawBuffer->Visual.rgbMode || texUnit->Enabled == newenabled) return GL_FALSE; FLUSH_VERTICES(ctx, _NEW_TEXTURE); texUnit->Enabled = newenabled; return GL_TRUE; } /** * Helper function to enable or disable state. * * \param ctx GL context. * \param cap the state to enable/disable * \param state whether to enable or disable the specified capability. * * Updates the current context and flushes the vertices as needed. For * capabilities associated with extensions it verifies that those extensions * are effectivly present before updating. Notifies the driver via * dd_function_table::Enable. */ void _mesa_set_enable(GLcontext *ctx, GLenum cap, GLboolean state) { if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "%s %s (newstate is %x)\n", state ? "glEnable" : "glDisable", _mesa_lookup_enum_by_nr(cap), ctx->NewState); switch (cap) { case GL_ALPHA_TEST: if (ctx->Color.AlphaEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_COLOR); ctx->Color.AlphaEnabled = state; break; case GL_AUTO_NORMAL: if (ctx->Eval.AutoNormal == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.AutoNormal = state; break; case GL_BLEND: if (ctx->Color.BlendEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_COLOR); ctx->Color.BlendEnabled = state; break; #if FEATURE_userclip case GL_CLIP_PLANE0: case GL_CLIP_PLANE1: case GL_CLIP_PLANE2: case GL_CLIP_PLANE3: case GL_CLIP_PLANE4: case GL_CLIP_PLANE5: { const GLuint p = cap - GL_CLIP_PLANE0; if ((ctx->Transform.ClipPlanesEnabled & (1 << p)) == ((GLuint) state << p)) return; FLUSH_VERTICES(ctx, _NEW_TRANSFORM); if (state) { ctx->Transform.ClipPlanesEnabled |= (1 << p); if (_math_matrix_is_dirty(ctx->ProjectionMatrixStack.Top)) _math_matrix_analyse( ctx->ProjectionMatrixStack.Top ); /* This derived state also calculated in clip.c and * from _mesa_update_state() on changes to EyeUserPlane * and ctx->ProjectionMatrix respectively. */ _mesa_transform_vector( ctx->Transform._ClipUserPlane[p], ctx->Transform.EyeUserPlane[p], ctx->ProjectionMatrixStack.Top->inv ); } else { ctx->Transform.ClipPlanesEnabled &= ~(1 << p); } } break; #endif case GL_COLOR_MATERIAL: if (ctx->Light.ColorMaterialEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); FLUSH_CURRENT(ctx, 0); ctx->Light.ColorMaterialEnabled = state; if (state) { _mesa_update_color_material( ctx, ctx->Current.Attrib[VERT_ATTRIB_COLOR0] ); } break; case GL_CULL_FACE: if (ctx->Polygon.CullFlag == state) return; FLUSH_VERTICES(ctx, _NEW_POLYGON); ctx->Polygon.CullFlag = state; break; case GL_CULL_VERTEX_EXT: CHECK_EXTENSION(EXT_cull_vertex, cap); if (ctx->Transform.CullVertexFlag == state) return; FLUSH_VERTICES(ctx, _NEW_TRANSFORM); ctx->Transform.CullVertexFlag = state; break; case GL_DEPTH_TEST: if (state && ctx->DrawBuffer->Visual.depthBits == 0) { _mesa_warning(ctx,"glEnable(GL_DEPTH_TEST) but no depth buffer"); return; } if (ctx->Depth.Test == state) return; FLUSH_VERTICES(ctx, _NEW_DEPTH); ctx->Depth.Test = state; break; case GL_DITHER: if (ctx->NoDither) { state = GL_FALSE; /* MESA_NO_DITHER env var */ } if (ctx->Color.DitherFlag == state) return; FLUSH_VERTICES(ctx, _NEW_COLOR); ctx->Color.DitherFlag = state; break; case GL_FOG: if (ctx->Fog.Enabled == state) return; FLUSH_VERTICES(ctx, _NEW_FOG); ctx->Fog.Enabled = state; break; case GL_HISTOGRAM: CHECK_EXTENSION(EXT_histogram, cap); if (ctx->Pixel.HistogramEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.HistogramEnabled = state; break; case GL_LIGHT0: case GL_LIGHT1: case GL_LIGHT2: case GL_LIGHT3: case GL_LIGHT4: case GL_LIGHT5: case GL_LIGHT6: case GL_LIGHT7: if (ctx->Light.Light[cap-GL_LIGHT0].Enabled == state) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.Light[cap-GL_LIGHT0].Enabled = state; if (state) { insert_at_tail(&ctx->Light.EnabledList, &ctx->Light.Light[cap-GL_LIGHT0]); } else { remove_from_list(&ctx->Light.Light[cap-GL_LIGHT0]); } break; case GL_LIGHTING: if (ctx->Light.Enabled == state) return; if (ctx->Light.Enabled && ctx->Light.Model.TwoSide) ctx->_TriangleCaps |= DD_TRI_LIGHT_TWOSIDE; else ctx->_TriangleCaps &= ~DD_TRI_LIGHT_TWOSIDE; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.Enabled = state; break; case GL_LINE_SMOOTH: if (ctx->Line.SmoothFlag == state) return; FLUSH_VERTICES(ctx, _NEW_LINE); ctx->Line.SmoothFlag = state; ctx->_TriangleCaps ^= DD_LINE_SMOOTH; break; case GL_LINE_STIPPLE: if (ctx->Line.StippleFlag == state) return; FLUSH_VERTICES(ctx, _NEW_LINE); ctx->Line.StippleFlag = state; ctx->_TriangleCaps ^= DD_LINE_STIPPLE; break; case GL_INDEX_LOGIC_OP: if (ctx->Color.IndexLogicOpEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_COLOR); ctx->Color.IndexLogicOpEnabled = state; break; case GL_COLOR_LOGIC_OP: if (ctx->Color.ColorLogicOpEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_COLOR); ctx->Color.ColorLogicOpEnabled = state; break; case GL_MAP1_COLOR_4: if (ctx->Eval.Map1Color4 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map1Color4 = state; break; case GL_MAP1_INDEX: if (ctx->Eval.Map1Index == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map1Index = state; break; case GL_MAP1_NORMAL: if (ctx->Eval.Map1Normal == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map1Normal = state; break; case GL_MAP1_TEXTURE_COORD_1: if (ctx->Eval.Map1TextureCoord1 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map1TextureCoord1 = state; break; case GL_MAP1_TEXTURE_COORD_2: if (ctx->Eval.Map1TextureCoord2 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map1TextureCoord2 = state; break; case GL_MAP1_TEXTURE_COORD_3: if (ctx->Eval.Map1TextureCoord3 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map1TextureCoord3 = state; break; case GL_MAP1_TEXTURE_COORD_4: if (ctx->Eval.Map1TextureCoord4 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map1TextureCoord4 = state; break; case GL_MAP1_VERTEX_3: if (ctx->Eval.Map1Vertex3 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map1Vertex3 = state; break; case GL_MAP1_VERTEX_4: if (ctx->Eval.Map1Vertex4 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map1Vertex4 = state; break; case GL_MAP2_COLOR_4: if (ctx->Eval.Map2Color4 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map2Color4 = state; break; case GL_MAP2_INDEX: if (ctx->Eval.Map2Index == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map2Index = state; break; case GL_MAP2_NORMAL: if (ctx->Eval.Map2Normal == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map2Normal = state; break; case GL_MAP2_TEXTURE_COORD_1: if (ctx->Eval.Map2TextureCoord1 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map2TextureCoord1 = state; break; case GL_MAP2_TEXTURE_COORD_2: if (ctx->Eval.Map2TextureCoord2 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map2TextureCoord2 = state; break; case GL_MAP2_TEXTURE_COORD_3: if (ctx->Eval.Map2TextureCoord3 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map2TextureCoord3 = state; break; case GL_MAP2_TEXTURE_COORD_4: if (ctx->Eval.Map2TextureCoord4 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map2TextureCoord4 = state; break; case GL_MAP2_VERTEX_3: if (ctx->Eval.Map2Vertex3 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map2Vertex3 = state; break; case GL_MAP2_VERTEX_4: if (ctx->Eval.Map2Vertex4 == state) return; FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map2Vertex4 = state; break; case GL_MINMAX: if (ctx->Pixel.MinMaxEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.MinMaxEnabled = state; break; case GL_NORMALIZE: if (ctx->Transform.Normalize == state) return; FLUSH_VERTICES(ctx, _NEW_TRANSFORM); ctx->Transform.Normalize = state; break; case GL_POINT_SMOOTH: if (ctx->Point.SmoothFlag == state) return; FLUSH_VERTICES(ctx, _NEW_POINT); ctx->Point.SmoothFlag = state; ctx->_TriangleCaps ^= DD_POINT_SMOOTH; break; case GL_POLYGON_SMOOTH: if (ctx->Polygon.SmoothFlag == state) return; FLUSH_VERTICES(ctx, _NEW_POLYGON); ctx->Polygon.SmoothFlag = state; ctx->_TriangleCaps ^= DD_TRI_SMOOTH; break; case GL_POLYGON_STIPPLE: if (ctx->Polygon.StippleFlag == state) return; FLUSH_VERTICES(ctx, _NEW_POLYGON); ctx->Polygon.StippleFlag = state; ctx->_TriangleCaps ^= DD_TRI_STIPPLE; break; case GL_POLYGON_OFFSET_POINT: if (ctx->Polygon.OffsetPoint == state) return; FLUSH_VERTICES(ctx, _NEW_POLYGON); ctx->Polygon.OffsetPoint = state; break; case GL_POLYGON_OFFSET_LINE: if (ctx->Polygon.OffsetLine == state) return; FLUSH_VERTICES(ctx, _NEW_POLYGON); ctx->Polygon.OffsetLine = state; break; case GL_POLYGON_OFFSET_FILL: /*case GL_POLYGON_OFFSET_EXT:*/ if (ctx->Polygon.OffsetFill == state) return; FLUSH_VERTICES(ctx, _NEW_POLYGON); ctx->Polygon.OffsetFill = state; break; case GL_RESCALE_NORMAL_EXT: if (ctx->Transform.RescaleNormals == state) return; FLUSH_VERTICES(ctx, _NEW_TRANSFORM); ctx->Transform.RescaleNormals = state; break; case GL_SCISSOR_TEST: if (ctx->Scissor.Enabled == state) return; FLUSH_VERTICES(ctx, _NEW_SCISSOR); ctx->Scissor.Enabled = state; break; case GL_SHARED_TEXTURE_PALETTE_EXT: if (ctx->Texture.SharedPalette == state) return; FLUSH_VERTICES(ctx, _NEW_TEXTURE); ctx->Texture.SharedPalette = state; break; case GL_STENCIL_TEST: if (state && ctx->DrawBuffer->Visual.stencilBits == 0) { _mesa_warning(ctx, "glEnable(GL_STENCIL_TEST) but no stencil buffer"); return; } if (ctx->Stencil.Enabled == state) return; FLUSH_VERTICES(ctx, _NEW_STENCIL); ctx->Stencil.Enabled = state; break; case GL_TEXTURE_1D: if (!enable_texture(ctx, state, TEXTURE_1D_BIT)) { return; } break; case GL_TEXTURE_2D: if (!enable_texture(ctx, state, TEXTURE_2D_BIT)) { return; } break; case GL_TEXTURE_3D: if (!enable_texture(ctx, state, TEXTURE_3D_BIT)) { return; } break; case GL_TEXTURE_GEN_Q: { GLuint unit = ctx->Texture.CurrentUnit; struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; GLuint newenabled = texUnit->TexGenEnabled & ~Q_BIT; if (state) newenabled |= Q_BIT; if (texUnit->TexGenEnabled == newenabled) return; FLUSH_VERTICES(ctx, _NEW_TEXTURE); texUnit->TexGenEnabled = newenabled; break; } case GL_TEXTURE_GEN_R: { GLuint unit = ctx->Texture.CurrentUnit; struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; GLuint newenabled = texUnit->TexGenEnabled & ~R_BIT; if (state) newenabled |= R_BIT; if (texUnit->TexGenEnabled == newenabled) return; FLUSH_VERTICES(ctx, _NEW_TEXTURE); texUnit->TexGenEnabled = newenabled; break; } case GL_TEXTURE_GEN_S: { GLuint unit = ctx->Texture.CurrentUnit; struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; GLuint newenabled = texUnit->TexGenEnabled & ~S_BIT; if (state) newenabled |= S_BIT; if (texUnit->TexGenEnabled == newenabled) return; FLUSH_VERTICES(ctx, _NEW_TEXTURE); texUnit->TexGenEnabled = newenabled; break; } case GL_TEXTURE_GEN_T: { GLuint unit = ctx->Texture.CurrentUnit; struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; GLuint newenabled = texUnit->TexGenEnabled & ~T_BIT; if (state) newenabled |= T_BIT; if (texUnit->TexGenEnabled == newenabled) return; FLUSH_VERTICES(ctx, _NEW_TEXTURE); texUnit->TexGenEnabled = newenabled; break; } /* * CLIENT STATE!!! */ case GL_VERTEX_ARRAY: case GL_NORMAL_ARRAY: case GL_COLOR_ARRAY: case GL_INDEX_ARRAY: case GL_TEXTURE_COORD_ARRAY: case GL_EDGE_FLAG_ARRAY: case GL_FOG_COORDINATE_ARRAY_EXT: case GL_SECONDARY_COLOR_ARRAY_EXT: client_state( ctx, cap, state ); return; /* GL_SGI_color_table */ case GL_COLOR_TABLE_SGI: CHECK_EXTENSION(SGI_color_table, cap); if (ctx->Pixel.ColorTableEnabled[COLORTABLE_PRECONVOLUTION] == state) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.ColorTableEnabled[COLORTABLE_PRECONVOLUTION] = state; break; case GL_POST_CONVOLUTION_COLOR_TABLE_SGI: CHECK_EXTENSION(SGI_color_table, cap); if (ctx->Pixel.ColorTableEnabled[COLORTABLE_POSTCONVOLUTION] == state) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.ColorTableEnabled[COLORTABLE_POSTCONVOLUTION] = state; break; case GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI: CHECK_EXTENSION(SGI_color_table, cap); if (ctx->Pixel.ColorTableEnabled[COLORTABLE_POSTCOLORMATRIX] == state) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.ColorTableEnabled[COLORTABLE_POSTCOLORMATRIX] = state; break; case GL_TEXTURE_COLOR_TABLE_SGI: CHECK_EXTENSION(SGI_texture_color_table, cap); if (ctx->Texture.Unit[ctx->Texture.CurrentUnit].ColorTableEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_TEXTURE); ctx->Texture.Unit[ctx->Texture.CurrentUnit].ColorTableEnabled = state; break; /* GL_EXT_convolution */ case GL_CONVOLUTION_1D: CHECK_EXTENSION(EXT_convolution, cap); if (ctx->Pixel.Convolution1DEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.Convolution1DEnabled = state; break; case GL_CONVOLUTION_2D: CHECK_EXTENSION(EXT_convolution, cap); if (ctx->Pixel.Convolution2DEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.Convolution2DEnabled = state; break; case GL_SEPARABLE_2D: CHECK_EXTENSION(EXT_convolution, cap); if (ctx->Pixel.Separable2DEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.Separable2DEnabled = state; break; /* GL_ARB_texture_cube_map */ case GL_TEXTURE_CUBE_MAP_ARB: CHECK_EXTENSION(ARB_texture_cube_map, cap); if (!enable_texture(ctx, state, TEXTURE_CUBE_BIT)) { return; } break; /* GL_EXT_secondary_color */ case GL_COLOR_SUM_EXT: CHECK_EXTENSION2(EXT_secondary_color, ARB_vertex_program, cap); if (ctx->Fog.ColorSumEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_FOG); ctx->Fog.ColorSumEnabled = state; break; /* GL_ARB_multisample */ case GL_MULTISAMPLE_ARB: CHECK_EXTENSION(ARB_multisample, cap); if (ctx->Multisample.Enabled == state) return; FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE); ctx->Multisample.Enabled = state; break; case GL_SAMPLE_ALPHA_TO_COVERAGE_ARB: CHECK_EXTENSION(ARB_multisample, cap); if (ctx->Multisample.SampleAlphaToCoverage == state) return; FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE); ctx->Multisample.SampleAlphaToCoverage = state; break; case GL_SAMPLE_ALPHA_TO_ONE_ARB: CHECK_EXTENSION(ARB_multisample, cap); if (ctx->Multisample.SampleAlphaToOne == state) return; FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE); ctx->Multisample.SampleAlphaToOne = state; break; case GL_SAMPLE_COVERAGE_ARB: CHECK_EXTENSION(ARB_multisample, cap); if (ctx->Multisample.SampleCoverage == state) return; FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE); ctx->Multisample.SampleCoverage = state; break; case GL_SAMPLE_COVERAGE_INVERT_ARB: CHECK_EXTENSION(ARB_multisample, cap); if (ctx->Multisample.SampleCoverageInvert == state) return; FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE); ctx->Multisample.SampleCoverageInvert = state; break; /* GL_IBM_rasterpos_clip */ case GL_RASTER_POSITION_UNCLIPPED_IBM: CHECK_EXTENSION(IBM_rasterpos_clip, cap); if (ctx->Transform.RasterPositionUnclipped == state) return; FLUSH_VERTICES(ctx, _NEW_TRANSFORM); ctx->Transform.RasterPositionUnclipped = state; break; /* GL_NV_point_sprite */ case GL_POINT_SPRITE_NV: CHECK_EXTENSION2(NV_point_sprite, ARB_point_sprite, cap); if (ctx->Point.PointSprite == state) return; FLUSH_VERTICES(ctx, _NEW_POINT); ctx->Point.PointSprite = state; break; #if FEATURE_NV_vertex_program || FEATURE_ARB_vertex_program case GL_VERTEX_PROGRAM_ARB: CHECK_EXTENSION2(ARB_vertex_program, NV_vertex_program, cap); if (ctx->VertexProgram.Enabled == state) return; FLUSH_VERTICES(ctx, _NEW_PROGRAM); ctx->VertexProgram.Enabled = state; break; case GL_VERTEX_PROGRAM_POINT_SIZE_ARB: CHECK_EXTENSION2(ARB_vertex_program, NV_vertex_program, cap); if (ctx->VertexProgram.PointSizeEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_PROGRAM); ctx->VertexProgram.PointSizeEnabled = state; break; case GL_VERTEX_PROGRAM_TWO_SIDE_ARB: CHECK_EXTENSION2(ARB_vertex_program, NV_vertex_program, cap); if (ctx->VertexProgram.TwoSideEnabled == state) return; FLUSH_VERTICES(ctx, _NEW_PROGRAM); ctx->VertexProgram.TwoSideEnabled = state; break; #endif #if FEATURE_NV_vertex_program case GL_MAP1_VERTEX_ATTRIB0_4_NV: case GL_MAP1_VERTEX_ATTRIB1_4_NV: case GL_MAP1_VERTEX_ATTRIB2_4_NV: case GL_MAP1_VERTEX_ATTRIB3_4_NV: case GL_MAP1_VERTEX_ATTRIB4_4_NV: case GL_MAP1_VERTEX_ATTRIB5_4_NV: case GL_MAP1_VERTEX_ATTRIB6_4_NV: case GL_MAP1_VERTEX_ATTRIB7_4_NV: case GL_MAP1_VERTEX_ATTRIB8_4_NV: case GL_MAP1_VERTEX_ATTRIB9_4_NV: case GL_MAP1_VERTEX_ATTRIB10_4_NV: case GL_MAP1_VERTEX_ATTRIB11_4_NV: case GL_MAP1_VERTEX_ATTRIB12_4_NV: case GL_MAP1_VERTEX_ATTRIB13_4_NV: case GL_MAP1_VERTEX_ATTRIB14_4_NV: case GL_MAP1_VERTEX_ATTRIB15_4_NV: CHECK_EXTENSION(NV_vertex_program, cap); { const GLuint map = (GLuint) (cap - GL_MAP1_VERTEX_ATTRIB0_4_NV); FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map1Attrib[map] = state; } break; case GL_MAP2_VERTEX_ATTRIB0_4_NV: case GL_MAP2_VERTEX_ATTRIB1_4_NV: case GL_MAP2_VERTEX_ATTRIB2_4_NV: case GL_MAP2_VERTEX_ATTRIB3_4_NV: case GL_MAP2_VERTEX_ATTRIB4_4_NV: case GL_MAP2_VERTEX_ATTRIB5_4_NV: case GL_MAP2_VERTEX_ATTRIB6_4_NV: case GL_MAP2_VERTEX_ATTRIB7_4_NV: case GL_MAP2_VERTEX_ATTRIB8_4_NV: case GL_MAP2_VERTEX_ATTRIB9_4_NV: case GL_MAP2_VERTEX_ATTRIB10_4_NV: case GL_MAP2_VERTEX_ATTRIB11_4_NV: case GL_MAP2_VERTEX_ATTRIB12_4_NV: case GL_MAP2_VERTEX_ATTRIB13_4_NV: case GL_MAP2_VERTEX_ATTRIB14_4_NV: case GL_MAP2_VERTEX_ATTRIB15_4_NV: CHECK_EXTENSION(NV_vertex_program, cap); { const GLuint map = (GLuint) (cap - GL_MAP2_VERTEX_ATTRIB0_4_NV); FLUSH_VERTICES(ctx, _NEW_EVAL); ctx->Eval.Map2Attrib[map] = state; } break; #endif /* FEATURE_NV_vertex_program */ #if FEATURE_NV_fragment_program case GL_FRAGMENT_PROGRAM_NV: CHECK_EXTENSION(NV_fragment_program, cap); if (ctx->FragmentProgram.Enabled == state) return; FLUSH_VERTICES(ctx, _NEW_PROGRAM); ctx->FragmentProgram.Enabled = state; break; #endif /* FEATURE_NV_fragment_program */ /* GL_NV_texture_rectangle */ case GL_TEXTURE_RECTANGLE_NV: CHECK_EXTENSION(NV_texture_rectangle, cap); if (!enable_texture(ctx, state, TEXTURE_RECT_BIT)) { return; } break; /* GL_EXT_stencil_two_side */ case GL_STENCIL_TEST_TWO_SIDE_EXT: CHECK_EXTENSION(EXT_stencil_two_side, cap); if (ctx->Stencil.TestTwoSide == state) return; FLUSH_VERTICES(ctx, _NEW_STENCIL); ctx->Stencil.TestTwoSide = state; if (state) ctx->_TriangleCaps |= DD_TRI_TWOSTENCIL; else ctx->_TriangleCaps &= ~DD_TRI_TWOSTENCIL; break; #if FEATURE_ARB_fragment_program case GL_FRAGMENT_PROGRAM_ARB: CHECK_EXTENSION(ARB_fragment_program, cap); if (ctx->FragmentProgram.Enabled == state) return; FLUSH_VERTICES(ctx, _NEW_PROGRAM); ctx->FragmentProgram.Enabled = state; break; #endif /* FEATURE_ARB_fragment_program */ /* GL_EXT_depth_bounds_test */ case GL_DEPTH_BOUNDS_TEST_EXT: CHECK_EXTENSION(EXT_depth_bounds_test, cap); if (state && ctx->DrawBuffer->Visual.depthBits == 0) { _mesa_warning(ctx, "glEnable(GL_DEPTH_BOUNDS_TEST_EXT) but no depth buffer"); return; } if (ctx->Depth.BoundsTest == state) return; FLUSH_VERTICES(ctx, _NEW_DEPTH); ctx->Depth.BoundsTest = state; break; /* GL_MESA_program_debug */ case GL_FRAGMENT_PROGRAM_CALLBACK_MESA: CHECK_EXTENSION(MESA_program_debug, cap); ctx->FragmentProgram.CallbackEnabled = state; break; case GL_VERTEX_PROGRAM_CALLBACK_MESA: CHECK_EXTENSION(MESA_program_debug, cap); ctx->VertexProgram.CallbackEnabled = state; break; #if FEATURE_ATI_fragment_shader case GL_FRAGMENT_SHADER_ATI: CHECK_EXTENSION(ATI_fragment_shader, cap); if (ctx->ATIFragmentShader.Enabled == state) return; FLUSH_VERTICES(ctx, _NEW_PROGRAM); ctx->ATIFragmentShader.Enabled = state; break; #endif default: _mesa_error(ctx, GL_INVALID_ENUM, "%s(0x%x)", state ? "glEnable" : "glDisable", cap); return; } if (ctx->Driver.Enable) { ctx->Driver.Enable( ctx, cap, state ); } } /** * Enable GL capability. Called by glEnable() * \param cap state to enable. */ void GLAPIENTRY _mesa_Enable( GLenum cap ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); _mesa_set_enable( ctx, cap, GL_TRUE ); } /** * Disable GL capability. Called by glDisable() * \param cap state to disable. */ void GLAPIENTRY _mesa_Disable( GLenum cap ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); _mesa_set_enable( ctx, cap, GL_FALSE ); } #undef CHECK_EXTENSION #define CHECK_EXTENSION(EXTNAME) \ if (!ctx->Extensions.EXTNAME) { \ _mesa_error(ctx, GL_INVALID_ENUM, "glIsEnabled"); \ return GL_FALSE; \ } #undef CHECK_EXTENSION2 #define CHECK_EXTENSION2(EXT1, EXT2) \ if (!ctx->Extensions.EXT1 && !ctx->Extensions.EXT2) { \ _mesa_error(ctx, GL_INVALID_ENUM, "glIsEnabled"); \ return GL_FALSE; \ } /** * Helper function to determine whether a texture target is enabled. */ static GLboolean is_texture_enabled(GLcontext *ctx, GLbitfield bit) { const struct gl_texture_unit *const texUnit = &ctx->Texture.Unit[ctx->Texture.CurrentUnit]; return (texUnit->Enabled & bit) ? GL_TRUE : GL_FALSE; } /** * Return simple enable/disable state. * * \param cap state variable to query. * * Returns the state of the specified capability from the current GL context. * For the capabilities associated with extensions verifies that those * extensions are effectively present before reporting. */ GLboolean GLAPIENTRY _mesa_IsEnabled( GLenum cap ) { GET_CURRENT_CONTEXT(ctx); switch (cap) { case GL_ALPHA_TEST: return ctx->Color.AlphaEnabled; case GL_AUTO_NORMAL: return ctx->Eval.AutoNormal; case GL_BLEND: return ctx->Color.BlendEnabled; case GL_CLIP_PLANE0: case GL_CLIP_PLANE1: case GL_CLIP_PLANE2: case GL_CLIP_PLANE3: case GL_CLIP_PLANE4: case GL_CLIP_PLANE5: return (ctx->Transform.ClipPlanesEnabled >> (cap - GL_CLIP_PLANE0)) & 1; case GL_COLOR_MATERIAL: return ctx->Light.ColorMaterialEnabled; case GL_CULL_FACE: return ctx->Polygon.CullFlag; case GL_DEPTH_TEST: return ctx->Depth.Test; case GL_DITHER: return ctx->Color.DitherFlag; case GL_FOG: return ctx->Fog.Enabled; case GL_LIGHTING: return ctx->Light.Enabled; case GL_LIGHT0: case GL_LIGHT1: case GL_LIGHT2: case GL_LIGHT3: case GL_LIGHT4: case GL_LIGHT5: case GL_LIGHT6: case GL_LIGHT7: return ctx->Light.Light[cap-GL_LIGHT0].Enabled; case GL_LINE_SMOOTH: return ctx->Line.SmoothFlag; case GL_LINE_STIPPLE: return ctx->Line.StippleFlag; case GL_INDEX_LOGIC_OP: return ctx->Color.IndexLogicOpEnabled; case GL_COLOR_LOGIC_OP: return ctx->Color.ColorLogicOpEnabled; case GL_MAP1_COLOR_4: return ctx->Eval.Map1Color4; case GL_MAP1_INDEX: return ctx->Eval.Map1Index; case GL_MAP1_NORMAL: return ctx->Eval.Map1Normal; case GL_MAP1_TEXTURE_COORD_1: return ctx->Eval.Map1TextureCoord1; case GL_MAP1_TEXTURE_COORD_2: return ctx->Eval.Map1TextureCoord2; case GL_MAP1_TEXTURE_COORD_3: return ctx->Eval.Map1TextureCoord3; case GL_MAP1_TEXTURE_COORD_4: return ctx->Eval.Map1TextureCoord4; case GL_MAP1_VERTEX_3: return ctx->Eval.Map1Vertex3; case GL_MAP1_VERTEX_4: return ctx->Eval.Map1Vertex4; case GL_MAP2_COLOR_4: return ctx->Eval.Map2Color4; case GL_MAP2_INDEX: return ctx->Eval.Map2Index; case GL_MAP2_NORMAL: return ctx->Eval.Map2Normal; case GL_MAP2_TEXTURE_COORD_1: return ctx->Eval.Map2TextureCoord1; case GL_MAP2_TEXTURE_COORD_2: return ctx->Eval.Map2TextureCoord2; case GL_MAP2_TEXTURE_COORD_3: return ctx->Eval.Map2TextureCoord3; case GL_MAP2_TEXTURE_COORD_4: return ctx->Eval.Map2TextureCoord4; case GL_MAP2_VERTEX_3: return ctx->Eval.Map2Vertex3; case GL_MAP2_VERTEX_4: return ctx->Eval.Map2Vertex4; case GL_NORMALIZE: return ctx->Transform.Normalize; case GL_POINT_SMOOTH: return ctx->Point.SmoothFlag; case GL_POLYGON_SMOOTH: return ctx->Polygon.SmoothFlag; case GL_POLYGON_STIPPLE: return ctx->Polygon.StippleFlag; case GL_POLYGON_OFFSET_POINT: return ctx->Polygon.OffsetPoint; case GL_POLYGON_OFFSET_LINE: return ctx->Polygon.OffsetLine; case GL_POLYGON_OFFSET_FILL: /*case GL_POLYGON_OFFSET_EXT:*/ return ctx->Polygon.OffsetFill; case GL_RESCALE_NORMAL_EXT: return ctx->Transform.RescaleNormals; case GL_SCISSOR_TEST: return ctx->Scissor.Enabled; case GL_SHARED_TEXTURE_PALETTE_EXT: return ctx->Texture.SharedPalette; case GL_STENCIL_TEST: return ctx->Stencil.Enabled; case GL_TEXTURE_1D: return is_texture_enabled(ctx, TEXTURE_1D_BIT); case GL_TEXTURE_2D: return is_texture_enabled(ctx, TEXTURE_2D_BIT); case GL_TEXTURE_3D: return is_texture_enabled(ctx, TEXTURE_3D_BIT); case GL_TEXTURE_GEN_Q: { const struct gl_texture_unit *texUnit; texUnit = &ctx->Texture.Unit[ctx->Texture.CurrentUnit]; return (texUnit->TexGenEnabled & Q_BIT) ? GL_TRUE : GL_FALSE; } case GL_TEXTURE_GEN_R: { const struct gl_texture_unit *texUnit; texUnit = &ctx->Texture.Unit[ctx->Texture.CurrentUnit]; return (texUnit->TexGenEnabled & R_BIT) ? GL_TRUE : GL_FALSE; } case GL_TEXTURE_GEN_S: { const struct gl_texture_unit *texUnit; texUnit = &ctx->Texture.Unit[ctx->Texture.CurrentUnit]; return (texUnit->TexGenEnabled & S_BIT) ? GL_TRUE : GL_FALSE; } case GL_TEXTURE_GEN_T: { const struct gl_texture_unit *texUnit; texUnit = &ctx->Texture.Unit[ctx->Texture.CurrentUnit]; return (texUnit->TexGenEnabled & T_BIT) ? GL_TRUE : GL_FALSE; } /* * CLIENT STATE!!! */ case GL_VERTEX_ARRAY: return (ctx->Array.ArrayObj->Vertex.Enabled != 0); case GL_NORMAL_ARRAY: return (ctx->Array.ArrayObj->Normal.Enabled != 0); case GL_COLOR_ARRAY: return (ctx->Array.ArrayObj->Color.Enabled != 0); case GL_INDEX_ARRAY: return (ctx->Array.ArrayObj->Index.Enabled != 0); case GL_TEXTURE_COORD_ARRAY: return (ctx->Array.ArrayObj->TexCoord[ctx->Array.ActiveTexture].Enabled != 0); case GL_EDGE_FLAG_ARRAY: return (ctx->Array.ArrayObj->EdgeFlag.Enabled != 0); case GL_FOG_COORDINATE_ARRAY_EXT: CHECK_EXTENSION(EXT_fog_coord); return (ctx->Array.ArrayObj->FogCoord.Enabled != 0); case GL_SECONDARY_COLOR_ARRAY_EXT: CHECK_EXTENSION(EXT_secondary_color); return (ctx->Array.ArrayObj->SecondaryColor.Enabled != 0); /* GL_EXT_histogram */ case GL_HISTOGRAM: CHECK_EXTENSION(EXT_histogram); return ctx->Pixel.HistogramEnabled; case GL_MINMAX: CHECK_EXTENSION(EXT_histogram); return ctx->Pixel.MinMaxEnabled; /* GL_SGI_color_table */ case GL_COLOR_TABLE_SGI: CHECK_EXTENSION(SGI_color_table); return ctx->Pixel.ColorTableEnabled[COLORTABLE_PRECONVOLUTION]; case GL_POST_CONVOLUTION_COLOR_TABLE_SGI: CHECK_EXTENSION(SGI_color_table); return ctx->Pixel.ColorTableEnabled[COLORTABLE_POSTCONVOLUTION]; case GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI: CHECK_EXTENSION(SGI_color_table); return ctx->Pixel.ColorTableEnabled[COLORTABLE_POSTCOLORMATRIX]; /* GL_SGI_texture_color_table */ case GL_TEXTURE_COLOR_TABLE_SGI: CHECK_EXTENSION(SGI_texture_color_table); return ctx->Texture.Unit[ctx->Texture.CurrentUnit].ColorTableEnabled; /* GL_EXT_convolution */ case GL_CONVOLUTION_1D: CHECK_EXTENSION(EXT_convolution); return ctx->Pixel.Convolution1DEnabled; case GL_CONVOLUTION_2D: CHECK_EXTENSION(EXT_convolution); return ctx->Pixel.Convolution2DEnabled; case GL_SEPARABLE_2D: CHECK_EXTENSION(EXT_convolution); return ctx->Pixel.Separable2DEnabled; /* GL_ARB_texture_cube_map */ case GL_TEXTURE_CUBE_MAP_ARB: CHECK_EXTENSION(ARB_texture_cube_map); return is_texture_enabled(ctx, TEXTURE_CUBE_BIT); /* GL_EXT_secondary_color */ case GL_COLOR_SUM_EXT: CHECK_EXTENSION2(EXT_secondary_color, ARB_vertex_program); return ctx->Fog.ColorSumEnabled; /* GL_ARB_multisample */ case GL_MULTISAMPLE_ARB: CHECK_EXTENSION(ARB_multisample); return ctx->Multisample.Enabled; case GL_SAMPLE_ALPHA_TO_COVERAGE_ARB: CHECK_EXTENSION(ARB_multisample); return ctx->Multisample.SampleAlphaToCoverage; case GL_SAMPLE_ALPHA_TO_ONE_ARB: CHECK_EXTENSION(ARB_multisample); return ctx->Multisample.SampleAlphaToOne; case GL_SAMPLE_COVERAGE_ARB: CHECK_EXTENSION(ARB_multisample); return ctx->Multisample.SampleCoverage; case GL_SAMPLE_COVERAGE_INVERT_ARB: CHECK_EXTENSION(ARB_multisample); return ctx->Multisample.SampleCoverageInvert; /* GL_IBM_rasterpos_clip */ case GL_RASTER_POSITION_UNCLIPPED_IBM: CHECK_EXTENSION(IBM_rasterpos_clip); return ctx->Transform.RasterPositionUnclipped; /* GL_NV_point_sprite */ case GL_POINT_SPRITE_NV: CHECK_EXTENSION2(NV_point_sprite, ARB_point_sprite) return ctx->Point.PointSprite; #if FEATURE_NV_vertex_program || FEATURE_ARB_vertex_program case GL_VERTEX_PROGRAM_ARB: CHECK_EXTENSION2(ARB_vertex_program, NV_vertex_program); return ctx->VertexProgram.Enabled; case GL_VERTEX_PROGRAM_POINT_SIZE_ARB: CHECK_EXTENSION2(ARB_vertex_program, NV_vertex_program); return ctx->VertexProgram.PointSizeEnabled; case GL_VERTEX_PROGRAM_TWO_SIDE_ARB: CHECK_EXTENSION2(ARB_vertex_program, NV_vertex_program); return ctx->VertexProgram.TwoSideEnabled; #endif #if FEATURE_NV_vertex_program case GL_VERTEX_ATTRIB_ARRAY0_NV: case GL_VERTEX_ATTRIB_ARRAY1_NV: case GL_VERTEX_ATTRIB_ARRAY2_NV: case GL_VERTEX_ATTRIB_ARRAY3_NV: case GL_VERTEX_ATTRIB_ARRAY4_NV: case GL_VERTEX_ATTRIB_ARRAY5_NV: case GL_VERTEX_ATTRIB_ARRAY6_NV: case GL_VERTEX_ATTRIB_ARRAY7_NV: case GL_VERTEX_ATTRIB_ARRAY8_NV: case GL_VERTEX_ATTRIB_ARRAY9_NV: case GL_VERTEX_ATTRIB_ARRAY10_NV: case GL_VERTEX_ATTRIB_ARRAY11_NV: case GL_VERTEX_ATTRIB_ARRAY12_NV: case GL_VERTEX_ATTRIB_ARRAY13_NV: case GL_VERTEX_ATTRIB_ARRAY14_NV: case GL_VERTEX_ATTRIB_ARRAY15_NV: CHECK_EXTENSION(NV_vertex_program); { GLint n = (GLint) cap - GL_VERTEX_ATTRIB_ARRAY0_NV; return (ctx->Array.ArrayObj->VertexAttrib[n].Enabled != 0); } case GL_MAP1_VERTEX_ATTRIB0_4_NV: case GL_MAP1_VERTEX_ATTRIB1_4_NV: case GL_MAP1_VERTEX_ATTRIB2_4_NV: case GL_MAP1_VERTEX_ATTRIB3_4_NV: case GL_MAP1_VERTEX_ATTRIB4_4_NV: case GL_MAP1_VERTEX_ATTRIB5_4_NV: case GL_MAP1_VERTEX_ATTRIB6_4_NV: case GL_MAP1_VERTEX_ATTRIB7_4_NV: case GL_MAP1_VERTEX_ATTRIB8_4_NV: case GL_MAP1_VERTEX_ATTRIB9_4_NV: case GL_MAP1_VERTEX_ATTRIB10_4_NV: case GL_MAP1_VERTEX_ATTRIB11_4_NV: case GL_MAP1_VERTEX_ATTRIB12_4_NV: case GL_MAP1_VERTEX_ATTRIB13_4_NV: case GL_MAP1_VERTEX_ATTRIB14_4_NV: case GL_MAP1_VERTEX_ATTRIB15_4_NV: CHECK_EXTENSION(NV_vertex_program); { const GLuint map = (GLuint) (cap - GL_MAP1_VERTEX_ATTRIB0_4_NV); return ctx->Eval.Map1Attrib[map]; } case GL_MAP2_VERTEX_ATTRIB0_4_NV: case GL_MAP2_VERTEX_ATTRIB1_4_NV: case GL_MAP2_VERTEX_ATTRIB2_4_NV: case GL_MAP2_VERTEX_ATTRIB3_4_NV: case GL_MAP2_VERTEX_ATTRIB4_4_NV: case GL_MAP2_VERTEX_ATTRIB5_4_NV: case GL_MAP2_VERTEX_ATTRIB6_4_NV: case GL_MAP2_VERTEX_ATTRIB7_4_NV: case GL_MAP2_VERTEX_ATTRIB8_4_NV: case GL_MAP2_VERTEX_ATTRIB9_4_NV: case GL_MAP2_VERTEX_ATTRIB10_4_NV: case GL_MAP2_VERTEX_ATTRIB11_4_NV: case GL_MAP2_VERTEX_ATTRIB12_4_NV: case GL_MAP2_VERTEX_ATTRIB13_4_NV: case GL_MAP2_VERTEX_ATTRIB14_4_NV: case GL_MAP2_VERTEX_ATTRIB15_4_NV: CHECK_EXTENSION(NV_vertex_program); { const GLuint map = (GLuint) (cap - GL_MAP2_VERTEX_ATTRIB0_4_NV); return ctx->Eval.Map2Attrib[map]; } #endif /* FEATURE_NV_vertex_program */ #if FEATURE_NV_fragment_program case GL_FRAGMENT_PROGRAM_NV: CHECK_EXTENSION(NV_fragment_program); return ctx->FragmentProgram.Enabled; #endif /* FEATURE_NV_fragment_program */ /* GL_NV_texture_rectangle */ case GL_TEXTURE_RECTANGLE_NV: CHECK_EXTENSION(NV_texture_rectangle); return is_texture_enabled(ctx, TEXTURE_RECT_BIT); /* GL_EXT_stencil_two_side */ case GL_STENCIL_TEST_TWO_SIDE_EXT: CHECK_EXTENSION(EXT_stencil_two_side); return ctx->Stencil.TestTwoSide; #if FEATURE_ARB_fragment_program case GL_FRAGMENT_PROGRAM_ARB: return ctx->FragmentProgram.Enabled; #endif /* FEATURE_ARB_fragment_program */ /* GL_EXT_depth_bounds_test */ case GL_DEPTH_BOUNDS_TEST_EXT: CHECK_EXTENSION(EXT_depth_bounds_test); return ctx->Depth.BoundsTest; /* GL_MESA_program_debug */ case GL_FRAGMENT_PROGRAM_CALLBACK_MESA: CHECK_EXTENSION(MESA_program_debug); return ctx->FragmentProgram.CallbackEnabled; case GL_VERTEX_PROGRAM_CALLBACK_MESA: CHECK_EXTENSION(MESA_program_debug); return ctx->VertexProgram.CallbackEnabled; #if FEATURE_ATI_fragment_shader case GL_FRAGMENT_SHADER_ATI: CHECK_EXTENSION(ATI_fragment_shader); return ctx->ATIFragmentShader.Enabled; #endif /* FEATURE_ATI_fragment_shader */ default: _mesa_error(ctx, GL_INVALID_ENUM, "glIsEnabled(0x%x)", (int) cap); return GL_FALSE; } }