/* * Mesa 3-D graphics library * Version: 7.7 * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * Copyright (C) 2009 VMware, Inc. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * \file dlist.c * Display lists management functions. */ #include "glheader.h" #include "imports.h" #include "api_arrayelt.h" #include "api_exec.h" #include "api_loopback.h" #include "api_validate.h" #include "atifragshader.h" #include "config.h" #include "bufferobj.h" #include "arrayobj.h" #include "context.h" #include "dlist.h" #include "enums.h" #include "eval.h" #include "fbobject.h" #include "framebuffer.h" #include "glapi/glapi.h" #include "glformats.h" #include "hash.h" #include "image.h" #include "light.h" #include "macros.h" #include "pack.h" #include "pbo.h" #include "queryobj.h" #include "samplerobj.h" #include "shaderapi.h" #include "syncobj.h" #include "teximage.h" #include "texstorage.h" #include "mtypes.h" #include "varray.h" #include "arbprogram.h" #include "transformfeedback.h" #include "math/m_matrix.h" #include "main/dispatch.h" /** * Other parts of Mesa (such as the VBO module) can plug into the display * list system. This structure describes new display list instructions. */ struct gl_list_instruction { GLuint Size; void (*Execute)( struct gl_context *ctx, void *data ); void (*Destroy)( struct gl_context *ctx, void *data ); void (*Print)( struct gl_context *ctx, void *data ); }; #define MAX_DLIST_EXT_OPCODES 16 /** * Used by device drivers to hook new commands into display lists. */ struct gl_list_extensions { struct gl_list_instruction Opcode[MAX_DLIST_EXT_OPCODES]; GLuint NumOpcodes; }; /** * Flush vertices. * * \param ctx GL context. * * Checks if dd_function_table::SaveNeedFlush is marked to flush * stored (save) vertices, and calls * dd_function_table::SaveFlushVertices if so. */ #define SAVE_FLUSH_VERTICES(ctx) \ do { \ if (ctx->Driver.SaveNeedFlush) \ ctx->Driver.SaveFlushVertices(ctx); \ } while (0) /** * Macro to assert that the API call was made outside the * glBegin()/glEnd() pair, with return value. * * \param ctx GL context. * \param retval value to return value in case the assertion fails. */ #define ASSERT_OUTSIDE_SAVE_BEGIN_END_WITH_RETVAL(ctx, retval) \ do { \ if (ctx->Driver.CurrentSavePrimitive <= GL_POLYGON || \ ctx->Driver.CurrentSavePrimitive == PRIM_INSIDE_UNKNOWN_PRIM) { \ _mesa_compile_error( ctx, GL_INVALID_OPERATION, "glBegin/End" ); \ return retval; \ } \ } while (0) /** * Macro to assert that the API call was made outside the * glBegin()/glEnd() pair. * * \param ctx GL context. */ #define ASSERT_OUTSIDE_SAVE_BEGIN_END(ctx) \ do { \ if (ctx->Driver.CurrentSavePrimitive <= GL_POLYGON || \ ctx->Driver.CurrentSavePrimitive == PRIM_INSIDE_UNKNOWN_PRIM) { \ _mesa_compile_error( ctx, GL_INVALID_OPERATION, "glBegin/End" ); \ return; \ } \ } while (0) /** * Macro to assert that the API call was made outside the * glBegin()/glEnd() pair and flush the vertices. * * \param ctx GL context. */ #define ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx) \ do { \ ASSERT_OUTSIDE_SAVE_BEGIN_END(ctx); \ SAVE_FLUSH_VERTICES(ctx); \ } while (0) /** * Macro to assert that the API call was made outside the * glBegin()/glEnd() pair and flush the vertices, with return value. * * \param ctx GL context. * \param retval value to return value in case the assertion fails. */ #define ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH_WITH_RETVAL(ctx, retval)\ do { \ ASSERT_OUTSIDE_SAVE_BEGIN_END_WITH_RETVAL(ctx, retval); \ SAVE_FLUSH_VERTICES(ctx); \ } while (0) /** * Display list opcodes. * * The fact that these identifiers are assigned consecutive * integer values starting at 0 is very important, see InstSize array usage) */ typedef enum { OPCODE_INVALID = -1, /* Force signed enum */ OPCODE_ACCUM, OPCODE_ALPHA_FUNC, OPCODE_BIND_TEXTURE, OPCODE_BITMAP, OPCODE_BLEND_COLOR, OPCODE_BLEND_EQUATION, OPCODE_BLEND_EQUATION_SEPARATE, OPCODE_BLEND_FUNC_SEPARATE, OPCODE_BLEND_EQUATION_I, OPCODE_BLEND_EQUATION_SEPARATE_I, OPCODE_BLEND_FUNC_I, OPCODE_BLEND_FUNC_SEPARATE_I, OPCODE_CALL_LIST, OPCODE_CALL_LIST_OFFSET, OPCODE_CLEAR, OPCODE_CLEAR_ACCUM, OPCODE_CLEAR_COLOR, OPCODE_CLEAR_DEPTH, OPCODE_CLEAR_INDEX, OPCODE_CLEAR_STENCIL, OPCODE_CLEAR_BUFFER_IV, OPCODE_CLEAR_BUFFER_UIV, OPCODE_CLEAR_BUFFER_FV, OPCODE_CLEAR_BUFFER_FI, OPCODE_CLIP_PLANE, OPCODE_COLOR_MASK, OPCODE_COLOR_MASK_INDEXED, OPCODE_COLOR_MATERIAL, OPCODE_COLOR_TABLE, OPCODE_COLOR_TABLE_PARAMETER_FV, OPCODE_COLOR_TABLE_PARAMETER_IV, OPCODE_COLOR_SUB_TABLE, OPCODE_CONVOLUTION_FILTER_1D, OPCODE_CONVOLUTION_FILTER_2D, OPCODE_CONVOLUTION_PARAMETER_I, OPCODE_CONVOLUTION_PARAMETER_IV, OPCODE_CONVOLUTION_PARAMETER_F, OPCODE_CONVOLUTION_PARAMETER_FV, OPCODE_COPY_COLOR_SUB_TABLE, OPCODE_COPY_COLOR_TABLE, OPCODE_COPY_PIXELS, OPCODE_COPY_TEX_IMAGE1D, OPCODE_COPY_TEX_IMAGE2D, OPCODE_COPY_TEX_SUB_IMAGE1D, OPCODE_COPY_TEX_SUB_IMAGE2D, OPCODE_COPY_TEX_SUB_IMAGE3D, OPCODE_CULL_FACE, OPCODE_DEPTH_FUNC, OPCODE_DEPTH_MASK, OPCODE_DEPTH_RANGE, OPCODE_DISABLE, OPCODE_DISABLE_INDEXED, OPCODE_DRAW_BUFFER, OPCODE_DRAW_PIXELS, OPCODE_ENABLE, OPCODE_ENABLE_INDEXED, OPCODE_EVALMESH1, OPCODE_EVALMESH2, OPCODE_FOG, OPCODE_FRONT_FACE, OPCODE_FRUSTUM, OPCODE_HINT, OPCODE_HISTOGRAM, OPCODE_INDEX_MASK, OPCODE_INIT_NAMES, OPCODE_LIGHT, OPCODE_LIGHT_MODEL, OPCODE_LINE_STIPPLE, OPCODE_LINE_WIDTH, OPCODE_LIST_BASE, OPCODE_LOAD_IDENTITY, OPCODE_LOAD_MATRIX, OPCODE_LOAD_NAME, OPCODE_LOGIC_OP, OPCODE_MAP1, OPCODE_MAP2, OPCODE_MAPGRID1, OPCODE_MAPGRID2, OPCODE_MATRIX_MODE, OPCODE_MIN_MAX, OPCODE_MULT_MATRIX, OPCODE_ORTHO, OPCODE_PASSTHROUGH, OPCODE_PIXEL_MAP, OPCODE_PIXEL_TRANSFER, OPCODE_PIXEL_ZOOM, OPCODE_POINT_SIZE, OPCODE_POINT_PARAMETERS, OPCODE_POLYGON_MODE, OPCODE_POLYGON_STIPPLE, OPCODE_POLYGON_OFFSET, OPCODE_POP_ATTRIB, OPCODE_POP_MATRIX, OPCODE_POP_NAME, OPCODE_PRIORITIZE_TEXTURE, OPCODE_PUSH_ATTRIB, OPCODE_PUSH_MATRIX, OPCODE_PUSH_NAME, OPCODE_RASTER_POS, OPCODE_READ_BUFFER, OPCODE_RESET_HISTOGRAM, OPCODE_RESET_MIN_MAX, OPCODE_ROTATE, OPCODE_SCALE, OPCODE_SCISSOR, OPCODE_SELECT_TEXTURE_SGIS, OPCODE_SELECT_TEXTURE_COORD_SET, OPCODE_SHADE_MODEL, OPCODE_STENCIL_FUNC, OPCODE_STENCIL_MASK, OPCODE_STENCIL_OP, OPCODE_TEXENV, OPCODE_TEXGEN, OPCODE_TEXPARAMETER, OPCODE_TEX_IMAGE1D, OPCODE_TEX_IMAGE2D, OPCODE_TEX_IMAGE3D, OPCODE_TEX_SUB_IMAGE1D, OPCODE_TEX_SUB_IMAGE2D, OPCODE_TEX_SUB_IMAGE3D, OPCODE_TRANSLATE, OPCODE_VIEWPORT, OPCODE_WINDOW_POS, /* GL_ARB_multitexture */ OPCODE_ACTIVE_TEXTURE, /* GL_ARB_texture_compression */ OPCODE_COMPRESSED_TEX_IMAGE_1D, OPCODE_COMPRESSED_TEX_IMAGE_2D, OPCODE_COMPRESSED_TEX_IMAGE_3D, OPCODE_COMPRESSED_TEX_SUB_IMAGE_1D, OPCODE_COMPRESSED_TEX_SUB_IMAGE_2D, OPCODE_COMPRESSED_TEX_SUB_IMAGE_3D, /* GL_ARB_multisample */ OPCODE_SAMPLE_COVERAGE, /* GL_ARB_window_pos */ OPCODE_WINDOW_POS_ARB, /* GL_NV_fragment_program */ OPCODE_BIND_PROGRAM_NV, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, /* GL_EXT_stencil_two_side */ OPCODE_ACTIVE_STENCIL_FACE_EXT, /* GL_EXT_depth_bounds_test */ OPCODE_DEPTH_BOUNDS_EXT, /* GL_ARB_vertex/fragment_program */ OPCODE_PROGRAM_STRING_ARB, OPCODE_PROGRAM_ENV_PARAMETER_ARB, /* GL_ARB_occlusion_query */ OPCODE_BEGIN_QUERY_ARB, OPCODE_END_QUERY_ARB, /* GL_ARB_draw_buffers */ OPCODE_DRAW_BUFFERS_ARB, /* GL_ATI_fragment_shader */ OPCODE_TEX_BUMP_PARAMETER_ATI, /* GL_ATI_fragment_shader */ OPCODE_BIND_FRAGMENT_SHADER_ATI, OPCODE_SET_FRAGMENT_SHADER_CONSTANTS_ATI, /* OpenGL 2.0 */ OPCODE_STENCIL_FUNC_SEPARATE, OPCODE_STENCIL_OP_SEPARATE, OPCODE_STENCIL_MASK_SEPARATE, /* GL_ARB_shader_objects */ OPCODE_USE_PROGRAM, OPCODE_UNIFORM_1F, OPCODE_UNIFORM_2F, OPCODE_UNIFORM_3F, OPCODE_UNIFORM_4F, OPCODE_UNIFORM_1FV, OPCODE_UNIFORM_2FV, OPCODE_UNIFORM_3FV, OPCODE_UNIFORM_4FV, OPCODE_UNIFORM_1I, OPCODE_UNIFORM_2I, OPCODE_UNIFORM_3I, OPCODE_UNIFORM_4I, OPCODE_UNIFORM_1IV, OPCODE_UNIFORM_2IV, OPCODE_UNIFORM_3IV, OPCODE_UNIFORM_4IV, OPCODE_UNIFORM_MATRIX22, OPCODE_UNIFORM_MATRIX33, OPCODE_UNIFORM_MATRIX44, OPCODE_UNIFORM_MATRIX23, OPCODE_UNIFORM_MATRIX32, OPCODE_UNIFORM_MATRIX24, OPCODE_UNIFORM_MATRIX42, OPCODE_UNIFORM_MATRIX34, OPCODE_UNIFORM_MATRIX43, /* OpenGL 3.0 */ OPCODE_UNIFORM_1UI, OPCODE_UNIFORM_2UI, OPCODE_UNIFORM_3UI, OPCODE_UNIFORM_4UI, OPCODE_UNIFORM_1UIV, OPCODE_UNIFORM_2UIV, OPCODE_UNIFORM_3UIV, OPCODE_UNIFORM_4UIV, /* GL_ARB_color_buffer_float */ OPCODE_CLAMP_COLOR, /* GL_EXT_framebuffer_blit */ OPCODE_BLIT_FRAMEBUFFER, /* Vertex attributes -- fallback for when optimized display * list build isn't active. */ OPCODE_ATTR_1F_NV, OPCODE_ATTR_2F_NV, OPCODE_ATTR_3F_NV, OPCODE_ATTR_4F_NV, OPCODE_ATTR_1F_ARB, OPCODE_ATTR_2F_ARB, OPCODE_ATTR_3F_ARB, OPCODE_ATTR_4F_ARB, OPCODE_MATERIAL, OPCODE_BEGIN, OPCODE_END, OPCODE_RECTF, OPCODE_EVAL_C1, OPCODE_EVAL_C2, OPCODE_EVAL_P1, OPCODE_EVAL_P2, /* GL_EXT_provoking_vertex */ OPCODE_PROVOKING_VERTEX, /* GL_EXT_transform_feedback */ OPCODE_BEGIN_TRANSFORM_FEEDBACK, OPCODE_END_TRANSFORM_FEEDBACK, OPCODE_BIND_TRANSFORM_FEEDBACK, OPCODE_PAUSE_TRANSFORM_FEEDBACK, OPCODE_RESUME_TRANSFORM_FEEDBACK, OPCODE_DRAW_TRANSFORM_FEEDBACK, /* GL_EXT_texture_integer */ OPCODE_CLEARCOLOR_I, OPCODE_CLEARCOLOR_UI, OPCODE_TEXPARAMETER_I, OPCODE_TEXPARAMETER_UI, /* GL_EXT_separate_shader_objects */ OPCODE_ACTIVE_PROGRAM_EXT, OPCODE_USE_SHADER_PROGRAM_EXT, /* GL_ARB_instanced_arrays */ OPCODE_VERTEX_ATTRIB_DIVISOR, /* GL_NV_texture_barrier */ OPCODE_TEXTURE_BARRIER_NV, /* GL_ARB_sampler_object */ OPCODE_BIND_SAMPLER, OPCODE_SAMPLER_PARAMETERIV, OPCODE_SAMPLER_PARAMETERFV, OPCODE_SAMPLER_PARAMETERIIV, OPCODE_SAMPLER_PARAMETERUIV, /* GL_ARB_geometry_shader4 */ OPCODE_PROGRAM_PARAMETERI, OPCODE_FRAMEBUFFER_TEXTURE, OPCODE_FRAMEBUFFER_TEXTURE_FACE, /* GL_ARB_sync */ OPCODE_WAIT_SYNC, /* GL_NV_conditional_render */ OPCODE_BEGIN_CONDITIONAL_RENDER, OPCODE_END_CONDITIONAL_RENDER, /* ARB_timer_query */ OPCODE_QUERY_COUNTER, /* ARB_transform_feedback3 */ OPCODE_BEGIN_QUERY_INDEXED, OPCODE_END_QUERY_INDEXED, OPCODE_DRAW_TRANSFORM_FEEDBACK_STREAM, /* ARB_transform_feedback_instanced */ OPCODE_DRAW_TRANSFORM_FEEDBACK_INSTANCED, OPCODE_DRAW_TRANSFORM_FEEDBACK_STREAM_INSTANCED, /* ARB_uniform_buffer_object */ OPCODE_UNIFORM_BLOCK_BINDING, /* The following three are meta instructions */ OPCODE_ERROR, /* raise compiled-in error */ OPCODE_CONTINUE, OPCODE_END_OF_LIST, OPCODE_EXT_0 } OpCode; /** * Display list node. * * Display list instructions are stored as sequences of "nodes". Nodes * are allocated in blocks. Each block has BLOCK_SIZE nodes. Blocks * are linked together with a pointer. * * Each instruction in the display list is stored as a sequence of * contiguous nodes in memory. * Each node is the union of a variety of data types. */ union gl_dlist_node { OpCode opcode; GLboolean b; GLbitfield bf; GLubyte ub; GLshort s; GLushort us; GLint i; GLuint ui; GLenum e; GLfloat f; GLsizei si; GLvoid *data; void *next; /* If prev node's opcode==OPCODE_CONTINUE */ }; typedef union gl_dlist_node Node; /** * Used to store a 64-bit uint in a pair of "Nodes" for the sake of 32-bit * environment. In 64-bit env, sizeof(Node)==8 anyway. */ union uint64_pair { GLuint64 uint64; GLuint uint32[2]; }; /** * How many nodes to allocate at a time. * * \note Reduced now that we hold vertices etc. elsewhere. */ #define BLOCK_SIZE 256 /** * Number of nodes of storage needed for each instruction. * Sizes for dynamically allocated opcodes are stored in the context struct. */ static GLuint InstSize[OPCODE_END_OF_LIST + 1]; void mesa_print_display_list(GLuint list); /**********************************************************************/ /***** Private *****/ /**********************************************************************/ /** * Make an empty display list. This is used by glGenLists() to * reserve display list IDs. */ static struct gl_display_list * make_list(GLuint name, GLuint count) { struct gl_display_list *dlist = CALLOC_STRUCT(gl_display_list); dlist->Name = name; dlist->Head = malloc(sizeof(Node) * count); dlist->Head[0].opcode = OPCODE_END_OF_LIST; return dlist; } /** * Lookup function to just encapsulate casting. */ static inline struct gl_display_list * lookup_list(struct gl_context *ctx, GLuint list) { return (struct gl_display_list *) _mesa_HashLookup(ctx->Shared->DisplayList, list); } /** Is the given opcode an extension code? */ static inline GLboolean is_ext_opcode(OpCode opcode) { return (opcode >= OPCODE_EXT_0); } /** Destroy an extended opcode instruction */ static GLint ext_opcode_destroy(struct gl_context *ctx, Node *node) { const GLint i = node[0].opcode - OPCODE_EXT_0; GLint step; ctx->ListExt->Opcode[i].Destroy(ctx, &node[1]); step = ctx->ListExt->Opcode[i].Size; return step; } /** Execute an extended opcode instruction */ static GLint ext_opcode_execute(struct gl_context *ctx, Node *node) { const GLint i = node[0].opcode - OPCODE_EXT_0; GLint step; ctx->ListExt->Opcode[i].Execute(ctx, &node[1]); step = ctx->ListExt->Opcode[i].Size; return step; } /** Print an extended opcode instruction */ static GLint ext_opcode_print(struct gl_context *ctx, Node *node) { const GLint i = node[0].opcode - OPCODE_EXT_0; GLint step; ctx->ListExt->Opcode[i].Print(ctx, &node[1]); step = ctx->ListExt->Opcode[i].Size; return step; } /** * Delete the named display list, but don't remove from hash table. * \param dlist - display list pointer */ void _mesa_delete_list(struct gl_context *ctx, struct gl_display_list *dlist) { Node *n, *block; GLboolean done; n = block = dlist->Head; done = block ? GL_FALSE : GL_TRUE; while (!done) { const OpCode opcode = n[0].opcode; /* check for extension opcodes first */ if (is_ext_opcode(opcode)) { n += ext_opcode_destroy(ctx, n); } else { switch (opcode) { /* for some commands, we need to free malloc'd memory */ case OPCODE_MAP1: free(n[6].data); n += InstSize[n[0].opcode]; break; case OPCODE_MAP2: free(n[10].data); n += InstSize[n[0].opcode]; break; case OPCODE_DRAW_PIXELS: free(n[5].data); n += InstSize[n[0].opcode]; break; case OPCODE_BITMAP: free(n[7].data); n += InstSize[n[0].opcode]; break; case OPCODE_COLOR_TABLE: free(n[6].data); n += InstSize[n[0].opcode]; break; case OPCODE_COLOR_SUB_TABLE: free(n[6].data); n += InstSize[n[0].opcode]; break; case OPCODE_CONVOLUTION_FILTER_1D: free(n[6].data); n += InstSize[n[0].opcode]; break; case OPCODE_CONVOLUTION_FILTER_2D: free(n[7].data); n += InstSize[n[0].opcode]; break; case OPCODE_POLYGON_STIPPLE: free(n[1].data); n += InstSize[n[0].opcode]; break; case OPCODE_TEX_IMAGE1D: free(n[8].data); n += InstSize[n[0].opcode]; break; case OPCODE_TEX_IMAGE2D: free(n[9].data); n += InstSize[n[0].opcode]; break; case OPCODE_TEX_IMAGE3D: free(n[10].data); n += InstSize[n[0].opcode]; break; case OPCODE_TEX_SUB_IMAGE1D: free(n[7].data); n += InstSize[n[0].opcode]; break; case OPCODE_TEX_SUB_IMAGE2D: free(n[9].data); n += InstSize[n[0].opcode]; break; case OPCODE_TEX_SUB_IMAGE3D: free(n[11].data); n += InstSize[n[0].opcode]; break; case OPCODE_COMPRESSED_TEX_IMAGE_1D: free(n[7].data); n += InstSize[n[0].opcode]; break; case OPCODE_COMPRESSED_TEX_IMAGE_2D: free(n[8].data); n += InstSize[n[0].opcode]; break; case OPCODE_COMPRESSED_TEX_IMAGE_3D: free(n[9].data); n += InstSize[n[0].opcode]; break; case OPCODE_COMPRESSED_TEX_SUB_IMAGE_1D: free(n[7].data); n += InstSize[n[0].opcode]; break; case OPCODE_COMPRESSED_TEX_SUB_IMAGE_2D: free(n[9].data); n += InstSize[n[0].opcode]; break; case OPCODE_COMPRESSED_TEX_SUB_IMAGE_3D: free(n[11].data); n += InstSize[n[0].opcode]; break; case OPCODE_PROGRAM_STRING_ARB: free(n[4].data); /* program string */ n += InstSize[n[0].opcode]; break; case OPCODE_UNIFORM_1FV: case OPCODE_UNIFORM_2FV: case OPCODE_UNIFORM_3FV: case OPCODE_UNIFORM_4FV: case OPCODE_UNIFORM_1IV: case OPCODE_UNIFORM_2IV: case OPCODE_UNIFORM_3IV: case OPCODE_UNIFORM_4IV: case OPCODE_UNIFORM_1UIV: case OPCODE_UNIFORM_2UIV: case OPCODE_UNIFORM_3UIV: case OPCODE_UNIFORM_4UIV: free(n[3].data); n += InstSize[n[0].opcode]; break; case OPCODE_UNIFORM_MATRIX22: case OPCODE_UNIFORM_MATRIX33: case OPCODE_UNIFORM_MATRIX44: case OPCODE_UNIFORM_MATRIX24: case OPCODE_UNIFORM_MATRIX42: case OPCODE_UNIFORM_MATRIX23: case OPCODE_UNIFORM_MATRIX32: case OPCODE_UNIFORM_MATRIX34: case OPCODE_UNIFORM_MATRIX43: free(n[4].data); n += InstSize[n[0].opcode]; break; case OPCODE_CONTINUE: n = (Node *) n[1].next; free(block); block = n; break; case OPCODE_END_OF_LIST: free(block); done = GL_TRUE; break; default: /* Most frequent case */ n += InstSize[n[0].opcode]; break; } } } free(dlist); } /** * Destroy a display list and remove from hash table. * \param list - display list number */ static void destroy_list(struct gl_context *ctx, GLuint list) { struct gl_display_list *dlist; if (list == 0) return; dlist = lookup_list(ctx, list); if (!dlist) return; _mesa_delete_list(ctx, dlist); _mesa_HashRemove(ctx->Shared->DisplayList, list); } /* * Translate the nth element of list from to GLint. */ static GLint translate_id(GLsizei n, GLenum type, const GLvoid * list) { GLbyte *bptr; GLubyte *ubptr; GLshort *sptr; GLushort *usptr; GLint *iptr; GLuint *uiptr; GLfloat *fptr; switch (type) { case GL_BYTE: bptr = (GLbyte *) list; return (GLint) bptr[n]; case GL_UNSIGNED_BYTE: ubptr = (GLubyte *) list; return (GLint) ubptr[n]; case GL_SHORT: sptr = (GLshort *) list; return (GLint) sptr[n]; case GL_UNSIGNED_SHORT: usptr = (GLushort *) list; return (GLint) usptr[n]; case GL_INT: iptr = (GLint *) list; return iptr[n]; case GL_UNSIGNED_INT: uiptr = (GLuint *) list; return (GLint) uiptr[n]; case GL_FLOAT: fptr = (GLfloat *) list; return (GLint) FLOORF(fptr[n]); case GL_2_BYTES: ubptr = ((GLubyte *) list) + 2 * n; return (GLint) ubptr[0] * 256 + (GLint) ubptr[1]; case GL_3_BYTES: ubptr = ((GLubyte *) list) + 3 * n; return (GLint) ubptr[0] * 65536 + (GLint) ubptr[1] * 256 + (GLint) ubptr[2]; case GL_4_BYTES: ubptr = ((GLubyte *) list) + 4 * n; return (GLint) ubptr[0] * 16777216 + (GLint) ubptr[1] * 65536 + (GLint) ubptr[2] * 256 + (GLint) ubptr[3]; default: return 0; } } /**********************************************************************/ /***** Public *****/ /**********************************************************************/ /** * Wrapper for _mesa_unpack_image/bitmap() that handles pixel buffer objects. * If width < 0 or height < 0 or format or type are invalid we'll just * return NULL. We will not generate an error since OpenGL command * arguments aren't error-checked until the command is actually executed * (not when they're compiled). * But if we run out of memory, GL_OUT_OF_MEMORY will be recorded. */ static GLvoid * unpack_image(struct gl_context *ctx, GLuint dimensions, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const GLvoid * pixels, const struct gl_pixelstore_attrib *unpack) { if (width <= 0 || height <= 0) { return NULL; } if (_mesa_bytes_per_pixel(format, type) < 0) { /* bad format and/or type */ return NULL; } if (!_mesa_is_bufferobj(unpack->BufferObj)) { /* no PBO */ GLvoid *image; if (type == GL_BITMAP) image = _mesa_unpack_bitmap(width, height, pixels, unpack); else image = _mesa_unpack_image(dimensions, width, height, depth, format, type, pixels, unpack); if (pixels && !image) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "display list construction"); } return image; } else if (_mesa_validate_pbo_access(dimensions, unpack, width, height, depth, format, type, INT_MAX, pixels)) { const GLubyte *map, *src; GLvoid *image; map = (GLubyte *) ctx->Driver.MapBufferRange(ctx, 0, unpack->BufferObj->Size, GL_MAP_READ_BIT, unpack->BufferObj); if (!map) { /* unable to map src buffer! */ _mesa_error(ctx, GL_INVALID_OPERATION, "unable to map PBO"); return NULL; } src = ADD_POINTERS(map, pixels); if (type == GL_BITMAP) image = _mesa_unpack_bitmap(width, height, src, unpack); else image = _mesa_unpack_image(dimensions, width, height, depth, format, type, src, unpack); ctx->Driver.UnmapBuffer(ctx, unpack->BufferObj); if (!image) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "display list construction"); } return image; } /* bad access! */ _mesa_error(ctx, GL_INVALID_OPERATION, "invalid PBO access"); return NULL; } /** * Allocate space for a display list instruction (opcode + payload space). * \param opcode the instruction opcode (OPCODE_* value) * \param bytes instruction payload size (not counting opcode) * \return pointer to allocated memory (the opcode space) */ static Node * dlist_alloc(struct gl_context *ctx, OpCode opcode, GLuint bytes) { const GLuint numNodes = 1 + (bytes + sizeof(Node) - 1) / sizeof(Node); Node *n; if (opcode < (GLuint) OPCODE_EXT_0) { if (InstSize[opcode] == 0) { /* save instruction size now */ InstSize[opcode] = numNodes; } else { /* make sure instruction size agrees */ ASSERT(numNodes == InstSize[opcode]); } } if (ctx->ListState.CurrentPos + numNodes + 2 > BLOCK_SIZE) { /* This block is full. Allocate a new block and chain to it */ Node *newblock; n = ctx->ListState.CurrentBlock + ctx->ListState.CurrentPos; n[0].opcode = OPCODE_CONTINUE; newblock = malloc(sizeof(Node) * BLOCK_SIZE); if (!newblock) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "Building display list"); return NULL; } n[1].next = (Node *) newblock; ctx->ListState.CurrentBlock = newblock; ctx->ListState.CurrentPos = 0; } n = ctx->ListState.CurrentBlock + ctx->ListState.CurrentPos; ctx->ListState.CurrentPos += numNodes; n[0].opcode = opcode; return n; } /** * Allocate space for a display list instruction. Used by callers outside * this file for things like VBO vertex data. * * \param opcode the instruction opcode (OPCODE_* value) * \param bytes instruction size in bytes, not counting opcode. * \return pointer to the usable data area (not including the internal * opcode). */ void * _mesa_dlist_alloc(struct gl_context *ctx, GLuint opcode, GLuint bytes) { Node *n = dlist_alloc(ctx, (OpCode) opcode, bytes); if (n) return n + 1; /* return pointer to payload area, after opcode */ else return NULL; } /** * This function allows modules and drivers to get their own opcodes * for extending display list functionality. * \param ctx the rendering context * \param size number of bytes for storing the new display list command * \param execute function to execute the new display list command * \param destroy function to destroy the new display list command * \param print function to print the new display list command * \return the new opcode number or -1 if error */ GLint _mesa_dlist_alloc_opcode(struct gl_context *ctx, GLuint size, void (*execute) (struct gl_context *, void *), void (*destroy) (struct gl_context *, void *), void (*print) (struct gl_context *, void *)) { if (ctx->ListExt->NumOpcodes < MAX_DLIST_EXT_OPCODES) { const GLuint i = ctx->ListExt->NumOpcodes++; ctx->ListExt->Opcode[i].Size = 1 + (size + sizeof(Node) - 1) / sizeof(Node); ctx->ListExt->Opcode[i].Execute = execute; ctx->ListExt->Opcode[i].Destroy = destroy; ctx->ListExt->Opcode[i].Print = print; return i + OPCODE_EXT_0; } return -1; } /** * Allocate space for a display list instruction. The space is basically * an array of Nodes where node[0] holds the opcode, node[1] is the first * function parameter, node[2] is the second parameter, etc. * * \param opcode one of OPCODE_x * \param nparams number of function parameters * \return pointer to start of instruction space */ static inline Node * alloc_instruction(struct gl_context *ctx, OpCode opcode, GLuint nparams) { return dlist_alloc(ctx, opcode, nparams * sizeof(Node)); } /* * Display List compilation functions */ static void GLAPIENTRY save_Accum(GLenum op, GLfloat value) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_ACCUM, 2); if (n) { n[1].e = op; n[2].f = value; } if (ctx->ExecuteFlag) { CALL_Accum(ctx->Exec, (op, value)); } } static void GLAPIENTRY save_AlphaFunc(GLenum func, GLclampf ref) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_ALPHA_FUNC, 2); if (n) { n[1].e = func; n[2].f = (GLfloat) ref; } if (ctx->ExecuteFlag) { CALL_AlphaFunc(ctx->Exec, (func, ref)); } } static void GLAPIENTRY save_BindTexture(GLenum target, GLuint texture) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BIND_TEXTURE, 2); if (n) { n[1].e = target; n[2].ui = texture; } if (ctx->ExecuteFlag) { CALL_BindTexture(ctx->Exec, (target, texture)); } } static void GLAPIENTRY save_Bitmap(GLsizei width, GLsizei height, GLfloat xorig, GLfloat yorig, GLfloat xmove, GLfloat ymove, const GLubyte * pixels) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BITMAP, 7); if (n) { n[1].i = (GLint) width; n[2].i = (GLint) height; n[3].f = xorig; n[4].f = yorig; n[5].f = xmove; n[6].f = ymove; n[7].data = unpack_image(ctx, 2, width, height, 1, GL_COLOR_INDEX, GL_BITMAP, pixels, &ctx->Unpack); } if (ctx->ExecuteFlag) { CALL_Bitmap(ctx->Exec, (width, height, xorig, yorig, xmove, ymove, pixels)); } } static void GLAPIENTRY save_BlendEquation(GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BLEND_EQUATION, 1); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { CALL_BlendEquation(ctx->Exec, (mode)); } } static void GLAPIENTRY save_BlendEquationSeparateEXT(GLenum modeRGB, GLenum modeA) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BLEND_EQUATION_SEPARATE, 2); if (n) { n[1].e = modeRGB; n[2].e = modeA; } if (ctx->ExecuteFlag) { CALL_BlendEquationSeparate(ctx->Exec, (modeRGB, modeA)); } } static void GLAPIENTRY save_BlendFuncSeparateEXT(GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorA, GLenum dfactorA) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BLEND_FUNC_SEPARATE, 4); if (n) { n[1].e = sfactorRGB; n[2].e = dfactorRGB; n[3].e = sfactorA; n[4].e = dfactorA; } if (ctx->ExecuteFlag) { CALL_BlendFuncSeparate(ctx->Exec, (sfactorRGB, dfactorRGB, sfactorA, dfactorA)); } } static void GLAPIENTRY save_BlendFunc(GLenum srcfactor, GLenum dstfactor) { save_BlendFuncSeparateEXT(srcfactor, dstfactor, srcfactor, dstfactor); } static void GLAPIENTRY save_BlendColor(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BLEND_COLOR, 4); if (n) { n[1].f = red; n[2].f = green; n[3].f = blue; n[4].f = alpha; } if (ctx->ExecuteFlag) { CALL_BlendColor(ctx->Exec, (red, green, blue, alpha)); } } /* GL_ARB_draw_buffers_blend */ static void GLAPIENTRY save_BlendFuncSeparatei(GLuint buf, GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorA, GLenum dfactorA) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BLEND_FUNC_SEPARATE_I, 5); if (n) { n[1].ui = buf; n[2].e = sfactorRGB; n[3].e = dfactorRGB; n[4].e = sfactorA; n[5].e = dfactorA; } if (ctx->ExecuteFlag) { CALL_BlendFuncSeparateiARB(ctx->Exec, (buf, sfactorRGB, dfactorRGB, sfactorA, dfactorA)); } } /* GL_ARB_draw_buffers_blend */ static void GLAPIENTRY save_BlendFunci(GLuint buf, GLenum sfactor, GLenum dfactor) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BLEND_FUNC_SEPARATE_I, 3); if (n) { n[1].ui = buf; n[2].e = sfactor; n[3].e = dfactor; } if (ctx->ExecuteFlag) { CALL_BlendFunciARB(ctx->Exec, (buf, sfactor, dfactor)); } } /* GL_ARB_draw_buffers_blend */ static void GLAPIENTRY save_BlendEquationi(GLuint buf, GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BLEND_EQUATION_I, 2); if (n) { n[1].ui = buf; n[2].e = mode; } if (ctx->ExecuteFlag) { CALL_BlendEquationiARB(ctx->Exec, (buf, mode)); } } /* GL_ARB_draw_buffers_blend */ static void GLAPIENTRY save_BlendEquationSeparatei(GLuint buf, GLenum modeRGB, GLenum modeA) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BLEND_EQUATION_SEPARATE_I, 3); if (n) { n[1].ui = buf; n[2].e = modeRGB; n[3].e = modeA; } if (ctx->ExecuteFlag) { CALL_BlendEquationSeparateiARB(ctx->Exec, (buf, modeRGB, modeA)); } } /* GL_ARB_draw_instanced. */ static void GLAPIENTRY save_DrawArraysInstancedARB(GLenum mode, GLint first, GLsizei count, GLsizei primcount) { GET_CURRENT_CONTEXT(ctx); _mesa_error(ctx, GL_INVALID_OPERATION, "glDrawArraysInstanced() during display list compile"); } static void GLAPIENTRY save_DrawElementsInstancedARB(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei primcount) { GET_CURRENT_CONTEXT(ctx); _mesa_error(ctx, GL_INVALID_OPERATION, "glDrawElementsInstanced() during display list compile"); } static void GLAPIENTRY save_DrawElementsInstancedBaseVertexARB(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei primcount, GLint basevertex) { GET_CURRENT_CONTEXT(ctx); _mesa_error(ctx, GL_INVALID_OPERATION, "glDrawElementsInstancedBaseVertex() during display list compile"); } /* GL_ARB_base_instance. */ static void GLAPIENTRY save_DrawArraysInstancedBaseInstance(GLenum mode, GLint first, GLsizei count, GLsizei primcount, GLuint baseinstance) { GET_CURRENT_CONTEXT(ctx); _mesa_error(ctx, GL_INVALID_OPERATION, "glDrawArraysInstancedBaseInstance() during display list compile"); } static void APIENTRY save_DrawElementsInstancedBaseInstance(GLenum mode, GLsizei count, GLenum type, const void *indices, GLsizei primcount, GLuint baseinstance) { GET_CURRENT_CONTEXT(ctx); _mesa_error(ctx, GL_INVALID_OPERATION, "glDrawElementsInstancedBaseInstance() during display list compile"); } static void APIENTRY save_DrawElementsInstancedBaseVertexBaseInstance(GLenum mode, GLsizei count, GLenum type, const void *indices, GLsizei primcount, GLint basevertex, GLuint baseinstance) { GET_CURRENT_CONTEXT(ctx); _mesa_error(ctx, GL_INVALID_OPERATION, "glDrawElementsInstancedBaseVertexBaseInstance() during display list compile"); } static void invalidate_saved_current_state( struct gl_context *ctx ) { GLint i; for (i = 0; i < VERT_ATTRIB_MAX; i++) ctx->ListState.ActiveAttribSize[i] = 0; for (i = 0; i < MAT_ATTRIB_MAX; i++) ctx->ListState.ActiveMaterialSize[i] = 0; memset(&ctx->ListState.Current, 0, sizeof ctx->ListState.Current); ctx->Driver.CurrentSavePrimitive = PRIM_UNKNOWN; } static void GLAPIENTRY save_CallList(GLuint list) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_CALL_LIST, 1); if (n) { n[1].ui = list; } /* After this, we don't know what state we're in. Invalidate all * cached information previously gathered: */ invalidate_saved_current_state( ctx ); if (ctx->ExecuteFlag) { _mesa_CallList(list); } } static void GLAPIENTRY save_CallLists(GLsizei num, GLenum type, const GLvoid * lists) { GET_CURRENT_CONTEXT(ctx); GLint i; GLboolean typeErrorFlag; SAVE_FLUSH_VERTICES(ctx); switch (type) { case GL_BYTE: case GL_UNSIGNED_BYTE: case GL_SHORT: case GL_UNSIGNED_SHORT: case GL_INT: case GL_UNSIGNED_INT: case GL_FLOAT: case GL_2_BYTES: case GL_3_BYTES: case GL_4_BYTES: typeErrorFlag = GL_FALSE; break; default: typeErrorFlag = GL_TRUE; } for (i = 0; i < num; i++) { GLint list = translate_id(i, type, lists); Node *n = alloc_instruction(ctx, OPCODE_CALL_LIST_OFFSET, 2); if (n) { n[1].i = list; n[2].b = typeErrorFlag; } } /* After this, we don't know what state we're in. Invalidate all * cached information previously gathered: */ invalidate_saved_current_state( ctx ); if (ctx->ExecuteFlag) { CALL_CallLists(ctx->Exec, (num, type, lists)); } } static void GLAPIENTRY save_Clear(GLbitfield mask) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLEAR, 1); if (n) { n[1].bf = mask; } if (ctx->ExecuteFlag) { CALL_Clear(ctx->Exec, (mask)); } } static void GLAPIENTRY save_ClearBufferiv(GLenum buffer, GLint drawbuffer, const GLint *value) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLEAR_BUFFER_IV, 6); if (n) { n[1].e = buffer; n[2].i = drawbuffer; n[3].i = value[0]; if (buffer == GL_COLOR) { n[4].i = value[1]; n[5].i = value[2]; n[6].i = value[3]; } else { n[4].i = 0; n[5].i = 0; n[6].i = 0; } } if (ctx->ExecuteFlag) { CALL_ClearBufferiv(ctx->Exec, (buffer, drawbuffer, value)); } } static void GLAPIENTRY save_ClearBufferuiv(GLenum buffer, GLint drawbuffer, const GLuint *value) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLEAR_BUFFER_UIV, 6); if (n) { n[1].e = buffer; n[2].i = drawbuffer; n[3].ui = value[0]; if (buffer == GL_COLOR) { n[4].ui = value[1]; n[5].ui = value[2]; n[6].ui = value[3]; } else { n[4].ui = 0; n[5].ui = 0; n[6].ui = 0; } } if (ctx->ExecuteFlag) { CALL_ClearBufferuiv(ctx->Exec, (buffer, drawbuffer, value)); } } static void GLAPIENTRY save_ClearBufferfv(GLenum buffer, GLint drawbuffer, const GLfloat *value) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLEAR_BUFFER_FV, 6); if (n) { n[1].e = buffer; n[2].i = drawbuffer; n[3].f = value[0]; if (buffer == GL_COLOR) { n[4].f = value[1]; n[5].f = value[2]; n[6].f = value[3]; } else { n[4].f = 0.0F; n[5].f = 0.0F; n[6].f = 0.0F; } } if (ctx->ExecuteFlag) { CALL_ClearBufferfv(ctx->Exec, (buffer, drawbuffer, value)); } } static void GLAPIENTRY save_ClearBufferfi(GLenum buffer, GLint drawbuffer, GLfloat depth, GLint stencil) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLEAR_BUFFER_FI, 4); if (n) { n[1].e = buffer; n[2].i = drawbuffer; n[3].f = depth; n[4].i = stencil; } if (ctx->ExecuteFlag) { CALL_ClearBufferfi(ctx->Exec, (buffer, drawbuffer, depth, stencil)); } } static void GLAPIENTRY save_ClearAccum(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLEAR_ACCUM, 4); if (n) { n[1].f = red; n[2].f = green; n[3].f = blue; n[4].f = alpha; } if (ctx->ExecuteFlag) { CALL_ClearAccum(ctx->Exec, (red, green, blue, alpha)); } } static void GLAPIENTRY save_ClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLEAR_COLOR, 4); if (n) { n[1].f = red; n[2].f = green; n[3].f = blue; n[4].f = alpha; } if (ctx->ExecuteFlag) { CALL_ClearColor(ctx->Exec, (red, green, blue, alpha)); } } static void GLAPIENTRY save_ClearDepth(GLclampd depth) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLEAR_DEPTH, 1); if (n) { n[1].f = (GLfloat) depth; } if (ctx->ExecuteFlag) { CALL_ClearDepth(ctx->Exec, (depth)); } } static void GLAPIENTRY save_ClearIndex(GLfloat c) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLEAR_INDEX, 1); if (n) { n[1].f = c; } if (ctx->ExecuteFlag) { CALL_ClearIndex(ctx->Exec, (c)); } } static void GLAPIENTRY save_ClearStencil(GLint s) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLEAR_STENCIL, 1); if (n) { n[1].i = s; } if (ctx->ExecuteFlag) { CALL_ClearStencil(ctx->Exec, (s)); } } static void GLAPIENTRY save_ClipPlane(GLenum plane, const GLdouble * equ) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLIP_PLANE, 5); if (n) { n[1].e = plane; n[2].f = (GLfloat) equ[0]; n[3].f = (GLfloat) equ[1]; n[4].f = (GLfloat) equ[2]; n[5].f = (GLfloat) equ[3]; } if (ctx->ExecuteFlag) { CALL_ClipPlane(ctx->Exec, (plane, equ)); } } static void GLAPIENTRY save_ColorMask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COLOR_MASK, 4); if (n) { n[1].b = red; n[2].b = green; n[3].b = blue; n[4].b = alpha; } if (ctx->ExecuteFlag) { CALL_ColorMask(ctx->Exec, (red, green, blue, alpha)); } } static void GLAPIENTRY save_ColorMaskIndexed(GLuint buf, GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COLOR_MASK_INDEXED, 5); if (n) { n[1].ui = buf; n[2].b = red; n[3].b = green; n[4].b = blue; n[5].b = alpha; } if (ctx->ExecuteFlag) { /*CALL_ColorMaski(ctx->Exec, (buf, red, green, blue, alpha));*/ } } static void GLAPIENTRY save_ColorMaterial(GLenum face, GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COLOR_MATERIAL, 2); if (n) { n[1].e = face; n[2].e = mode; } if (ctx->ExecuteFlag) { CALL_ColorMaterial(ctx->Exec, (face, mode)); } } static void GLAPIENTRY save_ColorTable(GLenum target, GLenum internalFormat, GLsizei width, GLenum format, GLenum type, const GLvoid * table) { GET_CURRENT_CONTEXT(ctx); if (_mesa_is_proxy_texture(target)) { /* execute immediately */ CALL_ColorTable(ctx->Exec, (target, internalFormat, width, format, type, table)); } else { Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COLOR_TABLE, 6); if (n) { n[1].e = target; n[2].e = internalFormat; n[3].i = width; n[4].e = format; n[5].e = type; n[6].data = unpack_image(ctx, 1, width, 1, 1, format, type, table, &ctx->Unpack); } if (ctx->ExecuteFlag) { CALL_ColorTable(ctx->Exec, (target, internalFormat, width, format, type, table)); } } } static void GLAPIENTRY save_ColorTableParameterfv(GLenum target, GLenum pname, const GLfloat *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COLOR_TABLE_PARAMETER_FV, 6); if (n) { n[1].e = target; n[2].e = pname; n[3].f = params[0]; if (pname == GL_COLOR_TABLE_SGI || pname == GL_POST_CONVOLUTION_COLOR_TABLE_SGI || pname == GL_TEXTURE_COLOR_TABLE_SGI) { n[4].f = params[1]; n[5].f = params[2]; n[6].f = params[3]; } } if (ctx->ExecuteFlag) { CALL_ColorTableParameterfv(ctx->Exec, (target, pname, params)); } } static void GLAPIENTRY save_ColorTableParameteriv(GLenum target, GLenum pname, const GLint *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COLOR_TABLE_PARAMETER_IV, 6); if (n) { n[1].e = target; n[2].e = pname; n[3].i = params[0]; if (pname == GL_COLOR_TABLE_SGI || pname == GL_POST_CONVOLUTION_COLOR_TABLE_SGI || pname == GL_TEXTURE_COLOR_TABLE_SGI) { n[4].i = params[1]; n[5].i = params[2]; n[6].i = params[3]; } } if (ctx->ExecuteFlag) { CALL_ColorTableParameteriv(ctx->Exec, (target, pname, params)); } } static void GLAPIENTRY save_ColorSubTable(GLenum target, GLsizei start, GLsizei count, GLenum format, GLenum type, const GLvoid * table) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COLOR_SUB_TABLE, 6); if (n) { n[1].e = target; n[2].i = start; n[3].i = count; n[4].e = format; n[5].e = type; n[6].data = unpack_image(ctx, 1, count, 1, 1, format, type, table, &ctx->Unpack); } if (ctx->ExecuteFlag) { CALL_ColorSubTable(ctx->Exec, (target, start, count, format, type, table)); } } static void GLAPIENTRY save_CopyColorSubTable(GLenum target, GLsizei start, GLint x, GLint y, GLsizei width) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COPY_COLOR_SUB_TABLE, 5); if (n) { n[1].e = target; n[2].i = start; n[3].i = x; n[4].i = y; n[5].i = width; } if (ctx->ExecuteFlag) { CALL_CopyColorSubTable(ctx->Exec, (target, start, x, y, width)); } } static void GLAPIENTRY save_CopyColorTable(GLenum target, GLenum internalformat, GLint x, GLint y, GLsizei width) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COPY_COLOR_TABLE, 5); if (n) { n[1].e = target; n[2].e = internalformat; n[3].i = x; n[4].i = y; n[5].i = width; } if (ctx->ExecuteFlag) { CALL_CopyColorTable(ctx->Exec, (target, internalformat, x, y, width)); } } static void GLAPIENTRY save_ConvolutionFilter1D(GLenum target, GLenum internalFormat, GLsizei width, GLenum format, GLenum type, const GLvoid * filter) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CONVOLUTION_FILTER_1D, 6); if (n) { n[1].e = target; n[2].e = internalFormat; n[3].i = width; n[4].e = format; n[5].e = type; n[6].data = unpack_image(ctx, 1, width, 1, 1, format, type, filter, &ctx->Unpack); } if (ctx->ExecuteFlag) { CALL_ConvolutionFilter1D(ctx->Exec, (target, internalFormat, width, format, type, filter)); } } static void GLAPIENTRY save_ConvolutionFilter2D(GLenum target, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid * filter) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CONVOLUTION_FILTER_2D, 7); if (n) { n[1].e = target; n[2].e = internalFormat; n[3].i = width; n[4].i = height; n[5].e = format; n[6].e = type; n[7].data = unpack_image(ctx, 2, width, height, 1, format, type, filter, &ctx->Unpack); } if (ctx->ExecuteFlag) { CALL_ConvolutionFilter2D(ctx->Exec, (target, internalFormat, width, height, format, type, filter)); } } static void GLAPIENTRY save_ConvolutionParameteri(GLenum target, GLenum pname, GLint param) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CONVOLUTION_PARAMETER_I, 3); if (n) { n[1].e = target; n[2].e = pname; n[3].i = param; } if (ctx->ExecuteFlag) { CALL_ConvolutionParameteri(ctx->Exec, (target, pname, param)); } } static void GLAPIENTRY save_ConvolutionParameteriv(GLenum target, GLenum pname, const GLint *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CONVOLUTION_PARAMETER_IV, 6); if (n) { n[1].e = target; n[2].e = pname; n[3].i = params[0]; if (pname == GL_CONVOLUTION_BORDER_COLOR || pname == GL_CONVOLUTION_FILTER_SCALE || pname == GL_CONVOLUTION_FILTER_BIAS) { n[4].i = params[1]; n[5].i = params[2]; n[6].i = params[3]; } else { n[4].i = n[5].i = n[6].i = 0; } } if (ctx->ExecuteFlag) { CALL_ConvolutionParameteriv(ctx->Exec, (target, pname, params)); } } static void GLAPIENTRY save_ConvolutionParameterf(GLenum target, GLenum pname, GLfloat param) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CONVOLUTION_PARAMETER_F, 3); if (n) { n[1].e = target; n[2].e = pname; n[3].f = param; } if (ctx->ExecuteFlag) { CALL_ConvolutionParameterf(ctx->Exec, (target, pname, param)); } } static void GLAPIENTRY save_ConvolutionParameterfv(GLenum target, GLenum pname, const GLfloat *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CONVOLUTION_PARAMETER_FV, 6); if (n) { n[1].e = target; n[2].e = pname; n[3].f = params[0]; if (pname == GL_CONVOLUTION_BORDER_COLOR || pname == GL_CONVOLUTION_FILTER_SCALE || pname == GL_CONVOLUTION_FILTER_BIAS) { n[4].f = params[1]; n[5].f = params[2]; n[6].f = params[3]; } else { n[4].f = n[5].f = n[6].f = 0.0F; } } if (ctx->ExecuteFlag) { CALL_ConvolutionParameterfv(ctx->Exec, (target, pname, params)); } } static void GLAPIENTRY save_CopyPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum type) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COPY_PIXELS, 5); if (n) { n[1].i = x; n[2].i = y; n[3].i = (GLint) width; n[4].i = (GLint) height; n[5].e = type; } if (ctx->ExecuteFlag) { CALL_CopyPixels(ctx->Exec, (x, y, width, height, type)); } } static void GLAPIENTRY save_CopyTexImage1D(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLint border) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COPY_TEX_IMAGE1D, 7); if (n) { n[1].e = target; n[2].i = level; n[3].e = internalformat; n[4].i = x; n[5].i = y; n[6].i = width; n[7].i = border; } if (ctx->ExecuteFlag) { CALL_CopyTexImage1D(ctx->Exec, (target, level, internalformat, x, y, width, border)); } } static void GLAPIENTRY save_CopyTexImage2D(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COPY_TEX_IMAGE2D, 8); if (n) { n[1].e = target; n[2].i = level; n[3].e = internalformat; n[4].i = x; n[5].i = y; n[6].i = width; n[7].i = height; n[8].i = border; } if (ctx->ExecuteFlag) { CALL_CopyTexImage2D(ctx->Exec, (target, level, internalformat, x, y, width, height, border)); } } static void GLAPIENTRY save_CopyTexSubImage1D(GLenum target, GLint level, GLint xoffset, GLint x, GLint y, GLsizei width) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COPY_TEX_SUB_IMAGE1D, 6); if (n) { n[1].e = target; n[2].i = level; n[3].i = xoffset; n[4].i = x; n[5].i = y; n[6].i = width; } if (ctx->ExecuteFlag) { CALL_CopyTexSubImage1D(ctx->Exec, (target, level, xoffset, x, y, width)); } } static void GLAPIENTRY save_CopyTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLint height) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COPY_TEX_SUB_IMAGE2D, 8); if (n) { n[1].e = target; n[2].i = level; n[3].i = xoffset; n[4].i = yoffset; n[5].i = x; n[6].i = y; n[7].i = width; n[8].i = height; } if (ctx->ExecuteFlag) { CALL_CopyTexSubImage2D(ctx->Exec, (target, level, xoffset, yoffset, x, y, width, height)); } } static void GLAPIENTRY save_CopyTexSubImage3D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLint height) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COPY_TEX_SUB_IMAGE3D, 9); if (n) { n[1].e = target; n[2].i = level; n[3].i = xoffset; n[4].i = yoffset; n[5].i = zoffset; n[6].i = x; n[7].i = y; n[8].i = width; n[9].i = height; } if (ctx->ExecuteFlag) { CALL_CopyTexSubImage3D(ctx->Exec, (target, level, xoffset, yoffset, zoffset, x, y, width, height)); } } static void GLAPIENTRY save_CullFace(GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CULL_FACE, 1); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { CALL_CullFace(ctx->Exec, (mode)); } } static void GLAPIENTRY save_DepthFunc(GLenum func) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_DEPTH_FUNC, 1); if (n) { n[1].e = func; } if (ctx->ExecuteFlag) { CALL_DepthFunc(ctx->Exec, (func)); } } static void GLAPIENTRY save_DepthMask(GLboolean mask) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_DEPTH_MASK, 1); if (n) { n[1].b = mask; } if (ctx->ExecuteFlag) { CALL_DepthMask(ctx->Exec, (mask)); } } static void GLAPIENTRY save_DepthRange(GLclampd nearval, GLclampd farval) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_DEPTH_RANGE, 2); if (n) { n[1].f = (GLfloat) nearval; n[2].f = (GLfloat) farval; } if (ctx->ExecuteFlag) { CALL_DepthRange(ctx->Exec, (nearval, farval)); } } static void GLAPIENTRY save_Disable(GLenum cap) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_DISABLE, 1); if (n) { n[1].e = cap; } if (ctx->ExecuteFlag) { CALL_Disable(ctx->Exec, (cap)); } } static void GLAPIENTRY save_DisableIndexed(GLuint index, GLenum cap) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_DISABLE_INDEXED, 2); if (n) { n[1].ui = index; n[2].e = cap; } if (ctx->ExecuteFlag) { CALL_Disablei(ctx->Exec, (index, cap)); } } static void GLAPIENTRY save_DrawBuffer(GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_DRAW_BUFFER, 1); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { CALL_DrawBuffer(ctx->Exec, (mode)); } } static void GLAPIENTRY save_DrawPixels(GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid * pixels) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_DRAW_PIXELS, 5); if (n) { n[1].i = width; n[2].i = height; n[3].e = format; n[4].e = type; n[5].data = unpack_image(ctx, 2, width, height, 1, format, type, pixels, &ctx->Unpack); } if (ctx->ExecuteFlag) { CALL_DrawPixels(ctx->Exec, (width, height, format, type, pixels)); } } static void GLAPIENTRY save_Enable(GLenum cap) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_ENABLE, 1); if (n) { n[1].e = cap; } if (ctx->ExecuteFlag) { CALL_Enable(ctx->Exec, (cap)); } } static void GLAPIENTRY save_EnableIndexed(GLuint index, GLenum cap) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_ENABLE_INDEXED, 2); if (n) { n[1].ui = index; n[2].e = cap; } if (ctx->ExecuteFlag) { CALL_Enablei(ctx->Exec, (index, cap)); } } static void GLAPIENTRY save_EvalMesh1(GLenum mode, GLint i1, GLint i2) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_EVALMESH1, 3); if (n) { n[1].e = mode; n[2].i = i1; n[3].i = i2; } if (ctx->ExecuteFlag) { CALL_EvalMesh1(ctx->Exec, (mode, i1, i2)); } } static void GLAPIENTRY save_EvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_EVALMESH2, 5); if (n) { n[1].e = mode; n[2].i = i1; n[3].i = i2; n[4].i = j1; n[5].i = j2; } if (ctx->ExecuteFlag) { CALL_EvalMesh2(ctx->Exec, (mode, i1, i2, j1, j2)); } } static void GLAPIENTRY save_Fogfv(GLenum pname, const GLfloat *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_FOG, 5); if (n) { n[1].e = pname; n[2].f = params[0]; n[3].f = params[1]; n[4].f = params[2]; n[5].f = params[3]; } if (ctx->ExecuteFlag) { CALL_Fogfv(ctx->Exec, (pname, params)); } } static void GLAPIENTRY save_Fogf(GLenum pname, GLfloat param) { GLfloat parray[4]; parray[0] = param; parray[1] = parray[2] = parray[3] = 0.0F; save_Fogfv(pname, parray); } static void GLAPIENTRY save_Fogiv(GLenum pname, const GLint *params) { GLfloat p[4]; switch (pname) { case GL_FOG_MODE: case GL_FOG_DENSITY: case GL_FOG_START: case GL_FOG_END: case GL_FOG_INDEX: p[0] = (GLfloat) *params; p[1] = 0.0f; p[2] = 0.0f; p[3] = 0.0f; break; case GL_FOG_COLOR: p[0] = INT_TO_FLOAT(params[0]); p[1] = INT_TO_FLOAT(params[1]); p[2] = INT_TO_FLOAT(params[2]); p[3] = INT_TO_FLOAT(params[3]); break; default: /* Error will be caught later in gl_Fogfv */ ASSIGN_4V(p, 0.0F, 0.0F, 0.0F, 0.0F); } save_Fogfv(pname, p); } static void GLAPIENTRY save_Fogi(GLenum pname, GLint param) { GLint parray[4]; parray[0] = param; parray[1] = parray[2] = parray[3] = 0; save_Fogiv(pname, parray); } static void GLAPIENTRY save_FrontFace(GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_FRONT_FACE, 1); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { CALL_FrontFace(ctx->Exec, (mode)); } } static void GLAPIENTRY save_Frustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_FRUSTUM, 6); if (n) { n[1].f = (GLfloat) left; n[2].f = (GLfloat) right; n[3].f = (GLfloat) bottom; n[4].f = (GLfloat) top; n[5].f = (GLfloat) nearval; n[6].f = (GLfloat) farval; } if (ctx->ExecuteFlag) { CALL_Frustum(ctx->Exec, (left, right, bottom, top, nearval, farval)); } } static void GLAPIENTRY save_Hint(GLenum target, GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_HINT, 2); if (n) { n[1].e = target; n[2].e = mode; } if (ctx->ExecuteFlag) { CALL_Hint(ctx->Exec, (target, mode)); } } static void GLAPIENTRY save_Histogram(GLenum target, GLsizei width, GLenum internalFormat, GLboolean sink) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_HISTOGRAM, 4); if (n) { n[1].e = target; n[2].i = width; n[3].e = internalFormat; n[4].b = sink; } if (ctx->ExecuteFlag) { CALL_Histogram(ctx->Exec, (target, width, internalFormat, sink)); } } static void GLAPIENTRY save_IndexMask(GLuint mask) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_INDEX_MASK, 1); if (n) { n[1].ui = mask; } if (ctx->ExecuteFlag) { CALL_IndexMask(ctx->Exec, (mask)); } } static void GLAPIENTRY save_InitNames(void) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); (void) alloc_instruction(ctx, OPCODE_INIT_NAMES, 0); if (ctx->ExecuteFlag) { CALL_InitNames(ctx->Exec, ()); } } static void GLAPIENTRY save_Lightfv(GLenum light, GLenum pname, const GLfloat *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_LIGHT, 6); if (n) { GLint i, nParams; n[1].e = light; n[2].e = pname; switch (pname) { case GL_AMBIENT: nParams = 4; break; case GL_DIFFUSE: nParams = 4; break; case GL_SPECULAR: nParams = 4; break; case GL_POSITION: nParams = 4; break; case GL_SPOT_DIRECTION: nParams = 3; break; case GL_SPOT_EXPONENT: nParams = 1; break; case GL_SPOT_CUTOFF: nParams = 1; break; case GL_CONSTANT_ATTENUATION: nParams = 1; break; case GL_LINEAR_ATTENUATION: nParams = 1; break; case GL_QUADRATIC_ATTENUATION: nParams = 1; break; default: nParams = 0; } for (i = 0; i < nParams; i++) { n[3 + i].f = params[i]; } } if (ctx->ExecuteFlag) { CALL_Lightfv(ctx->Exec, (light, pname, params)); } } static void GLAPIENTRY save_Lightf(GLenum light, GLenum pname, GLfloat param) { GLfloat parray[4]; parray[0] = param; parray[1] = parray[2] = parray[3] = 0.0F; save_Lightfv(light, pname, parray); } static void GLAPIENTRY save_Lightiv(GLenum light, GLenum pname, const GLint *params) { GLfloat fparam[4]; switch (pname) { case GL_AMBIENT: case GL_DIFFUSE: case GL_SPECULAR: fparam[0] = INT_TO_FLOAT(params[0]); fparam[1] = INT_TO_FLOAT(params[1]); fparam[2] = INT_TO_FLOAT(params[2]); fparam[3] = INT_TO_FLOAT(params[3]); break; case GL_POSITION: fparam[0] = (GLfloat) params[0]; fparam[1] = (GLfloat) params[1]; fparam[2] = (GLfloat) params[2]; fparam[3] = (GLfloat) params[3]; break; case GL_SPOT_DIRECTION: fparam[0] = (GLfloat) params[0]; fparam[1] = (GLfloat) params[1]; fparam[2] = (GLfloat) params[2]; break; case GL_SPOT_EXPONENT: case GL_SPOT_CUTOFF: case GL_CONSTANT_ATTENUATION: case GL_LINEAR_ATTENUATION: case GL_QUADRATIC_ATTENUATION: fparam[0] = (GLfloat) params[0]; break; default: /* error will be caught later in gl_Lightfv */ ; } save_Lightfv(light, pname, fparam); } static void GLAPIENTRY save_Lighti(GLenum light, GLenum pname, GLint param) { GLint parray[4]; parray[0] = param; parray[1] = parray[2] = parray[3] = 0; save_Lightiv(light, pname, parray); } static void GLAPIENTRY save_LightModelfv(GLenum pname, const GLfloat *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_LIGHT_MODEL, 5); if (n) { n[1].e = pname; n[2].f = params[0]; n[3].f = params[1]; n[4].f = params[2]; n[5].f = params[3]; } if (ctx->ExecuteFlag) { CALL_LightModelfv(ctx->Exec, (pname, params)); } } static void GLAPIENTRY save_LightModelf(GLenum pname, GLfloat param) { GLfloat parray[4]; parray[0] = param; parray[1] = parray[2] = parray[3] = 0.0F; save_LightModelfv(pname, parray); } static void GLAPIENTRY save_LightModeliv(GLenum pname, const GLint *params) { GLfloat fparam[4]; switch (pname) { case GL_LIGHT_MODEL_AMBIENT: fparam[0] = INT_TO_FLOAT(params[0]); fparam[1] = INT_TO_FLOAT(params[1]); fparam[2] = INT_TO_FLOAT(params[2]); fparam[3] = INT_TO_FLOAT(params[3]); break; case GL_LIGHT_MODEL_LOCAL_VIEWER: case GL_LIGHT_MODEL_TWO_SIDE: case GL_LIGHT_MODEL_COLOR_CONTROL: fparam[0] = (GLfloat) params[0]; fparam[1] = 0.0F; fparam[2] = 0.0F; fparam[3] = 0.0F; break; default: /* Error will be caught later in gl_LightModelfv */ ASSIGN_4V(fparam, 0.0F, 0.0F, 0.0F, 0.0F); } save_LightModelfv(pname, fparam); } static void GLAPIENTRY save_LightModeli(GLenum pname, GLint param) { GLint parray[4]; parray[0] = param; parray[1] = parray[2] = parray[3] = 0; save_LightModeliv(pname, parray); } static void GLAPIENTRY save_LineStipple(GLint factor, GLushort pattern) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_LINE_STIPPLE, 2); if (n) { n[1].i = factor; n[2].us = pattern; } if (ctx->ExecuteFlag) { CALL_LineStipple(ctx->Exec, (factor, pattern)); } } static void GLAPIENTRY save_LineWidth(GLfloat width) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_LINE_WIDTH, 1); if (n) { n[1].f = width; } if (ctx->ExecuteFlag) { CALL_LineWidth(ctx->Exec, (width)); } } static void GLAPIENTRY save_ListBase(GLuint base) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_LIST_BASE, 1); if (n) { n[1].ui = base; } if (ctx->ExecuteFlag) { CALL_ListBase(ctx->Exec, (base)); } } static void GLAPIENTRY save_LoadIdentity(void) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); (void) alloc_instruction(ctx, OPCODE_LOAD_IDENTITY, 0); if (ctx->ExecuteFlag) { CALL_LoadIdentity(ctx->Exec, ()); } } static void GLAPIENTRY save_LoadMatrixf(const GLfloat * m) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_LOAD_MATRIX, 16); if (n) { GLuint i; for (i = 0; i < 16; i++) { n[1 + i].f = m[i]; } } if (ctx->ExecuteFlag) { CALL_LoadMatrixf(ctx->Exec, (m)); } } static void GLAPIENTRY save_LoadMatrixd(const GLdouble * m) { GLfloat f[16]; GLint i; for (i = 0; i < 16; i++) { f[i] = (GLfloat) m[i]; } save_LoadMatrixf(f); } static void GLAPIENTRY save_LoadName(GLuint name) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_LOAD_NAME, 1); if (n) { n[1].ui = name; } if (ctx->ExecuteFlag) { CALL_LoadName(ctx->Exec, (name)); } } static void GLAPIENTRY save_LogicOp(GLenum opcode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_LOGIC_OP, 1); if (n) { n[1].e = opcode; } if (ctx->ExecuteFlag) { CALL_LogicOp(ctx->Exec, (opcode)); } } static void GLAPIENTRY save_Map1d(GLenum target, GLdouble u1, GLdouble u2, GLint stride, GLint order, const GLdouble * points) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_MAP1, 6); if (n) { GLfloat *pnts = _mesa_copy_map_points1d(target, stride, order, points); n[1].e = target; n[2].f = (GLfloat) u1; n[3].f = (GLfloat) u2; n[4].i = _mesa_evaluator_components(target); /* stride */ n[5].i = order; n[6].data = (void *) pnts; } if (ctx->ExecuteFlag) { CALL_Map1d(ctx->Exec, (target, u1, u2, stride, order, points)); } } static void GLAPIENTRY save_Map1f(GLenum target, GLfloat u1, GLfloat u2, GLint stride, GLint order, const GLfloat * points) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_MAP1, 6); if (n) { GLfloat *pnts = _mesa_copy_map_points1f(target, stride, order, points); n[1].e = target; n[2].f = u1; n[3].f = u2; n[4].i = _mesa_evaluator_components(target); /* stride */ n[5].i = order; n[6].data = (void *) pnts; } if (ctx->ExecuteFlag) { CALL_Map1f(ctx->Exec, (target, u1, u2, stride, order, points)); } } static void GLAPIENTRY save_Map2d(GLenum target, GLdouble u1, GLdouble u2, GLint ustride, GLint uorder, GLdouble v1, GLdouble v2, GLint vstride, GLint vorder, const GLdouble * points) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_MAP2, 10); if (n) { GLfloat *pnts = _mesa_copy_map_points2d(target, ustride, uorder, vstride, vorder, points); n[1].e = target; n[2].f = (GLfloat) u1; n[3].f = (GLfloat) u2; n[4].f = (GLfloat) v1; n[5].f = (GLfloat) v2; /* XXX verify these strides are correct */ n[6].i = _mesa_evaluator_components(target) * vorder; /*ustride */ n[7].i = _mesa_evaluator_components(target); /*vstride */ n[8].i = uorder; n[9].i = vorder; n[10].data = (void *) pnts; } if (ctx->ExecuteFlag) { CALL_Map2d(ctx->Exec, (target, u1, u2, ustride, uorder, v1, v2, vstride, vorder, points)); } } static void GLAPIENTRY save_Map2f(GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder, GLfloat v1, GLfloat v2, GLint vstride, GLint vorder, const GLfloat * points) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_MAP2, 10); if (n) { GLfloat *pnts = _mesa_copy_map_points2f(target, ustride, uorder, vstride, vorder, points); n[1].e = target; n[2].f = u1; n[3].f = u2; n[4].f = v1; n[5].f = v2; /* XXX verify these strides are correct */ n[6].i = _mesa_evaluator_components(target) * vorder; /*ustride */ n[7].i = _mesa_evaluator_components(target); /*vstride */ n[8].i = uorder; n[9].i = vorder; n[10].data = (void *) pnts; } if (ctx->ExecuteFlag) { CALL_Map2f(ctx->Exec, (target, u1, u2, ustride, uorder, v1, v2, vstride, vorder, points)); } } static void GLAPIENTRY save_MapGrid1f(GLint un, GLfloat u1, GLfloat u2) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_MAPGRID1, 3); if (n) { n[1].i = un; n[2].f = u1; n[3].f = u2; } if (ctx->ExecuteFlag) { CALL_MapGrid1f(ctx->Exec, (un, u1, u2)); } } static void GLAPIENTRY save_MapGrid1d(GLint un, GLdouble u1, GLdouble u2) { save_MapGrid1f(un, (GLfloat) u1, (GLfloat) u2); } static void GLAPIENTRY save_MapGrid2f(GLint un, GLfloat u1, GLfloat u2, GLint vn, GLfloat v1, GLfloat v2) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_MAPGRID2, 6); if (n) { n[1].i = un; n[2].f = u1; n[3].f = u2; n[4].i = vn; n[5].f = v1; n[6].f = v2; } if (ctx->ExecuteFlag) { CALL_MapGrid2f(ctx->Exec, (un, u1, u2, vn, v1, v2)); } } static void GLAPIENTRY save_MapGrid2d(GLint un, GLdouble u1, GLdouble u2, GLint vn, GLdouble v1, GLdouble v2) { save_MapGrid2f(un, (GLfloat) u1, (GLfloat) u2, vn, (GLfloat) v1, (GLfloat) v2); } static void GLAPIENTRY save_MatrixMode(GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_MATRIX_MODE, 1); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { CALL_MatrixMode(ctx->Exec, (mode)); } } static void GLAPIENTRY save_Minmax(GLenum target, GLenum internalFormat, GLboolean sink) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_MIN_MAX, 3); if (n) { n[1].e = target; n[2].e = internalFormat; n[3].b = sink; } if (ctx->ExecuteFlag) { CALL_Minmax(ctx->Exec, (target, internalFormat, sink)); } } static void GLAPIENTRY save_MultMatrixf(const GLfloat * m) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_MULT_MATRIX, 16); if (n) { GLuint i; for (i = 0; i < 16; i++) { n[1 + i].f = m[i]; } } if (ctx->ExecuteFlag) { CALL_MultMatrixf(ctx->Exec, (m)); } } static void GLAPIENTRY save_MultMatrixd(const GLdouble * m) { GLfloat f[16]; GLint i; for (i = 0; i < 16; i++) { f[i] = (GLfloat) m[i]; } save_MultMatrixf(f); } static void GLAPIENTRY save_NewList(GLuint name, GLenum mode) { GET_CURRENT_CONTEXT(ctx); /* It's an error to call this function while building a display list */ _mesa_error(ctx, GL_INVALID_OPERATION, "glNewList"); (void) name; (void) mode; } static void GLAPIENTRY save_Ortho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_ORTHO, 6); if (n) { n[1].f = (GLfloat) left; n[2].f = (GLfloat) right; n[3].f = (GLfloat) bottom; n[4].f = (GLfloat) top; n[5].f = (GLfloat) nearval; n[6].f = (GLfloat) farval; } if (ctx->ExecuteFlag) { CALL_Ortho(ctx->Exec, (left, right, bottom, top, nearval, farval)); } } static void GLAPIENTRY save_PixelMapfv(GLenum map, GLint mapsize, const GLfloat *values) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PIXEL_MAP, 3); if (n) { n[1].e = map; n[2].i = mapsize; n[3].data = malloc(mapsize * sizeof(GLfloat)); memcpy(n[3].data, (void *) values, mapsize * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_PixelMapfv(ctx->Exec, (map, mapsize, values)); } } static void GLAPIENTRY save_PixelMapuiv(GLenum map, GLint mapsize, const GLuint *values) { GLfloat fvalues[MAX_PIXEL_MAP_TABLE]; GLint i; if (map == GL_PIXEL_MAP_I_TO_I || map == GL_PIXEL_MAP_S_TO_S) { for (i = 0; i < mapsize; i++) { fvalues[i] = (GLfloat) values[i]; } } else { for (i = 0; i < mapsize; i++) { fvalues[i] = UINT_TO_FLOAT(values[i]); } } save_PixelMapfv(map, mapsize, fvalues); } static void GLAPIENTRY save_PixelMapusv(GLenum map, GLint mapsize, const GLushort *values) { GLfloat fvalues[MAX_PIXEL_MAP_TABLE]; GLint i; if (map == GL_PIXEL_MAP_I_TO_I || map == GL_PIXEL_MAP_S_TO_S) { for (i = 0; i < mapsize; i++) { fvalues[i] = (GLfloat) values[i]; } } else { for (i = 0; i < mapsize; i++) { fvalues[i] = USHORT_TO_FLOAT(values[i]); } } save_PixelMapfv(map, mapsize, fvalues); } static void GLAPIENTRY save_PixelTransferf(GLenum pname, GLfloat param) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PIXEL_TRANSFER, 2); if (n) { n[1].e = pname; n[2].f = param; } if (ctx->ExecuteFlag) { CALL_PixelTransferf(ctx->Exec, (pname, param)); } } static void GLAPIENTRY save_PixelTransferi(GLenum pname, GLint param) { save_PixelTransferf(pname, (GLfloat) param); } static void GLAPIENTRY save_PixelZoom(GLfloat xfactor, GLfloat yfactor) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PIXEL_ZOOM, 2); if (n) { n[1].f = xfactor; n[2].f = yfactor; } if (ctx->ExecuteFlag) { CALL_PixelZoom(ctx->Exec, (xfactor, yfactor)); } } static void GLAPIENTRY save_PointParameterfvEXT(GLenum pname, const GLfloat *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_POINT_PARAMETERS, 4); if (n) { n[1].e = pname; n[2].f = params[0]; n[3].f = params[1]; n[4].f = params[2]; } if (ctx->ExecuteFlag) { CALL_PointParameterfv(ctx->Exec, (pname, params)); } } static void GLAPIENTRY save_PointParameterfEXT(GLenum pname, GLfloat param) { GLfloat parray[3]; parray[0] = param; parray[1] = parray[2] = 0.0F; save_PointParameterfvEXT(pname, parray); } static void GLAPIENTRY save_PointParameteriNV(GLenum pname, GLint param) { GLfloat parray[3]; parray[0] = (GLfloat) param; parray[1] = parray[2] = 0.0F; save_PointParameterfvEXT(pname, parray); } static void GLAPIENTRY save_PointParameterivNV(GLenum pname, const GLint * param) { GLfloat parray[3]; parray[0] = (GLfloat) param[0]; parray[1] = parray[2] = 0.0F; save_PointParameterfvEXT(pname, parray); } static void GLAPIENTRY save_PointSize(GLfloat size) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_POINT_SIZE, 1); if (n) { n[1].f = size; } if (ctx->ExecuteFlag) { CALL_PointSize(ctx->Exec, (size)); } } static void GLAPIENTRY save_PolygonMode(GLenum face, GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_POLYGON_MODE, 2); if (n) { n[1].e = face; n[2].e = mode; } if (ctx->ExecuteFlag) { CALL_PolygonMode(ctx->Exec, (face, mode)); } } static void GLAPIENTRY save_PolygonStipple(const GLubyte * pattern) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_POLYGON_STIPPLE, 1); if (n) { n[1].data = unpack_image(ctx, 2, 32, 32, 1, GL_COLOR_INDEX, GL_BITMAP, pattern, &ctx->Unpack); } if (ctx->ExecuteFlag) { CALL_PolygonStipple(ctx->Exec, ((GLubyte *) pattern)); } } static void GLAPIENTRY save_PolygonOffset(GLfloat factor, GLfloat units) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_POLYGON_OFFSET, 2); if (n) { n[1].f = factor; n[2].f = units; } if (ctx->ExecuteFlag) { CALL_PolygonOffset(ctx->Exec, (factor, units)); } } static void GLAPIENTRY save_PolygonOffsetEXT(GLfloat factor, GLfloat bias) { GET_CURRENT_CONTEXT(ctx); /* XXX mult by DepthMaxF here??? */ save_PolygonOffset(factor, ctx->DrawBuffer->_DepthMaxF * bias); } static void GLAPIENTRY save_PopAttrib(void) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); (void) alloc_instruction(ctx, OPCODE_POP_ATTRIB, 0); if (ctx->ExecuteFlag) { CALL_PopAttrib(ctx->Exec, ()); } } static void GLAPIENTRY save_PopMatrix(void) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); (void) alloc_instruction(ctx, OPCODE_POP_MATRIX, 0); if (ctx->ExecuteFlag) { CALL_PopMatrix(ctx->Exec, ()); } } static void GLAPIENTRY save_PopName(void) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); (void) alloc_instruction(ctx, OPCODE_POP_NAME, 0); if (ctx->ExecuteFlag) { CALL_PopName(ctx->Exec, ()); } } static void GLAPIENTRY save_PrioritizeTextures(GLsizei num, const GLuint * textures, const GLclampf * priorities) { GET_CURRENT_CONTEXT(ctx); GLint i; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); for (i = 0; i < num; i++) { Node *n; n = alloc_instruction(ctx, OPCODE_PRIORITIZE_TEXTURE, 2); if (n) { n[1].ui = textures[i]; n[2].f = priorities[i]; } } if (ctx->ExecuteFlag) { CALL_PrioritizeTextures(ctx->Exec, (num, textures, priorities)); } } static void GLAPIENTRY save_PushAttrib(GLbitfield mask) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PUSH_ATTRIB, 1); if (n) { n[1].bf = mask; } if (ctx->ExecuteFlag) { CALL_PushAttrib(ctx->Exec, (mask)); } } static void GLAPIENTRY save_PushMatrix(void) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); (void) alloc_instruction(ctx, OPCODE_PUSH_MATRIX, 0); if (ctx->ExecuteFlag) { CALL_PushMatrix(ctx->Exec, ()); } } static void GLAPIENTRY save_PushName(GLuint name) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PUSH_NAME, 1); if (n) { n[1].ui = name; } if (ctx->ExecuteFlag) { CALL_PushName(ctx->Exec, (name)); } } static void GLAPIENTRY save_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_RASTER_POS, 4); if (n) { n[1].f = x; n[2].f = y; n[3].f = z; n[4].f = w; } if (ctx->ExecuteFlag) { CALL_RasterPos4f(ctx->Exec, (x, y, z, w)); } } static void GLAPIENTRY save_RasterPos2d(GLdouble x, GLdouble y) { save_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F); } static void GLAPIENTRY save_RasterPos2f(GLfloat x, GLfloat y) { save_RasterPos4f(x, y, 0.0F, 1.0F); } static void GLAPIENTRY save_RasterPos2i(GLint x, GLint y) { save_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F); } static void GLAPIENTRY save_RasterPos2s(GLshort x, GLshort y) { save_RasterPos4f(x, y, 0.0F, 1.0F); } static void GLAPIENTRY save_RasterPos3d(GLdouble x, GLdouble y, GLdouble z) { save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F); } static void GLAPIENTRY save_RasterPos3f(GLfloat x, GLfloat y, GLfloat z) { save_RasterPos4f(x, y, z, 1.0F); } static void GLAPIENTRY save_RasterPos3i(GLint x, GLint y, GLint z) { save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F); } static void GLAPIENTRY save_RasterPos3s(GLshort x, GLshort y, GLshort z) { save_RasterPos4f(x, y, z, 1.0F); } static void GLAPIENTRY save_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w) { save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w); } static void GLAPIENTRY save_RasterPos4i(GLint x, GLint y, GLint z, GLint w) { save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w); } static void GLAPIENTRY save_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w) { save_RasterPos4f(x, y, z, w); } static void GLAPIENTRY save_RasterPos2dv(const GLdouble * v) { save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F); } static void GLAPIENTRY save_RasterPos2fv(const GLfloat * v) { save_RasterPos4f(v[0], v[1], 0.0F, 1.0F); } static void GLAPIENTRY save_RasterPos2iv(const GLint * v) { save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F); } static void GLAPIENTRY save_RasterPos2sv(const GLshort * v) { save_RasterPos4f(v[0], v[1], 0.0F, 1.0F); } static void GLAPIENTRY save_RasterPos3dv(const GLdouble * v) { save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F); } static void GLAPIENTRY save_RasterPos3fv(const GLfloat * v) { save_RasterPos4f(v[0], v[1], v[2], 1.0F); } static void GLAPIENTRY save_RasterPos3iv(const GLint * v) { save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F); } static void GLAPIENTRY save_RasterPos3sv(const GLshort * v) { save_RasterPos4f(v[0], v[1], v[2], 1.0F); } static void GLAPIENTRY save_RasterPos4dv(const GLdouble * v) { save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]); } static void GLAPIENTRY save_RasterPos4fv(const GLfloat * v) { save_RasterPos4f(v[0], v[1], v[2], v[3]); } static void GLAPIENTRY save_RasterPos4iv(const GLint * v) { save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]); } static void GLAPIENTRY save_RasterPos4sv(const GLshort * v) { save_RasterPos4f(v[0], v[1], v[2], v[3]); } static void GLAPIENTRY save_PassThrough(GLfloat token) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PASSTHROUGH, 1); if (n) { n[1].f = token; } if (ctx->ExecuteFlag) { CALL_PassThrough(ctx->Exec, (token)); } } static void GLAPIENTRY save_ReadBuffer(GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_READ_BUFFER, 1); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { CALL_ReadBuffer(ctx->Exec, (mode)); } } static void GLAPIENTRY save_ResetHistogram(GLenum target) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_RESET_HISTOGRAM, 1); if (n) { n[1].e = target; } if (ctx->ExecuteFlag) { CALL_ResetHistogram(ctx->Exec, (target)); } } static void GLAPIENTRY save_ResetMinmax(GLenum target) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_RESET_MIN_MAX, 1); if (n) { n[1].e = target; } if (ctx->ExecuteFlag) { CALL_ResetMinmax(ctx->Exec, (target)); } } static void GLAPIENTRY save_Rotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_ROTATE, 4); if (n) { n[1].f = angle; n[2].f = x; n[3].f = y; n[4].f = z; } if (ctx->ExecuteFlag) { CALL_Rotatef(ctx->Exec, (angle, x, y, z)); } } static void GLAPIENTRY save_Rotated(GLdouble angle, GLdouble x, GLdouble y, GLdouble z) { save_Rotatef((GLfloat) angle, (GLfloat) x, (GLfloat) y, (GLfloat) z); } static void GLAPIENTRY save_Scalef(GLfloat x, GLfloat y, GLfloat z) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_SCALE, 3); if (n) { n[1].f = x; n[2].f = y; n[3].f = z; } if (ctx->ExecuteFlag) { CALL_Scalef(ctx->Exec, (x, y, z)); } } static void GLAPIENTRY save_Scaled(GLdouble x, GLdouble y, GLdouble z) { save_Scalef((GLfloat) x, (GLfloat) y, (GLfloat) z); } static void GLAPIENTRY save_Scissor(GLint x, GLint y, GLsizei width, GLsizei height) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_SCISSOR, 4); if (n) { n[1].i = x; n[2].i = y; n[3].i = width; n[4].i = height; } if (ctx->ExecuteFlag) { CALL_Scissor(ctx->Exec, (x, y, width, height)); } } static void GLAPIENTRY save_ShadeModel(GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END(ctx); if (ctx->ExecuteFlag) { CALL_ShadeModel(ctx->Exec, (mode)); } if (ctx->ListState.Current.ShadeModel == mode) return; SAVE_FLUSH_VERTICES(ctx); /* Only save the value if we know the statechange will take effect: */ if (ctx->Driver.CurrentSavePrimitive == PRIM_OUTSIDE_BEGIN_END) ctx->ListState.Current.ShadeModel = mode; n = alloc_instruction(ctx, OPCODE_SHADE_MODEL, 1); if (n) { n[1].e = mode; } } static void GLAPIENTRY save_StencilFunc(GLenum func, GLint ref, GLuint mask) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_STENCIL_FUNC, 3); if (n) { n[1].e = func; n[2].i = ref; n[3].ui = mask; } if (ctx->ExecuteFlag) { CALL_StencilFunc(ctx->Exec, (func, ref, mask)); } } static void GLAPIENTRY save_StencilMask(GLuint mask) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_STENCIL_MASK, 1); if (n) { n[1].ui = mask; } if (ctx->ExecuteFlag) { CALL_StencilMask(ctx->Exec, (mask)); } } static void GLAPIENTRY save_StencilOp(GLenum fail, GLenum zfail, GLenum zpass) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_STENCIL_OP, 3); if (n) { n[1].e = fail; n[2].e = zfail; n[3].e = zpass; } if (ctx->ExecuteFlag) { CALL_StencilOp(ctx->Exec, (fail, zfail, zpass)); } } static void GLAPIENTRY save_StencilFuncSeparate(GLenum face, GLenum func, GLint ref, GLuint mask) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_STENCIL_FUNC_SEPARATE, 4); if (n) { n[1].e = face; n[2].e = func; n[3].i = ref; n[4].ui = mask; } if (ctx->ExecuteFlag) { CALL_StencilFuncSeparate(ctx->Exec, (face, func, ref, mask)); } } static void GLAPIENTRY save_StencilFuncSeparateATI(GLenum frontfunc, GLenum backfunc, GLint ref, GLuint mask) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); /* GL_FRONT */ n = alloc_instruction(ctx, OPCODE_STENCIL_FUNC_SEPARATE, 4); if (n) { n[1].e = GL_FRONT; n[2].e = frontfunc; n[3].i = ref; n[4].ui = mask; } /* GL_BACK */ n = alloc_instruction(ctx, OPCODE_STENCIL_FUNC_SEPARATE, 4); if (n) { n[1].e = GL_BACK; n[2].e = backfunc; n[3].i = ref; n[4].ui = mask; } if (ctx->ExecuteFlag) { CALL_StencilFuncSeparate(ctx->Exec, (GL_FRONT, frontfunc, ref, mask)); CALL_StencilFuncSeparate(ctx->Exec, (GL_BACK, backfunc, ref, mask)); } } static void GLAPIENTRY save_StencilMaskSeparate(GLenum face, GLuint mask) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_STENCIL_MASK_SEPARATE, 2); if (n) { n[1].e = face; n[2].ui = mask; } if (ctx->ExecuteFlag) { CALL_StencilMaskSeparate(ctx->Exec, (face, mask)); } } static void GLAPIENTRY save_StencilOpSeparate(GLenum face, GLenum fail, GLenum zfail, GLenum zpass) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_STENCIL_OP_SEPARATE, 4); if (n) { n[1].e = face; n[2].e = fail; n[3].e = zfail; n[4].e = zpass; } if (ctx->ExecuteFlag) { CALL_StencilOpSeparate(ctx->Exec, (face, fail, zfail, zpass)); } } static void GLAPIENTRY save_TexEnvfv(GLenum target, GLenum pname, const GLfloat *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_TEXENV, 6); if (n) { n[1].e = target; n[2].e = pname; if (pname == GL_TEXTURE_ENV_COLOR) { n[3].f = params[0]; n[4].f = params[1]; n[5].f = params[2]; n[6].f = params[3]; } else { n[3].f = params[0]; n[4].f = n[5].f = n[6].f = 0.0F; } } if (ctx->ExecuteFlag) { CALL_TexEnvfv(ctx->Exec, (target, pname, params)); } } static void GLAPIENTRY save_TexEnvf(GLenum target, GLenum pname, GLfloat param) { GLfloat parray[4]; parray[0] = (GLfloat) param; parray[1] = parray[2] = parray[3] = 0.0F; save_TexEnvfv(target, pname, parray); } static void GLAPIENTRY save_TexEnvi(GLenum target, GLenum pname, GLint param) { GLfloat p[4]; p[0] = (GLfloat) param; p[1] = p[2] = p[3] = 0.0F; save_TexEnvfv(target, pname, p); } static void GLAPIENTRY save_TexEnviv(GLenum target, GLenum pname, const GLint * param) { GLfloat p[4]; if (pname == GL_TEXTURE_ENV_COLOR) { p[0] = INT_TO_FLOAT(param[0]); p[1] = INT_TO_FLOAT(param[1]); p[2] = INT_TO_FLOAT(param[2]); p[3] = INT_TO_FLOAT(param[3]); } else { p[0] = (GLfloat) param[0]; p[1] = p[2] = p[3] = 0.0F; } save_TexEnvfv(target, pname, p); } static void GLAPIENTRY save_TexGenfv(GLenum coord, GLenum pname, const GLfloat *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_TEXGEN, 6); if (n) { n[1].e = coord; n[2].e = pname; n[3].f = params[0]; n[4].f = params[1]; n[5].f = params[2]; n[6].f = params[3]; } if (ctx->ExecuteFlag) { CALL_TexGenfv(ctx->Exec, (coord, pname, params)); } } static void GLAPIENTRY save_TexGeniv(GLenum coord, GLenum pname, const GLint *params) { GLfloat p[4]; p[0] = (GLfloat) params[0]; p[1] = (GLfloat) params[1]; p[2] = (GLfloat) params[2]; p[3] = (GLfloat) params[3]; save_TexGenfv(coord, pname, p); } static void GLAPIENTRY save_TexGend(GLenum coord, GLenum pname, GLdouble param) { GLfloat parray[4]; parray[0] = (GLfloat) param; parray[1] = parray[2] = parray[3] = 0.0F; save_TexGenfv(coord, pname, parray); } static void GLAPIENTRY save_TexGendv(GLenum coord, GLenum pname, const GLdouble *params) { GLfloat p[4]; p[0] = (GLfloat) params[0]; p[1] = (GLfloat) params[1]; p[2] = (GLfloat) params[2]; p[3] = (GLfloat) params[3]; save_TexGenfv(coord, pname, p); } static void GLAPIENTRY save_TexGenf(GLenum coord, GLenum pname, GLfloat param) { GLfloat parray[4]; parray[0] = param; parray[1] = parray[2] = parray[3] = 0.0F; save_TexGenfv(coord, pname, parray); } static void GLAPIENTRY save_TexGeni(GLenum coord, GLenum pname, GLint param) { GLint parray[4]; parray[0] = param; parray[1] = parray[2] = parray[3] = 0; save_TexGeniv(coord, pname, parray); } static void GLAPIENTRY save_TexParameterfv(GLenum target, GLenum pname, const GLfloat *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_TEXPARAMETER, 6); if (n) { n[1].e = target; n[2].e = pname; n[3].f = params[0]; n[4].f = params[1]; n[5].f = params[2]; n[6].f = params[3]; } if (ctx->ExecuteFlag) { CALL_TexParameterfv(ctx->Exec, (target, pname, params)); } } static void GLAPIENTRY save_TexParameterf(GLenum target, GLenum pname, GLfloat param) { GLfloat parray[4]; parray[0] = param; parray[1] = parray[2] = parray[3] = 0.0F; save_TexParameterfv(target, pname, parray); } static void GLAPIENTRY save_TexParameteri(GLenum target, GLenum pname, GLint param) { GLfloat fparam[4]; fparam[0] = (GLfloat) param; fparam[1] = fparam[2] = fparam[3] = 0.0F; save_TexParameterfv(target, pname, fparam); } static void GLAPIENTRY save_TexParameteriv(GLenum target, GLenum pname, const GLint *params) { GLfloat fparam[4]; fparam[0] = (GLfloat) params[0]; fparam[1] = fparam[2] = fparam[3] = 0.0F; save_TexParameterfv(target, pname, fparam); } static void GLAPIENTRY save_TexImage1D(GLenum target, GLint level, GLint components, GLsizei width, GLint border, GLenum format, GLenum type, const GLvoid * pixels) { GET_CURRENT_CONTEXT(ctx); if (target == GL_PROXY_TEXTURE_1D) { /* don't compile, execute immediately */ CALL_TexImage1D(ctx->Exec, (target, level, components, width, border, format, type, pixels)); } else { Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_TEX_IMAGE1D, 8); if (n) { n[1].e = target; n[2].i = level; n[3].i = components; n[4].i = (GLint) width; n[5].i = border; n[6].e = format; n[7].e = type; n[8].data = unpack_image(ctx, 1, width, 1, 1, format, type, pixels, &ctx->Unpack); } if (ctx->ExecuteFlag) { CALL_TexImage1D(ctx->Exec, (target, level, components, width, border, format, type, pixels)); } } } static void GLAPIENTRY save_TexImage2D(GLenum target, GLint level, GLint components, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const GLvoid * pixels) { GET_CURRENT_CONTEXT(ctx); if (target == GL_PROXY_TEXTURE_2D) { /* don't compile, execute immediately */ CALL_TexImage2D(ctx->Exec, (target, level, components, width, height, border, format, type, pixels)); } else { Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_TEX_IMAGE2D, 9); if (n) { n[1].e = target; n[2].i = level; n[3].i = components; n[4].i = (GLint) width; n[5].i = (GLint) height; n[6].i = border; n[7].e = format; n[8].e = type; n[9].data = unpack_image(ctx, 2, width, height, 1, format, type, pixels, &ctx->Unpack); } if (ctx->ExecuteFlag) { CALL_TexImage2D(ctx->Exec, (target, level, components, width, height, border, format, type, pixels)); } } } static void GLAPIENTRY save_TexImage3D(GLenum target, GLint level, GLint internalFormat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLenum format, GLenum type, const GLvoid * pixels) { GET_CURRENT_CONTEXT(ctx); if (target == GL_PROXY_TEXTURE_3D) { /* don't compile, execute immediately */ CALL_TexImage3D(ctx->Exec, (target, level, internalFormat, width, height, depth, border, format, type, pixels)); } else { Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_TEX_IMAGE3D, 10); if (n) { n[1].e = target; n[2].i = level; n[3].i = (GLint) internalFormat; n[4].i = (GLint) width; n[5].i = (GLint) height; n[6].i = (GLint) depth; n[7].i = border; n[8].e = format; n[9].e = type; n[10].data = unpack_image(ctx, 3, width, height, depth, format, type, pixels, &ctx->Unpack); } if (ctx->ExecuteFlag) { CALL_TexImage3D(ctx->Exec, (target, level, internalFormat, width, height, depth, border, format, type, pixels)); } } } static void GLAPIENTRY save_TexSubImage1D(GLenum target, GLint level, GLint xoffset, GLsizei width, GLenum format, GLenum type, const GLvoid * pixels) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_TEX_SUB_IMAGE1D, 7); if (n) { n[1].e = target; n[2].i = level; n[3].i = xoffset; n[4].i = (GLint) width; n[5].e = format; n[6].e = type; n[7].data = unpack_image(ctx, 1, width, 1, 1, format, type, pixels, &ctx->Unpack); } if (ctx->ExecuteFlag) { CALL_TexSubImage1D(ctx->Exec, (target, level, xoffset, width, format, type, pixels)); } } static void GLAPIENTRY save_TexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, const GLvoid * pixels) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_TEX_SUB_IMAGE2D, 9); if (n) { n[1].e = target; n[2].i = level; n[3].i = xoffset; n[4].i = yoffset; n[5].i = (GLint) width; n[6].i = (GLint) height; n[7].e = format; n[8].e = type; n[9].data = unpack_image(ctx, 2, width, height, 1, format, type, pixels, &ctx->Unpack); } if (ctx->ExecuteFlag) { CALL_TexSubImage2D(ctx->Exec, (target, level, xoffset, yoffset, width, height, format, type, pixels)); } } static void GLAPIENTRY save_TexSubImage3D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const GLvoid * pixels) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_TEX_SUB_IMAGE3D, 11); if (n) { n[1].e = target; n[2].i = level; n[3].i = xoffset; n[4].i = yoffset; n[5].i = zoffset; n[6].i = (GLint) width; n[7].i = (GLint) height; n[8].i = (GLint) depth; n[9].e = format; n[10].e = type; n[11].data = unpack_image(ctx, 3, width, height, depth, format, type, pixels, &ctx->Unpack); } if (ctx->ExecuteFlag) { CALL_TexSubImage3D(ctx->Exec, (target, level, xoffset, yoffset, zoffset, width, height, depth, format, type, pixels)); } } static void GLAPIENTRY save_Translatef(GLfloat x, GLfloat y, GLfloat z) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_TRANSLATE, 3); if (n) { n[1].f = x; n[2].f = y; n[3].f = z; } if (ctx->ExecuteFlag) { CALL_Translatef(ctx->Exec, (x, y, z)); } } static void GLAPIENTRY save_Translated(GLdouble x, GLdouble y, GLdouble z) { save_Translatef((GLfloat) x, (GLfloat) y, (GLfloat) z); } static void GLAPIENTRY save_Viewport(GLint x, GLint y, GLsizei width, GLsizei height) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_VIEWPORT, 4); if (n) { n[1].i = x; n[2].i = y; n[3].i = (GLint) width; n[4].i = (GLint) height; } if (ctx->ExecuteFlag) { CALL_Viewport(ctx->Exec, (x, y, width, height)); } } static void GLAPIENTRY save_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_WINDOW_POS, 4); if (n) { n[1].f = x; n[2].f = y; n[3].f = z; n[4].f = w; } if (ctx->ExecuteFlag) { CALL_WindowPos4fMESA(ctx->Exec, (x, y, z, w)); } } static void GLAPIENTRY save_WindowPos2dMESA(GLdouble x, GLdouble y) { save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, 0.0F, 1.0F); } static void GLAPIENTRY save_WindowPos2fMESA(GLfloat x, GLfloat y) { save_WindowPos4fMESA(x, y, 0.0F, 1.0F); } static void GLAPIENTRY save_WindowPos2iMESA(GLint x, GLint y) { save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, 0.0F, 1.0F); } static void GLAPIENTRY save_WindowPos2sMESA(GLshort x, GLshort y) { save_WindowPos4fMESA(x, y, 0.0F, 1.0F); } static void GLAPIENTRY save_WindowPos3dMESA(GLdouble x, GLdouble y, GLdouble z) { save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F); } static void GLAPIENTRY save_WindowPos3fMESA(GLfloat x, GLfloat y, GLfloat z) { save_WindowPos4fMESA(x, y, z, 1.0F); } static void GLAPIENTRY save_WindowPos3iMESA(GLint x, GLint y, GLint z) { save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F); } static void GLAPIENTRY save_WindowPos3sMESA(GLshort x, GLshort y, GLshort z) { save_WindowPos4fMESA(x, y, z, 1.0F); } static void GLAPIENTRY save_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w) { save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w); } static void GLAPIENTRY save_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w) { save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w); } static void GLAPIENTRY save_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w) { save_WindowPos4fMESA(x, y, z, w); } static void GLAPIENTRY save_WindowPos2dvMESA(const GLdouble * v) { save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F); } static void GLAPIENTRY save_WindowPos2fvMESA(const GLfloat * v) { save_WindowPos4fMESA(v[0], v[1], 0.0F, 1.0F); } static void GLAPIENTRY save_WindowPos2ivMESA(const GLint * v) { save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F); } static void GLAPIENTRY save_WindowPos2svMESA(const GLshort * v) { save_WindowPos4fMESA(v[0], v[1], 0.0F, 1.0F); } static void GLAPIENTRY save_WindowPos3dvMESA(const GLdouble * v) { save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F); } static void GLAPIENTRY save_WindowPos3fvMESA(const GLfloat * v) { save_WindowPos4fMESA(v[0], v[1], v[2], 1.0F); } static void GLAPIENTRY save_WindowPos3ivMESA(const GLint * v) { save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F); } static void GLAPIENTRY save_WindowPos3svMESA(const GLshort * v) { save_WindowPos4fMESA(v[0], v[1], v[2], 1.0F); } static void GLAPIENTRY save_WindowPos4dvMESA(const GLdouble * v) { save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]); } static void GLAPIENTRY save_WindowPos4fvMESA(const GLfloat * v) { save_WindowPos4fMESA(v[0], v[1], v[2], v[3]); } static void GLAPIENTRY save_WindowPos4ivMESA(const GLint * v) { save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]); } static void GLAPIENTRY save_WindowPos4svMESA(const GLshort * v) { save_WindowPos4fMESA(v[0], v[1], v[2], v[3]); } /* GL_ARB_multitexture */ static void GLAPIENTRY save_ActiveTextureARB(GLenum target) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_ACTIVE_TEXTURE, 1); if (n) { n[1].e = target; } if (ctx->ExecuteFlag) { CALL_ActiveTexture(ctx->Exec, (target)); } } /* GL_ARB_transpose_matrix */ static void GLAPIENTRY save_LoadTransposeMatrixdARB(const GLdouble m[16]) { GLfloat tm[16]; _math_transposefd(tm, m); save_LoadMatrixf(tm); } static void GLAPIENTRY save_LoadTransposeMatrixfARB(const GLfloat m[16]) { GLfloat tm[16]; _math_transposef(tm, m); save_LoadMatrixf(tm); } static void GLAPIENTRY save_MultTransposeMatrixdARB(const GLdouble m[16]) { GLfloat tm[16]; _math_transposefd(tm, m); save_MultMatrixf(tm); } static void GLAPIENTRY save_MultTransposeMatrixfARB(const GLfloat m[16]) { GLfloat tm[16]; _math_transposef(tm, m); save_MultMatrixf(tm); } static GLvoid *copy_data(const GLvoid *data, GLsizei size, const char *func) { GET_CURRENT_CONTEXT(ctx); GLvoid *image; if (!data) return NULL; image = malloc(size); if (!image) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func); return NULL; } memcpy(image, data, size); return image; } /* GL_ARB_texture_compression */ static void GLAPIENTRY save_CompressedTexImage1DARB(GLenum target, GLint level, GLenum internalFormat, GLsizei width, GLint border, GLsizei imageSize, const GLvoid * data) { GET_CURRENT_CONTEXT(ctx); if (target == GL_PROXY_TEXTURE_1D) { /* don't compile, execute immediately */ CALL_CompressedTexImage1D(ctx->Exec, (target, level, internalFormat, width, border, imageSize, data)); } else { Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COMPRESSED_TEX_IMAGE_1D, 7); if (n) { n[1].e = target; n[2].i = level; n[3].e = internalFormat; n[4].i = (GLint) width; n[5].i = border; n[6].i = imageSize; n[7].data = copy_data(data, imageSize, "glCompressedTexImage1DARB"); } if (ctx->ExecuteFlag) { CALL_CompressedTexImage1D(ctx->Exec, (target, level, internalFormat, width, border, imageSize, data)); } } } static void GLAPIENTRY save_CompressedTexImage2DARB(GLenum target, GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLint border, GLsizei imageSize, const GLvoid * data) { GET_CURRENT_CONTEXT(ctx); if (target == GL_PROXY_TEXTURE_2D) { /* don't compile, execute immediately */ CALL_CompressedTexImage2D(ctx->Exec, (target, level, internalFormat, width, height, border, imageSize, data)); } else { Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COMPRESSED_TEX_IMAGE_2D, 8); if (n) { n[1].e = target; n[2].i = level; n[3].e = internalFormat; n[4].i = (GLint) width; n[5].i = (GLint) height; n[6].i = border; n[7].i = imageSize; n[8].data = copy_data(data, imageSize, "glCompressedTexImage2DARB"); } if (ctx->ExecuteFlag) { CALL_CompressedTexImage2D(ctx->Exec, (target, level, internalFormat, width, height, border, imageSize, data)); } } } static void GLAPIENTRY save_CompressedTexImage3DARB(GLenum target, GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLsizei imageSize, const GLvoid * data) { GET_CURRENT_CONTEXT(ctx); if (target == GL_PROXY_TEXTURE_3D) { /* don't compile, execute immediately */ CALL_CompressedTexImage3D(ctx->Exec, (target, level, internalFormat, width, height, depth, border, imageSize, data)); } else { Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COMPRESSED_TEX_IMAGE_3D, 9); if (n) { n[1].e = target; n[2].i = level; n[3].e = internalFormat; n[4].i = (GLint) width; n[5].i = (GLint) height; n[6].i = (GLint) depth; n[7].i = border; n[8].i = imageSize; n[9].data = copy_data(data, imageSize, "glCompressedTexImage3DARB"); } if (ctx->ExecuteFlag) { CALL_CompressedTexImage3D(ctx->Exec, (target, level, internalFormat, width, height, depth, border, imageSize, data)); } } } static void GLAPIENTRY save_CompressedTexSubImage1DARB(GLenum target, GLint level, GLint xoffset, GLsizei width, GLenum format, GLsizei imageSize, const GLvoid * data) { Node *n; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COMPRESSED_TEX_SUB_IMAGE_1D, 7); if (n) { n[1].e = target; n[2].i = level; n[3].i = xoffset; n[4].i = (GLint) width; n[5].e = format; n[6].i = imageSize; n[7].data = copy_data(data, imageSize, "glCompressedTexSubImage1DARB"); } if (ctx->ExecuteFlag) { CALL_CompressedTexSubImage1D(ctx->Exec, (target, level, xoffset, width, format, imageSize, data)); } } static void GLAPIENTRY save_CompressedTexSubImage2DARB(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const GLvoid * data) { Node *n; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COMPRESSED_TEX_SUB_IMAGE_2D, 9); if (n) { n[1].e = target; n[2].i = level; n[3].i = xoffset; n[4].i = yoffset; n[5].i = (GLint) width; n[6].i = (GLint) height; n[7].e = format; n[8].i = imageSize; n[9].data = copy_data(data, imageSize, "glCompressedTexSubImage2DARB"); } if (ctx->ExecuteFlag) { CALL_CompressedTexSubImage2D(ctx->Exec, (target, level, xoffset, yoffset, width, height, format, imageSize, data)); } } static void GLAPIENTRY save_CompressedTexSubImage3DARB(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const GLvoid * data) { Node *n; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_COMPRESSED_TEX_SUB_IMAGE_3D, 11); if (n) { n[1].e = target; n[2].i = level; n[3].i = xoffset; n[4].i = yoffset; n[5].i = zoffset; n[6].i = (GLint) width; n[7].i = (GLint) height; n[8].i = (GLint) depth; n[9].e = format; n[10].i = imageSize; n[11].data = copy_data(data, imageSize, "glCompressedTexSubImage3DARB"); } if (ctx->ExecuteFlag) { CALL_CompressedTexSubImage3D(ctx->Exec, (target, level, xoffset, yoffset, zoffset, width, height, depth, format, imageSize, data)); } } /* GL_ARB_multisample */ static void GLAPIENTRY save_SampleCoverageARB(GLclampf value, GLboolean invert) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_SAMPLE_COVERAGE, 2); if (n) { n[1].f = value; n[2].b = invert; } if (ctx->ExecuteFlag) { CALL_SampleCoverage(ctx->Exec, (value, invert)); } } /* * GL_NV_fragment_program */ static void GLAPIENTRY save_BindProgramNV(GLenum target, GLuint id) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BIND_PROGRAM_NV, 2); if (n) { n[1].e = target; n[2].ui = id; } if (ctx->ExecuteFlag) { CALL_BindProgramARB(ctx->Exec, (target, id)); } } static void GLAPIENTRY save_ProgramEnvParameter4fARB(GLenum target, GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PROGRAM_ENV_PARAMETER_ARB, 6); if (n) { n[1].e = target; n[2].ui = index; n[3].f = x; n[4].f = y; n[5].f = z; n[6].f = w; } if (ctx->ExecuteFlag) { CALL_ProgramEnvParameter4fARB(ctx->Exec, (target, index, x, y, z, w)); } } static void GLAPIENTRY save_ProgramEnvParameter4fvARB(GLenum target, GLuint index, const GLfloat *params) { save_ProgramEnvParameter4fARB(target, index, params[0], params[1], params[2], params[3]); } static void GLAPIENTRY save_ProgramEnvParameters4fvEXT(GLenum target, GLuint index, GLsizei count, const GLfloat * params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); if (count > 0) { GLint i; const GLfloat * p = params; for (i = 0 ; i < count ; i++) { n = alloc_instruction(ctx, OPCODE_PROGRAM_ENV_PARAMETER_ARB, 6); if (n) { n[1].e = target; n[2].ui = index; n[3].f = p[0]; n[4].f = p[1]; n[5].f = p[2]; n[6].f = p[3]; p += 4; } } } if (ctx->ExecuteFlag) { CALL_ProgramEnvParameters4fvEXT(ctx->Exec, (target, index, count, params)); } } static void GLAPIENTRY save_ProgramEnvParameter4dARB(GLenum target, GLuint index, GLdouble x, GLdouble y, GLdouble z, GLdouble w) { save_ProgramEnvParameter4fARB(target, index, (GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w); } static void GLAPIENTRY save_ProgramEnvParameter4dvARB(GLenum target, GLuint index, const GLdouble *params) { save_ProgramEnvParameter4fARB(target, index, (GLfloat) params[0], (GLfloat) params[1], (GLfloat) params[2], (GLfloat) params[3]); } static void GLAPIENTRY save_ProgramLocalParameter4fARB(GLenum target, GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6); if (n) { n[1].e = target; n[2].ui = index; n[3].f = x; n[4].f = y; n[5].f = z; n[6].f = w; } if (ctx->ExecuteFlag) { CALL_ProgramLocalParameter4fARB(ctx->Exec, (target, index, x, y, z, w)); } } static void GLAPIENTRY save_ProgramLocalParameter4fvARB(GLenum target, GLuint index, const GLfloat *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6); if (n) { n[1].e = target; n[2].ui = index; n[3].f = params[0]; n[4].f = params[1]; n[5].f = params[2]; n[6].f = params[3]; } if (ctx->ExecuteFlag) { CALL_ProgramLocalParameter4fvARB(ctx->Exec, (target, index, params)); } } static void GLAPIENTRY save_ProgramLocalParameters4fvEXT(GLenum target, GLuint index, GLsizei count, const GLfloat *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); if (count > 0) { GLint i; const GLfloat * p = params; for (i = 0 ; i < count ; i++) { n = alloc_instruction(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6); if (n) { n[1].e = target; n[2].ui = index; n[3].f = p[0]; n[4].f = p[1]; n[5].f = p[2]; n[6].f = p[3]; p += 4; } } } if (ctx->ExecuteFlag) { CALL_ProgramLocalParameters4fvEXT(ctx->Exec, (target, index, count, params)); } } static void GLAPIENTRY save_ProgramLocalParameter4dARB(GLenum target, GLuint index, GLdouble x, GLdouble y, GLdouble z, GLdouble w) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6); if (n) { n[1].e = target; n[2].ui = index; n[3].f = (GLfloat) x; n[4].f = (GLfloat) y; n[5].f = (GLfloat) z; n[6].f = (GLfloat) w; } if (ctx->ExecuteFlag) { CALL_ProgramLocalParameter4dARB(ctx->Exec, (target, index, x, y, z, w)); } } static void GLAPIENTRY save_ProgramLocalParameter4dvARB(GLenum target, GLuint index, const GLdouble *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6); if (n) { n[1].e = target; n[2].ui = index; n[3].f = (GLfloat) params[0]; n[4].f = (GLfloat) params[1]; n[5].f = (GLfloat) params[2]; n[6].f = (GLfloat) params[3]; } if (ctx->ExecuteFlag) { CALL_ProgramLocalParameter4dvARB(ctx->Exec, (target, index, params)); } } /* GL_EXT_stencil_two_side */ static void GLAPIENTRY save_ActiveStencilFaceEXT(GLenum face) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_ACTIVE_STENCIL_FACE_EXT, 1); if (n) { n[1].e = face; } if (ctx->ExecuteFlag) { CALL_ActiveStencilFaceEXT(ctx->Exec, (face)); } } /* GL_EXT_depth_bounds_test */ static void GLAPIENTRY save_DepthBoundsEXT(GLclampd zmin, GLclampd zmax) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_DEPTH_BOUNDS_EXT, 2); if (n) { n[1].f = (GLfloat) zmin; n[2].f = (GLfloat) zmax; } if (ctx->ExecuteFlag) { CALL_DepthBoundsEXT(ctx->Exec, (zmin, zmax)); } } static void GLAPIENTRY save_ProgramStringARB(GLenum target, GLenum format, GLsizei len, const GLvoid * string) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PROGRAM_STRING_ARB, 4); if (n) { GLubyte *programCopy = malloc(len); if (!programCopy) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glProgramStringARB"); return; } memcpy(programCopy, string, len); n[1].e = target; n[2].e = format; n[3].i = len; n[4].data = programCopy; } if (ctx->ExecuteFlag) { CALL_ProgramStringARB(ctx->Exec, (target, format, len, string)); } } static void GLAPIENTRY save_BeginQueryARB(GLenum target, GLuint id) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BEGIN_QUERY_ARB, 2); if (n) { n[1].e = target; n[2].ui = id; } if (ctx->ExecuteFlag) { CALL_BeginQuery(ctx->Exec, (target, id)); } } static void GLAPIENTRY save_EndQueryARB(GLenum target) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_END_QUERY_ARB, 1); if (n) { n[1].e = target; } if (ctx->ExecuteFlag) { CALL_EndQuery(ctx->Exec, (target)); } } static void GLAPIENTRY save_QueryCounter(GLuint id, GLenum target) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_QUERY_COUNTER, 2); if (n) { n[1].ui = id; n[2].e = target; } if (ctx->ExecuteFlag) { CALL_QueryCounter(ctx->Exec, (id, target)); } } static void GLAPIENTRY save_BeginQueryIndexed(GLenum target, GLuint index, GLuint id) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BEGIN_QUERY_INDEXED, 3); if (n) { n[1].e = target; n[2].ui = index; n[3].ui = id; } if (ctx->ExecuteFlag) { CALL_BeginQueryIndexed(ctx->Exec, (target, index, id)); } } static void GLAPIENTRY save_EndQueryIndexed(GLenum target, GLuint index) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_END_QUERY_INDEXED, 2); if (n) { n[1].e = target; n[2].ui = index; } if (ctx->ExecuteFlag) { CALL_EndQueryIndexed(ctx->Exec, (target, index)); } } static void GLAPIENTRY save_DrawBuffersARB(GLsizei count, const GLenum * buffers) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_DRAW_BUFFERS_ARB, 1 + MAX_DRAW_BUFFERS); if (n) { GLint i; n[1].i = count; if (count > MAX_DRAW_BUFFERS) count = MAX_DRAW_BUFFERS; for (i = 0; i < count; i++) { n[2 + i].e = buffers[i]; } } if (ctx->ExecuteFlag) { CALL_DrawBuffers(ctx->Exec, (count, buffers)); } } static void GLAPIENTRY save_TexBumpParameterfvATI(GLenum pname, const GLfloat *param) { GET_CURRENT_CONTEXT(ctx); Node *n; n = alloc_instruction(ctx, OPCODE_TEX_BUMP_PARAMETER_ATI, 5); if (n) { n[1].ui = pname; n[2].f = param[0]; n[3].f = param[1]; n[4].f = param[2]; n[5].f = param[3]; } if (ctx->ExecuteFlag) { CALL_TexBumpParameterfvATI(ctx->Exec, (pname, param)); } } static void GLAPIENTRY save_TexBumpParameterivATI(GLenum pname, const GLint *param) { GLfloat p[4]; p[0] = INT_TO_FLOAT(param[0]); p[1] = INT_TO_FLOAT(param[1]); p[2] = INT_TO_FLOAT(param[2]); p[3] = INT_TO_FLOAT(param[3]); save_TexBumpParameterfvATI(pname, p); } static void GLAPIENTRY save_BindFragmentShaderATI(GLuint id) { GET_CURRENT_CONTEXT(ctx); Node *n; n = alloc_instruction(ctx, OPCODE_BIND_FRAGMENT_SHADER_ATI, 1); if (n) { n[1].ui = id; } if (ctx->ExecuteFlag) { CALL_BindFragmentShaderATI(ctx->Exec, (id)); } } static void GLAPIENTRY save_SetFragmentShaderConstantATI(GLuint dst, const GLfloat *value) { GET_CURRENT_CONTEXT(ctx); Node *n; n = alloc_instruction(ctx, OPCODE_SET_FRAGMENT_SHADER_CONSTANTS_ATI, 5); if (n) { n[1].ui = dst; n[2].f = value[0]; n[3].f = value[1]; n[4].f = value[2]; n[5].f = value[3]; } if (ctx->ExecuteFlag) { CALL_SetFragmentShaderConstantATI(ctx->Exec, (dst, value)); } } static void GLAPIENTRY save_Attr1fNV(GLenum attr, GLfloat x) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_ATTR_1F_NV, 2); if (n) { n[1].e = attr; n[2].f = x; } ASSERT(attr < MAX_VERTEX_GENERIC_ATTRIBS); ctx->ListState.ActiveAttribSize[attr] = 1; ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, 0, 0, 1); if (ctx->ExecuteFlag) { CALL_VertexAttrib1fNV(ctx->Exec, (attr, x)); } } static void GLAPIENTRY save_Attr2fNV(GLenum attr, GLfloat x, GLfloat y) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_ATTR_2F_NV, 3); if (n) { n[1].e = attr; n[2].f = x; n[3].f = y; } ASSERT(attr < MAX_VERTEX_GENERIC_ATTRIBS); ctx->ListState.ActiveAttribSize[attr] = 2; ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, 0, 1); if (ctx->ExecuteFlag) { CALL_VertexAttrib2fNV(ctx->Exec, (attr, x, y)); } } static void GLAPIENTRY save_Attr3fNV(GLenum attr, GLfloat x, GLfloat y, GLfloat z) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_ATTR_3F_NV, 4); if (n) { n[1].e = attr; n[2].f = x; n[3].f = y; n[4].f = z; } ASSERT(attr < MAX_VERTEX_GENERIC_ATTRIBS); ctx->ListState.ActiveAttribSize[attr] = 3; ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, 1); if (ctx->ExecuteFlag) { CALL_VertexAttrib3fNV(ctx->Exec, (attr, x, y, z)); } } static void GLAPIENTRY save_Attr4fNV(GLenum attr, GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_ATTR_4F_NV, 5); if (n) { n[1].e = attr; n[2].f = x; n[3].f = y; n[4].f = z; n[5].f = w; } ASSERT(attr < MAX_VERTEX_GENERIC_ATTRIBS); ctx->ListState.ActiveAttribSize[attr] = 4; ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, w); if (ctx->ExecuteFlag) { CALL_VertexAttrib4fNV(ctx->Exec, (attr, x, y, z, w)); } } static void GLAPIENTRY save_Attr1fARB(GLenum attr, GLfloat x) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_ATTR_1F_ARB, 2); if (n) { n[1].e = attr; n[2].f = x; } ASSERT(attr < MAX_VERTEX_GENERIC_ATTRIBS); ctx->ListState.ActiveAttribSize[attr] = 1; ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, 0, 0, 1); if (ctx->ExecuteFlag) { CALL_VertexAttrib1fARB(ctx->Exec, (attr, x)); } } static void GLAPIENTRY save_Attr2fARB(GLenum attr, GLfloat x, GLfloat y) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_ATTR_2F_ARB, 3); if (n) { n[1].e = attr; n[2].f = x; n[3].f = y; } ASSERT(attr < MAX_VERTEX_GENERIC_ATTRIBS); ctx->ListState.ActiveAttribSize[attr] = 2; ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, 0, 1); if (ctx->ExecuteFlag) { CALL_VertexAttrib2fARB(ctx->Exec, (attr, x, y)); } } static void GLAPIENTRY save_Attr3fARB(GLenum attr, GLfloat x, GLfloat y, GLfloat z) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_ATTR_3F_ARB, 4); if (n) { n[1].e = attr; n[2].f = x; n[3].f = y; n[4].f = z; } ASSERT(attr < MAX_VERTEX_GENERIC_ATTRIBS); ctx->ListState.ActiveAttribSize[attr] = 3; ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, 1); if (ctx->ExecuteFlag) { CALL_VertexAttrib3fARB(ctx->Exec, (attr, x, y, z)); } } static void GLAPIENTRY save_Attr4fARB(GLenum attr, GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_ATTR_4F_ARB, 5); if (n) { n[1].e = attr; n[2].f = x; n[3].f = y; n[4].f = z; n[5].f = w; } ASSERT(attr < MAX_VERTEX_GENERIC_ATTRIBS); ctx->ListState.ActiveAttribSize[attr] = 4; ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, w); if (ctx->ExecuteFlag) { CALL_VertexAttrib4fARB(ctx->Exec, (attr, x, y, z, w)); } } static void GLAPIENTRY save_EvalCoord1f(GLfloat x) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_EVAL_C1, 1); if (n) { n[1].f = x; } if (ctx->ExecuteFlag) { CALL_EvalCoord1f(ctx->Exec, (x)); } } static void GLAPIENTRY save_EvalCoord1fv(const GLfloat * v) { save_EvalCoord1f(v[0]); } static void GLAPIENTRY save_EvalCoord2f(GLfloat x, GLfloat y) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_EVAL_C2, 2); if (n) { n[1].f = x; n[2].f = y; } if (ctx->ExecuteFlag) { CALL_EvalCoord2f(ctx->Exec, (x, y)); } } static void GLAPIENTRY save_EvalCoord2fv(const GLfloat * v) { save_EvalCoord2f(v[0], v[1]); } static void GLAPIENTRY save_EvalPoint1(GLint x) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_EVAL_P1, 1); if (n) { n[1].i = x; } if (ctx->ExecuteFlag) { CALL_EvalPoint1(ctx->Exec, (x)); } } static void GLAPIENTRY save_EvalPoint2(GLint x, GLint y) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_EVAL_P2, 2); if (n) { n[1].i = x; n[2].i = y; } if (ctx->ExecuteFlag) { CALL_EvalPoint2(ctx->Exec, (x, y)); } } static void GLAPIENTRY save_Indexf(GLfloat x) { save_Attr1fNV(VERT_ATTRIB_COLOR_INDEX, x); } static void GLAPIENTRY save_Indexfv(const GLfloat * v) { save_Attr1fNV(VERT_ATTRIB_COLOR_INDEX, v[0]); } static void GLAPIENTRY save_EdgeFlag(GLboolean x) { save_Attr1fNV(VERT_ATTRIB_EDGEFLAG, x ? 1.0f : 0.0f); } /** * Compare 'count' elements of vectors 'a' and 'b'. * \return GL_TRUE if equal, GL_FALSE if different. */ static inline GLboolean compare_vec(const GLfloat *a, const GLfloat *b, GLuint count) { return memcmp( a, b, count * sizeof(GLfloat) ) == 0; } /** * This glMaterial function is used for glMaterial calls that are outside * a glBegin/End pair. For glMaterial inside glBegin/End, see the VBO code. */ static void GLAPIENTRY save_Materialfv(GLenum face, GLenum pname, const GLfloat * param) { GET_CURRENT_CONTEXT(ctx); Node *n; int args, i; GLuint bitmask; switch (face) { case GL_BACK: case GL_FRONT: case GL_FRONT_AND_BACK: break; default: _mesa_compile_error(ctx, GL_INVALID_ENUM, "glMaterial(face)"); return; } switch (pname) { case GL_EMISSION: case GL_AMBIENT: case GL_DIFFUSE: case GL_SPECULAR: case GL_AMBIENT_AND_DIFFUSE: args = 4; break; case GL_SHININESS: args = 1; break; case GL_COLOR_INDEXES: args = 3; break; default: _mesa_compile_error(ctx, GL_INVALID_ENUM, "glMaterial(pname)"); return; } if (ctx->ExecuteFlag) { CALL_Materialfv(ctx->Exec, (face, pname, param)); } bitmask = _mesa_material_bitmask(ctx, face, pname, ~0, NULL); /* Try to eliminate redundant statechanges. Because it is legal to * call glMaterial even inside begin/end calls, don't need to worry * about ctx->Driver.CurrentSavePrimitive here. */ for (i = 0; i < MAT_ATTRIB_MAX; i++) { if (bitmask & (1 << i)) { if (ctx->ListState.ActiveMaterialSize[i] == args && compare_vec(ctx->ListState.CurrentMaterial[i], param, args)) { /* no change in material value */ bitmask &= ~(1 << i); } else { ctx->ListState.ActiveMaterialSize[i] = args; COPY_SZ_4V(ctx->ListState.CurrentMaterial[i], args, param); } } } /* If this call has no effect, return early */ if (bitmask == 0) return; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_MATERIAL, 6); if (n) { n[1].e = face; n[2].e = pname; for (i = 0; i < args; i++) n[3 + i].f = param[i]; } } static void GLAPIENTRY save_Begin(GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; GLboolean error = GL_FALSE; if (ctx->ExecuteFlag && !_mesa_valid_prim_mode(ctx, mode, "glBegin")) { error = GL_TRUE; } else if (ctx->Driver.CurrentSavePrimitive == PRIM_UNKNOWN) { /* Typically the first begin. This may raise an error on * playback, depending on whether CallList is issued from inside * a begin/end or not. */ ctx->Driver.CurrentSavePrimitive = PRIM_INSIDE_UNKNOWN_PRIM; } else if (ctx->Driver.CurrentSavePrimitive == PRIM_OUTSIDE_BEGIN_END) { ctx->Driver.CurrentSavePrimitive = mode; } else { _mesa_compile_error(ctx, GL_INVALID_OPERATION, "recursive begin"); error = GL_TRUE; } if (!error) { /* Give the driver an opportunity to hook in an optimized * display list compiler. */ if (ctx->Driver.NotifySaveBegin(ctx, mode)) return; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_BEGIN, 1); if (n) { n[1].e = mode; } } if (ctx->ExecuteFlag) { CALL_Begin(ctx->Exec, (mode)); } } static void GLAPIENTRY save_End(void) { GET_CURRENT_CONTEXT(ctx); SAVE_FLUSH_VERTICES(ctx); (void) alloc_instruction(ctx, OPCODE_END, 0); ctx->Driver.CurrentSavePrimitive = PRIM_OUTSIDE_BEGIN_END; if (ctx->ExecuteFlag) { CALL_End(ctx->Exec, ()); } } static void GLAPIENTRY save_Rectf(GLfloat a, GLfloat b, GLfloat c, GLfloat d) { GET_CURRENT_CONTEXT(ctx); Node *n; SAVE_FLUSH_VERTICES(ctx); n = alloc_instruction(ctx, OPCODE_RECTF, 4); if (n) { n[1].f = a; n[2].f = b; n[3].f = c; n[4].f = d; } if (ctx->ExecuteFlag) { CALL_Rectf(ctx->Exec, (a, b, c, d)); } } static void GLAPIENTRY save_Vertex2f(GLfloat x, GLfloat y) { save_Attr2fNV(VERT_ATTRIB_POS, x, y); } static void GLAPIENTRY save_Vertex2fv(const GLfloat * v) { save_Attr2fNV(VERT_ATTRIB_POS, v[0], v[1]); } static void GLAPIENTRY save_Vertex3f(GLfloat x, GLfloat y, GLfloat z) { save_Attr3fNV(VERT_ATTRIB_POS, x, y, z); } static void GLAPIENTRY save_Vertex3fv(const GLfloat * v) { save_Attr3fNV(VERT_ATTRIB_POS, v[0], v[1], v[2]); } static void GLAPIENTRY save_Vertex4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w) { save_Attr4fNV(VERT_ATTRIB_POS, x, y, z, w); } static void GLAPIENTRY save_Vertex4fv(const GLfloat * v) { save_Attr4fNV(VERT_ATTRIB_POS, v[0], v[1], v[2], v[3]); } static void GLAPIENTRY save_TexCoord1f(GLfloat x) { save_Attr1fNV(VERT_ATTRIB_TEX0, x); } static void GLAPIENTRY save_TexCoord1fv(const GLfloat * v) { save_Attr1fNV(VERT_ATTRIB_TEX0, v[0]); } static void GLAPIENTRY save_TexCoord2f(GLfloat x, GLfloat y) { save_Attr2fNV(VERT_ATTRIB_TEX0, x, y); } static void GLAPIENTRY save_TexCoord2fv(const GLfloat * v) { save_Attr2fNV(VERT_ATTRIB_TEX0, v[0], v[1]); } static void GLAPIENTRY save_TexCoord3f(GLfloat x, GLfloat y, GLfloat z) { save_Attr3fNV(VERT_ATTRIB_TEX0, x, y, z); } static void GLAPIENTRY save_TexCoord3fv(const GLfloat * v) { save_Attr3fNV(VERT_ATTRIB_TEX0, v[0], v[1], v[2]); } static void GLAPIENTRY save_TexCoord4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w) { save_Attr4fNV(VERT_ATTRIB_TEX0, x, y, z, w); } static void GLAPIENTRY save_TexCoord4fv(const GLfloat * v) { save_Attr4fNV(VERT_ATTRIB_TEX0, v[0], v[1], v[2], v[3]); } static void GLAPIENTRY save_Normal3f(GLfloat x, GLfloat y, GLfloat z) { save_Attr3fNV(VERT_ATTRIB_NORMAL, x, y, z); } static void GLAPIENTRY save_Normal3fv(const GLfloat * v) { save_Attr3fNV(VERT_ATTRIB_NORMAL, v[0], v[1], v[2]); } static void GLAPIENTRY save_FogCoordfEXT(GLfloat x) { save_Attr1fNV(VERT_ATTRIB_FOG, x); } static void GLAPIENTRY save_FogCoordfvEXT(const GLfloat * v) { save_Attr1fNV(VERT_ATTRIB_FOG, v[0]); } static void GLAPIENTRY save_Color3f(GLfloat x, GLfloat y, GLfloat z) { save_Attr3fNV(VERT_ATTRIB_COLOR0, x, y, z); } static void GLAPIENTRY save_Color3fv(const GLfloat * v) { save_Attr3fNV(VERT_ATTRIB_COLOR0, v[0], v[1], v[2]); } static void GLAPIENTRY save_Color4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w) { save_Attr4fNV(VERT_ATTRIB_COLOR0, x, y, z, w); } static void GLAPIENTRY save_Color4fv(const GLfloat * v) { save_Attr4fNV(VERT_ATTRIB_COLOR0, v[0], v[1], v[2], v[3]); } static void GLAPIENTRY save_SecondaryColor3fEXT(GLfloat x, GLfloat y, GLfloat z) { save_Attr3fNV(VERT_ATTRIB_COLOR1, x, y, z); } static void GLAPIENTRY save_SecondaryColor3fvEXT(const GLfloat * v) { save_Attr3fNV(VERT_ATTRIB_COLOR1, v[0], v[1], v[2]); } /* Just call the respective ATTR for texcoord */ static void GLAPIENTRY save_MultiTexCoord1f(GLenum target, GLfloat x) { GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0; save_Attr1fNV(attr, x); } static void GLAPIENTRY save_MultiTexCoord1fv(GLenum target, const GLfloat * v) { GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0; save_Attr1fNV(attr, v[0]); } static void GLAPIENTRY save_MultiTexCoord2f(GLenum target, GLfloat x, GLfloat y) { GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0; save_Attr2fNV(attr, x, y); } static void GLAPIENTRY save_MultiTexCoord2fv(GLenum target, const GLfloat * v) { GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0; save_Attr2fNV(attr, v[0], v[1]); } static void GLAPIENTRY save_MultiTexCoord3f(GLenum target, GLfloat x, GLfloat y, GLfloat z) { GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0; save_Attr3fNV(attr, x, y, z); } static void GLAPIENTRY save_MultiTexCoord3fv(GLenum target, const GLfloat * v) { GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0; save_Attr3fNV(attr, v[0], v[1], v[2]); } static void GLAPIENTRY save_MultiTexCoord4f(GLenum target, GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0; save_Attr4fNV(attr, x, y, z, w); } static void GLAPIENTRY save_MultiTexCoord4fv(GLenum target, const GLfloat * v) { GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0; save_Attr4fNV(attr, v[0], v[1], v[2], v[3]); } /** * Record a GL_INVALID_VALUE error when a invalid vertex attribute * index is found. */ static void index_error(void) { GET_CURRENT_CONTEXT(ctx); _mesa_error(ctx, GL_INVALID_VALUE, "VertexAttribf(index)"); } static void GLAPIENTRY save_VertexAttrib1fARB(GLuint index, GLfloat x) { if (index < MAX_VERTEX_GENERIC_ATTRIBS) save_Attr1fARB(index, x); else index_error(); } static void GLAPIENTRY save_VertexAttrib1fvARB(GLuint index, const GLfloat * v) { if (index < MAX_VERTEX_GENERIC_ATTRIBS) save_Attr1fARB(index, v[0]); else index_error(); } static void GLAPIENTRY save_VertexAttrib2fARB(GLuint index, GLfloat x, GLfloat y) { if (index < MAX_VERTEX_GENERIC_ATTRIBS) save_Attr2fARB(index, x, y); else index_error(); } static void GLAPIENTRY save_VertexAttrib2fvARB(GLuint index, const GLfloat * v) { if (index < MAX_VERTEX_GENERIC_ATTRIBS) save_Attr2fARB(index, v[0], v[1]); else index_error(); } static void GLAPIENTRY save_VertexAttrib3fARB(GLuint index, GLfloat x, GLfloat y, GLfloat z) { if (index < MAX_VERTEX_GENERIC_ATTRIBS) save_Attr3fARB(index, x, y, z); else index_error(); } static void GLAPIENTRY save_VertexAttrib3fvARB(GLuint index, const GLfloat * v) { if (index < MAX_VERTEX_GENERIC_ATTRIBS) save_Attr3fARB(index, v[0], v[1], v[2]); else index_error(); } static void GLAPIENTRY save_VertexAttrib4fARB(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w) { if (index < MAX_VERTEX_GENERIC_ATTRIBS) save_Attr4fARB(index, x, y, z, w); else index_error(); } static void GLAPIENTRY save_VertexAttrib4fvARB(GLuint index, const GLfloat * v) { if (index < MAX_VERTEX_GENERIC_ATTRIBS) save_Attr4fARB(index, v[0], v[1], v[2], v[3]); else index_error(); } static void GLAPIENTRY save_BlitFramebufferEXT(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BLIT_FRAMEBUFFER, 10); if (n) { n[1].i = srcX0; n[2].i = srcY0; n[3].i = srcX1; n[4].i = srcY1; n[5].i = dstX0; n[6].i = dstY0; n[7].i = dstX1; n[8].i = dstY1; n[9].i = mask; n[10].e = filter; } if (ctx->ExecuteFlag) { CALL_BlitFramebuffer(ctx->Exec, (srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, mask, filter)); } } /** GL_EXT_provoking_vertex */ static void GLAPIENTRY save_ProvokingVertexEXT(GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PROVOKING_VERTEX, 1); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { /*CALL_ProvokingVertex(ctx->Exec, (mode));*/ _mesa_ProvokingVertex(mode); } } /** GL_EXT_transform_feedback */ static void GLAPIENTRY save_BeginTransformFeedback(GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BEGIN_TRANSFORM_FEEDBACK, 1); if (n) { n[1].e = mode; } if (ctx->ExecuteFlag) { CALL_BeginTransformFeedback(ctx->Exec, (mode)); } } /** GL_EXT_transform_feedback */ static void GLAPIENTRY save_EndTransformFeedback(void) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); (void) alloc_instruction(ctx, OPCODE_END_TRANSFORM_FEEDBACK, 0); if (ctx->ExecuteFlag) { CALL_EndTransformFeedback(ctx->Exec, ()); } } static void GLAPIENTRY save_BindTransformFeedback(GLenum target, GLuint name) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BIND_TRANSFORM_FEEDBACK, 2); if (n) { n[1].e = target; n[2].ui = name; } if (ctx->ExecuteFlag) { CALL_BindTransformFeedback(ctx->Exec, (target, name)); } } static void GLAPIENTRY save_PauseTransformFeedback(void) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); (void) alloc_instruction(ctx, OPCODE_PAUSE_TRANSFORM_FEEDBACK, 0); if (ctx->ExecuteFlag) { CALL_PauseTransformFeedback(ctx->Exec, ()); } } static void GLAPIENTRY save_ResumeTransformFeedback(void) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); (void) alloc_instruction(ctx, OPCODE_RESUME_TRANSFORM_FEEDBACK, 0); if (ctx->ExecuteFlag) { CALL_ResumeTransformFeedback(ctx->Exec, ()); } } static void GLAPIENTRY save_DrawTransformFeedback(GLenum mode, GLuint name) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_DRAW_TRANSFORM_FEEDBACK, 2); if (n) { n[1].e = mode; n[2].ui = name; } if (ctx->ExecuteFlag) { CALL_DrawTransformFeedback(ctx->Exec, (mode, name)); } } static void GLAPIENTRY save_DrawTransformFeedbackStream(GLenum mode, GLuint name, GLuint stream) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_DRAW_TRANSFORM_FEEDBACK_STREAM, 3); if (n) { n[1].e = mode; n[2].ui = name; n[3].ui = stream; } if (ctx->ExecuteFlag) { CALL_DrawTransformFeedbackStream(ctx->Exec, (mode, name, stream)); } } static void GLAPIENTRY save_DrawTransformFeedbackInstanced(GLenum mode, GLuint name, GLsizei primcount) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_DRAW_TRANSFORM_FEEDBACK_INSTANCED, 3); if (n) { n[1].e = mode; n[2].ui = name; n[3].si = primcount; } if (ctx->ExecuteFlag) { CALL_DrawTransformFeedbackInstanced(ctx->Exec, (mode, name, primcount)); } } static void GLAPIENTRY save_DrawTransformFeedbackStreamInstanced(GLenum mode, GLuint name, GLuint stream, GLsizei primcount) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_DRAW_TRANSFORM_FEEDBACK_STREAM_INSTANCED, 4); if (n) { n[1].e = mode; n[2].ui = name; n[3].ui = stream; n[4].si = primcount; } if (ctx->ExecuteFlag) { CALL_DrawTransformFeedbackStreamInstanced(ctx->Exec, (mode, name, stream, primcount)); } } /* aka UseProgram() */ static void GLAPIENTRY save_UseProgramObjectARB(GLhandleARB program) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_USE_PROGRAM, 1); if (n) { n[1].ui = program; } if (ctx->ExecuteFlag) { CALL_UseProgram(ctx->Exec, (program)); } } static void GLAPIENTRY save_Uniform1fARB(GLint location, GLfloat x) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_1F, 2); if (n) { n[1].i = location; n[2].f = x; } if (ctx->ExecuteFlag) { CALL_Uniform1f(ctx->Exec, (location, x)); } } static void GLAPIENTRY save_Uniform2fARB(GLint location, GLfloat x, GLfloat y) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_2F, 3); if (n) { n[1].i = location; n[2].f = x; n[3].f = y; } if (ctx->ExecuteFlag) { CALL_Uniform2f(ctx->Exec, (location, x, y)); } } static void GLAPIENTRY save_Uniform3fARB(GLint location, GLfloat x, GLfloat y, GLfloat z) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_3F, 4); if (n) { n[1].i = location; n[2].f = x; n[3].f = y; n[4].f = z; } if (ctx->ExecuteFlag) { CALL_Uniform3f(ctx->Exec, (location, x, y, z)); } } static void GLAPIENTRY save_Uniform4fARB(GLint location, GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_4F, 5); if (n) { n[1].i = location; n[2].f = x; n[3].f = y; n[4].f = z; n[5].f = w; } if (ctx->ExecuteFlag) { CALL_Uniform4f(ctx->Exec, (location, x, y, z, w)); } } /** Return copy of memory */ static void * memdup(const void *src, GLsizei bytes) { void *b = bytes >= 0 ? malloc(bytes) : NULL; if (b) memcpy(b, src, bytes); return b; } static void GLAPIENTRY save_Uniform1fvARB(GLint location, GLsizei count, const GLfloat *v) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_1FV, 3); if (n) { n[1].i = location; n[2].i = count; n[3].data = memdup(v, count * 1 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_Uniform1fv(ctx->Exec, (location, count, v)); } } static void GLAPIENTRY save_Uniform2fvARB(GLint location, GLsizei count, const GLfloat *v) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_2FV, 3); if (n) { n[1].i = location; n[2].i = count; n[3].data = memdup(v, count * 2 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_Uniform2fv(ctx->Exec, (location, count, v)); } } static void GLAPIENTRY save_Uniform3fvARB(GLint location, GLsizei count, const GLfloat *v) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_3FV, 3); if (n) { n[1].i = location; n[2].i = count; n[3].data = memdup(v, count * 3 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_Uniform3fv(ctx->Exec, (location, count, v)); } } static void GLAPIENTRY save_Uniform4fvARB(GLint location, GLsizei count, const GLfloat *v) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_4FV, 3); if (n) { n[1].i = location; n[2].i = count; n[3].data = memdup(v, count * 4 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_Uniform4fv(ctx->Exec, (location, count, v)); } } static void GLAPIENTRY save_Uniform1iARB(GLint location, GLint x) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_1I, 2); if (n) { n[1].i = location; n[2].i = x; } if (ctx->ExecuteFlag) { CALL_Uniform1i(ctx->Exec, (location, x)); } } static void GLAPIENTRY save_Uniform2iARB(GLint location, GLint x, GLint y) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_2I, 3); if (n) { n[1].i = location; n[2].i = x; n[3].i = y; } if (ctx->ExecuteFlag) { CALL_Uniform2i(ctx->Exec, (location, x, y)); } } static void GLAPIENTRY save_Uniform3iARB(GLint location, GLint x, GLint y, GLint z) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_3I, 4); if (n) { n[1].i = location; n[2].i = x; n[3].i = y; n[4].i = z; } if (ctx->ExecuteFlag) { CALL_Uniform3i(ctx->Exec, (location, x, y, z)); } } static void GLAPIENTRY save_Uniform4iARB(GLint location, GLint x, GLint y, GLint z, GLint w) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_4I, 5); if (n) { n[1].i = location; n[2].i = x; n[3].i = y; n[4].i = z; n[5].i = w; } if (ctx->ExecuteFlag) { CALL_Uniform4i(ctx->Exec, (location, x, y, z, w)); } } static void GLAPIENTRY save_Uniform1ivARB(GLint location, GLsizei count, const GLint *v) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_1IV, 3); if (n) { n[1].i = location; n[2].i = count; n[3].data = memdup(v, count * 1 * sizeof(GLint)); } if (ctx->ExecuteFlag) { CALL_Uniform1iv(ctx->Exec, (location, count, v)); } } static void GLAPIENTRY save_Uniform2ivARB(GLint location, GLsizei count, const GLint *v) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_2IV, 3); if (n) { n[1].i = location; n[2].i = count; n[3].data = memdup(v, count * 2 * sizeof(GLint)); } if (ctx->ExecuteFlag) { CALL_Uniform2iv(ctx->Exec, (location, count, v)); } } static void GLAPIENTRY save_Uniform3ivARB(GLint location, GLsizei count, const GLint *v) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_3IV, 3); if (n) { n[1].i = location; n[2].i = count; n[3].data = memdup(v, count * 3 * sizeof(GLint)); } if (ctx->ExecuteFlag) { CALL_Uniform3iv(ctx->Exec, (location, count, v)); } } static void GLAPIENTRY save_Uniform4ivARB(GLint location, GLsizei count, const GLint *v) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_4IV, 3); if (n) { n[1].i = location; n[2].i = count; n[3].data = memdup(v, count * 4 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_Uniform4iv(ctx->Exec, (location, count, v)); } } static void GLAPIENTRY save_Uniform1ui(GLint location, GLuint x) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_1UI, 2); if (n) { n[1].i = location; n[2].i = x; } if (ctx->ExecuteFlag) { /*CALL_Uniform1ui(ctx->Exec, (location, x));*/ } } static void GLAPIENTRY save_Uniform2ui(GLint location, GLuint x, GLuint y) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_2UI, 3); if (n) { n[1].i = location; n[2].i = x; n[3].i = y; } if (ctx->ExecuteFlag) { /*CALL_Uniform2ui(ctx->Exec, (location, x, y));*/ } } static void GLAPIENTRY save_Uniform3ui(GLint location, GLuint x, GLuint y, GLuint z) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_3UI, 4); if (n) { n[1].i = location; n[2].i = x; n[3].i = y; n[4].i = z; } if (ctx->ExecuteFlag) { /*CALL_Uniform3ui(ctx->Exec, (location, x, y, z));*/ } } static void GLAPIENTRY save_Uniform4ui(GLint location, GLuint x, GLuint y, GLuint z, GLuint w) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_4UI, 5); if (n) { n[1].i = location; n[2].i = x; n[3].i = y; n[4].i = z; n[5].i = w; } if (ctx->ExecuteFlag) { /*CALL_Uniform4ui(ctx->Exec, (location, x, y, z, w));*/ } } static void GLAPIENTRY save_Uniform1uiv(GLint location, GLsizei count, const GLuint *v) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_1UIV, 3); if (n) { n[1].i = location; n[2].i = count; n[3].data = memdup(v, count * 1 * sizeof(*v)); } if (ctx->ExecuteFlag) { /*CALL_Uniform1uiv(ctx->Exec, (location, count, v));*/ } } static void GLAPIENTRY save_Uniform2uiv(GLint location, GLsizei count, const GLuint *v) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_2UIV, 3); if (n) { n[1].i = location; n[2].i = count; n[3].data = memdup(v, count * 2 * sizeof(*v)); } if (ctx->ExecuteFlag) { /*CALL_Uniform2uiv(ctx->Exec, (location, count, v));*/ } } static void GLAPIENTRY save_Uniform3uiv(GLint location, GLsizei count, const GLuint *v) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_3UIV, 3); if (n) { n[1].i = location; n[2].i = count; n[3].data = memdup(v, count * 3 * sizeof(*v)); } if (ctx->ExecuteFlag) { /*CALL_Uniform3uiv(ctx->Exec, (location, count, v));*/ } } static void GLAPIENTRY save_Uniform4uiv(GLint location, GLsizei count, const GLuint *v) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_4UIV, 3); if (n) { n[1].i = location; n[2].i = count; n[3].data = memdup(v, count * 4 * sizeof(*v)); } if (ctx->ExecuteFlag) { /*CALL_Uniform4uiv(ctx->Exec, (location, count, v));*/ } } static void GLAPIENTRY save_UniformMatrix2fvARB(GLint location, GLsizei count, GLboolean transpose, const GLfloat *m) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX22, 4); if (n) { n[1].i = location; n[2].i = count; n[3].b = transpose; n[4].data = memdup(m, count * 2 * 2 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_UniformMatrix2fv(ctx->Exec, (location, count, transpose, m)); } } static void GLAPIENTRY save_UniformMatrix3fvARB(GLint location, GLsizei count, GLboolean transpose, const GLfloat *m) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX33, 4); if (n) { n[1].i = location; n[2].i = count; n[3].b = transpose; n[4].data = memdup(m, count * 3 * 3 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_UniformMatrix3fv(ctx->Exec, (location, count, transpose, m)); } } static void GLAPIENTRY save_UniformMatrix4fvARB(GLint location, GLsizei count, GLboolean transpose, const GLfloat *m) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX44, 4); if (n) { n[1].i = location; n[2].i = count; n[3].b = transpose; n[4].data = memdup(m, count * 4 * 4 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_UniformMatrix4fv(ctx->Exec, (location, count, transpose, m)); } } static void GLAPIENTRY save_UniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *m) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX23, 4); if (n) { n[1].i = location; n[2].i = count; n[3].b = transpose; n[4].data = memdup(m, count * 2 * 3 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_UniformMatrix2x3fv(ctx->Exec, (location, count, transpose, m)); } } static void GLAPIENTRY save_UniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *m) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX32, 4); if (n) { n[1].i = location; n[2].i = count; n[3].b = transpose; n[4].data = memdup(m, count * 3 * 2 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_UniformMatrix3x2fv(ctx->Exec, (location, count, transpose, m)); } } static void GLAPIENTRY save_UniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *m) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX24, 4); if (n) { n[1].i = location; n[2].i = count; n[3].b = transpose; n[4].data = memdup(m, count * 2 * 4 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_UniformMatrix2x4fv(ctx->Exec, (location, count, transpose, m)); } } static void GLAPIENTRY save_UniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *m) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX42, 4); if (n) { n[1].i = location; n[2].i = count; n[3].b = transpose; n[4].data = memdup(m, count * 4 * 2 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_UniformMatrix4x2fv(ctx->Exec, (location, count, transpose, m)); } } static void GLAPIENTRY save_UniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *m) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX34, 4); if (n) { n[1].i = location; n[2].i = count; n[3].b = transpose; n[4].data = memdup(m, count * 3 * 4 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_UniformMatrix3x4fv(ctx->Exec, (location, count, transpose, m)); } } static void GLAPIENTRY save_UniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *m) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX43, 4); if (n) { n[1].i = location; n[2].i = count; n[3].b = transpose; n[4].data = memdup(m, count * 4 * 3 * sizeof(GLfloat)); } if (ctx->ExecuteFlag) { CALL_UniformMatrix4x3fv(ctx->Exec, (location, count, transpose, m)); } } static void GLAPIENTRY save_ClampColorARB(GLenum target, GLenum clamp) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLAMP_COLOR, 2); if (n) { n[1].e = target; n[2].e = clamp; } if (ctx->ExecuteFlag) { CALL_ClampColor(ctx->Exec, (target, clamp)); } } static void GLAPIENTRY save_UseShaderProgramEXT(GLenum type, GLuint program) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_USE_SHADER_PROGRAM_EXT, 2); if (n) { n[1].ui = type; n[2].ui = program; } if (ctx->ExecuteFlag) { CALL_UseShaderProgramEXT(ctx->Exec, (type, program)); } } static void GLAPIENTRY save_ActiveProgramEXT(GLuint program) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_ACTIVE_PROGRAM_EXT, 1); if (n) { n[1].ui = program; } if (ctx->ExecuteFlag) { CALL_ActiveProgramEXT(ctx->Exec, (program)); } } /** GL_EXT_texture_integer */ static void GLAPIENTRY save_ClearColorIi(GLint red, GLint green, GLint blue, GLint alpha) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLEARCOLOR_I, 4); if (n) { n[1].i = red; n[2].i = green; n[3].i = blue; n[4].i = alpha; } if (ctx->ExecuteFlag) { CALL_ClearColorIiEXT(ctx->Exec, (red, green, blue, alpha)); } } /** GL_EXT_texture_integer */ static void GLAPIENTRY save_ClearColorIui(GLuint red, GLuint green, GLuint blue, GLuint alpha) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_CLEARCOLOR_UI, 4); if (n) { n[1].ui = red; n[2].ui = green; n[3].ui = blue; n[4].ui = alpha; } if (ctx->ExecuteFlag) { CALL_ClearColorIuiEXT(ctx->Exec, (red, green, blue, alpha)); } } /** GL_EXT_texture_integer */ static void GLAPIENTRY save_TexParameterIiv(GLenum target, GLenum pname, const GLint *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_TEXPARAMETER_I, 6); if (n) { n[1].e = target; n[2].e = pname; n[3].i = params[0]; n[4].i = params[1]; n[5].i = params[2]; n[6].i = params[3]; } if (ctx->ExecuteFlag) { CALL_TexParameterIiv(ctx->Exec, (target, pname, params)); } } /** GL_EXT_texture_integer */ static void GLAPIENTRY save_TexParameterIuiv(GLenum target, GLenum pname, const GLuint *params) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_TEXPARAMETER_UI, 6); if (n) { n[1].e = target; n[2].e = pname; n[3].ui = params[0]; n[4].ui = params[1]; n[5].ui = params[2]; n[6].ui = params[3]; } if (ctx->ExecuteFlag) { CALL_TexParameterIuiv(ctx->Exec, (target, pname, params)); } } /* GL_ARB_instanced_arrays */ static void GLAPIENTRY save_VertexAttribDivisor(GLuint index, GLuint divisor) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_VERTEX_ATTRIB_DIVISOR, 2); if (n) { n[1].ui = index; n[2].ui = divisor; } if (ctx->ExecuteFlag) { CALL_VertexAttribDivisor(ctx->Exec, (index, divisor)); } } /* GL_NV_texture_barrier */ static void GLAPIENTRY save_TextureBarrierNV(void) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); alloc_instruction(ctx, OPCODE_TEXTURE_BARRIER_NV, 0); if (ctx->ExecuteFlag) { CALL_TextureBarrierNV(ctx->Exec, ()); } } /* GL_ARB_sampler_objects */ static void GLAPIENTRY save_BindSampler(GLuint unit, GLuint sampler) { Node *n; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BIND_SAMPLER, 2); if (n) { n[1].ui = unit; n[2].ui = sampler; } if (ctx->ExecuteFlag) { CALL_BindSampler(ctx->Exec, (unit, sampler)); } } static void GLAPIENTRY save_SamplerParameteriv(GLuint sampler, GLenum pname, const GLint *params) { Node *n; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_SAMPLER_PARAMETERIV, 6); if (n) { n[1].ui = sampler; n[2].e = pname; n[3].i = params[0]; if (pname == GL_TEXTURE_BORDER_COLOR) { n[4].i = params[1]; n[5].i = params[2]; n[6].i = params[3]; } else { n[4].i = n[5].i = n[6].i = 0; } } if (ctx->ExecuteFlag) { CALL_SamplerParameteriv(ctx->Exec, (sampler, pname, params)); } } static void GLAPIENTRY save_SamplerParameteri(GLuint sampler, GLenum pname, GLint param) { save_SamplerParameteriv(sampler, pname, ¶m); } static void GLAPIENTRY save_SamplerParameterfv(GLuint sampler, GLenum pname, const GLfloat *params) { Node *n; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_SAMPLER_PARAMETERFV, 6); if (n) { n[1].ui = sampler; n[2].e = pname; n[3].f = params[0]; if (pname == GL_TEXTURE_BORDER_COLOR) { n[4].f = params[1]; n[5].f = params[2]; n[6].f = params[3]; } else { n[4].f = n[5].f = n[6].f = 0.0F; } } if (ctx->ExecuteFlag) { CALL_SamplerParameterfv(ctx->Exec, (sampler, pname, params)); } } static void GLAPIENTRY save_SamplerParameterf(GLuint sampler, GLenum pname, GLfloat param) { save_SamplerParameterfv(sampler, pname, ¶m); } static void GLAPIENTRY save_SamplerParameterIiv(GLuint sampler, GLenum pname, const GLint *params) { Node *n; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_SAMPLER_PARAMETERIIV, 6); if (n) { n[1].ui = sampler; n[2].e = pname; n[3].i = params[0]; if (pname == GL_TEXTURE_BORDER_COLOR) { n[4].i = params[1]; n[5].i = params[2]; n[6].i = params[3]; } else { n[4].i = n[5].i = n[6].i = 0; } } if (ctx->ExecuteFlag) { CALL_SamplerParameterIiv(ctx->Exec, (sampler, pname, params)); } } static void GLAPIENTRY save_SamplerParameterIuiv(GLuint sampler, GLenum pname, const GLuint *params) { Node *n; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_SAMPLER_PARAMETERUIV, 6); if (n) { n[1].ui = sampler; n[2].e = pname; n[3].ui = params[0]; if (pname == GL_TEXTURE_BORDER_COLOR) { n[4].ui = params[1]; n[5].ui = params[2]; n[6].ui = params[3]; } else { n[4].ui = n[5].ui = n[6].ui = 0; } } if (ctx->ExecuteFlag) { CALL_SamplerParameterIuiv(ctx->Exec, (sampler, pname, params)); } } /* GL_ARB_geometry_shader4 */ static void GLAPIENTRY save_ProgramParameteri(GLuint program, GLenum pname, GLint value) { Node *n; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_PROGRAM_PARAMETERI, 3); if (n) { n[1].ui = program; n[2].e = pname; n[3].i = value; } if (ctx->ExecuteFlag) { CALL_ProgramParameteri(ctx->Exec, (program, pname, value)); } } static void GLAPIENTRY save_FramebufferTexture(GLenum target, GLenum attachment, GLuint texture, GLint level) { Node *n; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_FRAMEBUFFER_TEXTURE, 4); if (n) { n[1].e = target; n[2].e = attachment; n[3].ui = texture; n[4].i = level; } if (ctx->ExecuteFlag) { CALL_FramebufferTexture(ctx->Exec, (target, attachment, texture, level)); } } static void GLAPIENTRY save_FramebufferTextureFace(GLenum target, GLenum attachment, GLuint texture, GLint level, GLenum face) { Node *n; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_FRAMEBUFFER_TEXTURE_FACE, 5); if (n) { n[1].e = target; n[2].e = attachment; n[3].ui = texture; n[4].i = level; n[5].e = face; } if (ctx->ExecuteFlag) { CALL_FramebufferTextureFaceARB(ctx->Exec, (target, attachment, texture, level, face)); } } static void GLAPIENTRY save_WaitSync(GLsync sync, GLbitfield flags, GLuint64 timeout) { Node *n; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_WAIT_SYNC, 4); if (n) { union uint64_pair p; p.uint64 = timeout; n[1].data = sync; n[2].e = flags; n[3].ui = p.uint32[0]; n[4].ui = p.uint32[1]; } if (ctx->ExecuteFlag) { CALL_WaitSync(ctx->Exec, (sync, flags, timeout)); } } /** GL_NV_conditional_render */ static void GLAPIENTRY save_BeginConditionalRender(GLuint queryId, GLenum mode) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_BEGIN_CONDITIONAL_RENDER, 2); if (n) { n[1].i = queryId; n[2].e = mode; } if (ctx->ExecuteFlag) { CALL_BeginConditionalRender(ctx->Exec, (queryId, mode)); } } static void GLAPIENTRY save_EndConditionalRender(void) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); alloc_instruction(ctx, OPCODE_END_CONDITIONAL_RENDER, 0); if (ctx->ExecuteFlag) { CALL_EndConditionalRender(ctx->Exec, ()); } } static void GLAPIENTRY save_UniformBlockBinding(GLuint prog, GLuint index, GLuint binding) { GET_CURRENT_CONTEXT(ctx); Node *n; ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx); n = alloc_instruction(ctx, OPCODE_UNIFORM_BLOCK_BINDING, 3); if (n) { n[1].ui = prog; n[2].ui = index; n[3].ui = binding; } if (ctx->ExecuteFlag) { CALL_UniformBlockBinding(ctx->Exec, (prog, index, binding)); } } /** * Save an error-generating command into display list. * * KW: Will appear in the list before the vertex buffer containing the * command that provoked the error. I don't see this as a problem. */ static void save_error(struct gl_context *ctx, GLenum error, const char *s) { Node *n; n = alloc_instruction(ctx, OPCODE_ERROR, 2); if (n) { n[1].e = error; n[2].data = (void *) s; } } /** * Compile an error into current display list. */ void _mesa_compile_error(struct gl_context *ctx, GLenum error, const char *s) { if (ctx->CompileFlag) save_error(ctx, error, s); if (ctx->ExecuteFlag) _mesa_error(ctx, error, "%s", s); } /** * Test if ID names a display list. */ static GLboolean islist(struct gl_context *ctx, GLuint list) { if (list > 0 && lookup_list(ctx, list)) { return GL_TRUE; } else { return GL_FALSE; } } /**********************************************************************/ /* Display list execution */ /**********************************************************************/ /* * Execute a display list. Note that the ListBase offset must have already * been added before calling this function. I.e. the list argument is * the absolute list number, not relative to ListBase. * \param list - display list number */ static void execute_list(struct gl_context *ctx, GLuint list) { struct gl_display_list *dlist; Node *n; GLboolean done; if (list == 0 || !islist(ctx, list)) return; if (ctx->ListState.CallDepth == MAX_LIST_NESTING) { /* raise an error? */ return; } dlist = lookup_list(ctx, list); if (!dlist) return; ctx->ListState.CallDepth++; if (ctx->Driver.BeginCallList) ctx->Driver.BeginCallList(ctx, dlist); n = dlist->Head; done = GL_FALSE; while (!done) { const OpCode opcode = n[0].opcode; if (is_ext_opcode(opcode)) { n += ext_opcode_execute(ctx, n); } else { switch (opcode) { case OPCODE_ERROR: _mesa_error(ctx, n[1].e, "%s", (const char *) n[2].data); break; case OPCODE_ACCUM: CALL_Accum(ctx->Exec, (n[1].e, n[2].f)); break; case OPCODE_ALPHA_FUNC: CALL_AlphaFunc(ctx->Exec, (n[1].e, n[2].f)); break; case OPCODE_BIND_TEXTURE: CALL_BindTexture(ctx->Exec, (n[1].e, n[2].ui)); break; case OPCODE_BITMAP: { const struct gl_pixelstore_attrib save = ctx->Unpack; ctx->Unpack = ctx->DefaultPacking; CALL_Bitmap(ctx->Exec, ((GLsizei) n[1].i, (GLsizei) n[2].i, n[3].f, n[4].f, n[5].f, n[6].f, (const GLubyte *) n[7].data)); ctx->Unpack = save; /* restore */ } break; case OPCODE_BLEND_COLOR: CALL_BlendColor(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f)); break; case OPCODE_BLEND_EQUATION: CALL_BlendEquation(ctx->Exec, (n[1].e)); break; case OPCODE_BLEND_EQUATION_SEPARATE: CALL_BlendEquationSeparate(ctx->Exec, (n[1].e, n[2].e)); break; case OPCODE_BLEND_FUNC_SEPARATE: CALL_BlendFuncSeparate(ctx->Exec, (n[1].e, n[2].e, n[3].e, n[4].e)); break; case OPCODE_BLEND_FUNC_I: /* GL_ARB_draw_buffers_blend */ CALL_BlendFunciARB(ctx->Exec, (n[1].ui, n[2].e, n[3].e)); break; case OPCODE_BLEND_FUNC_SEPARATE_I: /* GL_ARB_draw_buffers_blend */ CALL_BlendFuncSeparateiARB(ctx->Exec, (n[1].ui, n[2].e, n[3].e, n[4].e, n[5].e)); break; case OPCODE_BLEND_EQUATION_I: /* GL_ARB_draw_buffers_blend */ CALL_BlendEquationiARB(ctx->Exec, (n[1].ui, n[2].e)); break; case OPCODE_BLEND_EQUATION_SEPARATE_I: /* GL_ARB_draw_buffers_blend */ CALL_BlendEquationSeparateiARB(ctx->Exec, (n[1].ui, n[2].e, n[3].e)); break; case OPCODE_CALL_LIST: /* Generated by glCallList(), don't add ListBase */ if (ctx->ListState.CallDepth < MAX_LIST_NESTING) { execute_list(ctx, n[1].ui); } break; case OPCODE_CALL_LIST_OFFSET: /* Generated by glCallLists() so we must add ListBase */ if (n[2].b) { /* user specified a bad data type at compile time */ _mesa_error(ctx, GL_INVALID_ENUM, "glCallLists(type)"); } else if (ctx->ListState.CallDepth < MAX_LIST_NESTING) { GLuint list = (GLuint) (ctx->List.ListBase + n[1].i); execute_list(ctx, list); } break; case OPCODE_CLEAR: CALL_Clear(ctx->Exec, (n[1].bf)); break; case OPCODE_CLEAR_BUFFER_IV: { GLint value[4]; value[0] = n[3].i; value[1] = n[4].i; value[2] = n[5].i; value[3] = n[6].i; CALL_ClearBufferiv(ctx->Exec, (n[1].e, n[2].i, value)); } break; case OPCODE_CLEAR_BUFFER_UIV: { GLuint value[4]; value[0] = n[3].ui; value[1] = n[4].ui; value[2] = n[5].ui; value[3] = n[6].ui; CALL_ClearBufferuiv(ctx->Exec, (n[1].e, n[2].i, value)); } break; case OPCODE_CLEAR_BUFFER_FV: { GLfloat value[4]; value[0] = n[3].f; value[1] = n[4].f; value[2] = n[5].f; value[3] = n[6].f; CALL_ClearBufferfv(ctx->Exec, (n[1].e, n[2].i, value)); } break; case OPCODE_CLEAR_BUFFER_FI: CALL_ClearBufferfi(ctx->Exec, (n[1].e, n[2].i, n[3].f, n[4].i)); break; case OPCODE_CLEAR_COLOR: CALL_ClearColor(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f)); break; case OPCODE_CLEAR_ACCUM: CALL_ClearAccum(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f)); break; case OPCODE_CLEAR_DEPTH: CALL_ClearDepth(ctx->Exec, ((GLclampd) n[1].f)); break; case OPCODE_CLEAR_INDEX: CALL_ClearIndex(ctx->Exec, ((GLfloat) n[1].ui)); break; case OPCODE_CLEAR_STENCIL: CALL_ClearStencil(ctx->Exec, (n[1].i)); break; case OPCODE_CLIP_PLANE: { GLdouble eq[4]; eq[0] = n[2].f; eq[1] = n[3].f; eq[2] = n[4].f; eq[3] = n[5].f; CALL_ClipPlane(ctx->Exec, (n[1].e, eq)); } break; case OPCODE_COLOR_MASK: CALL_ColorMask(ctx->Exec, (n[1].b, n[2].b, n[3].b, n[4].b)); break; case OPCODE_COLOR_MASK_INDEXED: CALL_ColorMaski(ctx->Exec, (n[1].ui, n[2].b, n[3].b, n[4].b, n[5].b)); break; case OPCODE_COLOR_MATERIAL: CALL_ColorMaterial(ctx->Exec, (n[1].e, n[2].e)); break; case OPCODE_COLOR_TABLE: { const struct gl_pixelstore_attrib save = ctx->Unpack; ctx->Unpack = ctx->DefaultPacking; CALL_ColorTable(ctx->Exec, (n[1].e, n[2].e, n[3].i, n[4].e, n[5].e, n[6].data)); ctx->Unpack = save; /* restore */ } break; case OPCODE_COLOR_TABLE_PARAMETER_FV: { GLfloat params[4]; params[0] = n[3].f; params[1] = n[4].f; params[2] = n[5].f; params[3] = n[6].f; CALL_ColorTableParameterfv(ctx->Exec, (n[1].e, n[2].e, params)); } break; case OPCODE_COLOR_TABLE_PARAMETER_IV: { GLint params[4]; params[0] = n[3].i; params[1] = n[4].i; params[2] = n[5].i; params[3] = n[6].i; CALL_ColorTableParameteriv(ctx->Exec, (n[1].e, n[2].e, params)); } break; case OPCODE_COLOR_SUB_TABLE: { const struct gl_pixelstore_attrib save = ctx->Unpack; ctx->Unpack = ctx->DefaultPacking; CALL_ColorSubTable(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].e, n[5].e, n[6].data)); ctx->Unpack = save; /* restore */ } break; case OPCODE_CONVOLUTION_FILTER_1D: { const struct gl_pixelstore_attrib save = ctx->Unpack; ctx->Unpack = ctx->DefaultPacking; CALL_ConvolutionFilter1D(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].e, n[5].e, n[6].data)); ctx->Unpack = save; /* restore */ } break; case OPCODE_CONVOLUTION_FILTER_2D: { const struct gl_pixelstore_attrib save = ctx->Unpack; ctx->Unpack = ctx->DefaultPacking; CALL_ConvolutionFilter2D(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].i, n[5].e, n[6].e, n[7].data)); ctx->Unpack = save; /* restore */ } break; case OPCODE_CONVOLUTION_PARAMETER_I: CALL_ConvolutionParameteri(ctx->Exec, (n[1].e, n[2].e, n[3].i)); break; case OPCODE_CONVOLUTION_PARAMETER_IV: { GLint params[4]; params[0] = n[3].i; params[1] = n[4].i; params[2] = n[5].i; params[3] = n[6].i; CALL_ConvolutionParameteriv(ctx->Exec, (n[1].e, n[2].e, params)); } break; case OPCODE_CONVOLUTION_PARAMETER_F: CALL_ConvolutionParameterf(ctx->Exec, (n[1].e, n[2].e, n[3].f)); break; case OPCODE_CONVOLUTION_PARAMETER_FV: { GLfloat params[4]; params[0] = n[3].f; params[1] = n[4].f; params[2] = n[5].f; params[3] = n[6].f; CALL_ConvolutionParameterfv(ctx->Exec, (n[1].e, n[2].e, params)); } break; case OPCODE_COPY_COLOR_SUB_TABLE: CALL_CopyColorSubTable(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].i, n[5].i)); break; case OPCODE_COPY_COLOR_TABLE: CALL_CopyColorSubTable(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].i, n[5].i)); break; case OPCODE_COPY_PIXELS: CALL_CopyPixels(ctx->Exec, (n[1].i, n[2].i, (GLsizei) n[3].i, (GLsizei) n[4].i, n[5].e)); break; case OPCODE_COPY_TEX_IMAGE1D: CALL_CopyTexImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].e, n[4].i, n[5].i, n[6].i, n[7].i)); break; case OPCODE_COPY_TEX_IMAGE2D: CALL_CopyTexImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].e, n[4].i, n[5].i, n[6].i, n[7].i, n[8].i)); break; case OPCODE_COPY_TEX_SUB_IMAGE1D: CALL_CopyTexSubImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].i, n[5].i, n[6].i)); break; case OPCODE_COPY_TEX_SUB_IMAGE2D: CALL_CopyTexSubImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].i, n[5].i, n[6].i, n[7].i, n[8].i)); break; case OPCODE_COPY_TEX_SUB_IMAGE3D: CALL_CopyTexSubImage3D(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].i, n[5].i, n[6].i, n[7].i, n[8].i, n[9].i)); break; case OPCODE_CULL_FACE: CALL_CullFace(ctx->Exec, (n[1].e)); break; case OPCODE_DEPTH_FUNC: CALL_DepthFunc(ctx->Exec, (n[1].e)); break; case OPCODE_DEPTH_MASK: CALL_DepthMask(ctx->Exec, (n[1].b)); break; case OPCODE_DEPTH_RANGE: CALL_DepthRange(ctx->Exec, ((GLclampd) n[1].f, (GLclampd) n[2].f)); break; case OPCODE_DISABLE: CALL_Disable(ctx->Exec, (n[1].e)); break; case OPCODE_DISABLE_INDEXED: CALL_Disablei(ctx->Exec, (n[1].ui, n[2].e)); break; case OPCODE_DRAW_BUFFER: CALL_DrawBuffer(ctx->Exec, (n[1].e)); break; case OPCODE_DRAW_PIXELS: { const struct gl_pixelstore_attrib save = ctx->Unpack; ctx->Unpack = ctx->DefaultPacking; CALL_DrawPixels(ctx->Exec, (n[1].i, n[2].i, n[3].e, n[4].e, n[5].data)); ctx->Unpack = save; /* restore */ } break; case OPCODE_ENABLE: CALL_Enable(ctx->Exec, (n[1].e)); break; case OPCODE_ENABLE_INDEXED: CALL_Enablei(ctx->Exec, (n[1].ui, n[2].e)); break; case OPCODE_EVALMESH1: CALL_EvalMesh1(ctx->Exec, (n[1].e, n[2].i, n[3].i)); break; case OPCODE_EVALMESH2: CALL_EvalMesh2(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].i, n[5].i)); break; case OPCODE_FOG: { GLfloat p[4]; p[0] = n[2].f; p[1] = n[3].f; p[2] = n[4].f; p[3] = n[5].f; CALL_Fogfv(ctx->Exec, (n[1].e, p)); } break; case OPCODE_FRONT_FACE: CALL_FrontFace(ctx->Exec, (n[1].e)); break; case OPCODE_FRUSTUM: CALL_Frustum(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f)); break; case OPCODE_HINT: CALL_Hint(ctx->Exec, (n[1].e, n[2].e)); break; case OPCODE_HISTOGRAM: CALL_Histogram(ctx->Exec, (n[1].e, n[2].i, n[3].e, n[4].b)); break; case OPCODE_INDEX_MASK: CALL_IndexMask(ctx->Exec, (n[1].ui)); break; case OPCODE_INIT_NAMES: CALL_InitNames(ctx->Exec, ()); break; case OPCODE_LIGHT: { GLfloat p[4]; p[0] = n[3].f; p[1] = n[4].f; p[2] = n[5].f; p[3] = n[6].f; CALL_Lightfv(ctx->Exec, (n[1].e, n[2].e, p)); } break; case OPCODE_LIGHT_MODEL: { GLfloat p[4]; p[0] = n[2].f; p[1] = n[3].f; p[2] = n[4].f; p[3] = n[5].f; CALL_LightModelfv(ctx->Exec, (n[1].e, p)); } break; case OPCODE_LINE_STIPPLE: CALL_LineStipple(ctx->Exec, (n[1].i, n[2].us)); break; case OPCODE_LINE_WIDTH: CALL_LineWidth(ctx->Exec, (n[1].f)); break; case OPCODE_LIST_BASE: CALL_ListBase(ctx->Exec, (n[1].ui)); break; case OPCODE_LOAD_IDENTITY: CALL_LoadIdentity(ctx->Exec, ()); break; case OPCODE_LOAD_MATRIX: if (sizeof(Node) == sizeof(GLfloat)) { CALL_LoadMatrixf(ctx->Exec, (&n[1].f)); } else { GLfloat m[16]; GLuint i; for (i = 0; i < 16; i++) { m[i] = n[1 + i].f; } CALL_LoadMatrixf(ctx->Exec, (m)); } break; case OPCODE_LOAD_NAME: CALL_LoadName(ctx->Exec, (n[1].ui)); break; case OPCODE_LOGIC_OP: CALL_LogicOp(ctx->Exec, (n[1].e)); break; case OPCODE_MAP1: { GLenum target = n[1].e; GLint ustride = _mesa_evaluator_components(target); GLint uorder = n[5].i; GLfloat u1 = n[2].f; GLfloat u2 = n[3].f; CALL_Map1f(ctx->Exec, (target, u1, u2, ustride, uorder, (GLfloat *) n[6].data)); } break; case OPCODE_MAP2: { GLenum target = n[1].e; GLfloat u1 = n[2].f; GLfloat u2 = n[3].f; GLfloat v1 = n[4].f; GLfloat v2 = n[5].f; GLint ustride = n[6].i; GLint vstride = n[7].i; GLint uorder = n[8].i; GLint vorder = n[9].i; CALL_Map2f(ctx->Exec, (target, u1, u2, ustride, uorder, v1, v2, vstride, vorder, (GLfloat *) n[10].data)); } break; case OPCODE_MAPGRID1: CALL_MapGrid1f(ctx->Exec, (n[1].i, n[2].f, n[3].f)); break; case OPCODE_MAPGRID2: CALL_MapGrid2f(ctx->Exec, (n[1].i, n[2].f, n[3].f, n[4].i, n[5].f, n[6].f)); break; case OPCODE_MATRIX_MODE: CALL_MatrixMode(ctx->Exec, (n[1].e)); break; case OPCODE_MIN_MAX: CALL_Minmax(ctx->Exec, (n[1].e, n[2].e, n[3].b)); break; case OPCODE_MULT_MATRIX: if (sizeof(Node) == sizeof(GLfloat)) { CALL_MultMatrixf(ctx->Exec, (&n[1].f)); } else { GLfloat m[16]; GLuint i; for (i = 0; i < 16; i++) { m[i] = n[1 + i].f; } CALL_MultMatrixf(ctx->Exec, (m)); } break; case OPCODE_ORTHO: CALL_Ortho(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f)); break; case OPCODE_PASSTHROUGH: CALL_PassThrough(ctx->Exec, (n[1].f)); break; case OPCODE_PIXEL_MAP: CALL_PixelMapfv(ctx->Exec, (n[1].e, n[2].i, (GLfloat *) n[3].data)); break; case OPCODE_PIXEL_TRANSFER: CALL_PixelTransferf(ctx->Exec, (n[1].e, n[2].f)); break; case OPCODE_PIXEL_ZOOM: CALL_PixelZoom(ctx->Exec, (n[1].f, n[2].f)); break; case OPCODE_POINT_SIZE: CALL_PointSize(ctx->Exec, (n[1].f)); break; case OPCODE_POINT_PARAMETERS: { GLfloat params[3]; params[0] = n[2].f; params[1] = n[3].f; params[2] = n[4].f; CALL_PointParameterfv(ctx->Exec, (n[1].e, params)); } break; case OPCODE_POLYGON_MODE: CALL_PolygonMode(ctx->Exec, (n[1].e, n[2].e)); break; case OPCODE_POLYGON_STIPPLE: { const struct gl_pixelstore_attrib save = ctx->Unpack; ctx->Unpack = ctx->DefaultPacking; CALL_PolygonStipple(ctx->Exec, ((GLubyte *) n[1].data)); ctx->Unpack = save; /* restore */ } break; case OPCODE_POLYGON_OFFSET: CALL_PolygonOffset(ctx->Exec, (n[1].f, n[2].f)); break; case OPCODE_POP_ATTRIB: CALL_PopAttrib(ctx->Exec, ()); break; case OPCODE_POP_MATRIX: CALL_PopMatrix(ctx->Exec, ()); break; case OPCODE_POP_NAME: CALL_PopName(ctx->Exec, ()); break; case OPCODE_PRIORITIZE_TEXTURE: CALL_PrioritizeTextures(ctx->Exec, (1, &n[1].ui, &n[2].f)); break; case OPCODE_PUSH_ATTRIB: CALL_PushAttrib(ctx->Exec, (n[1].bf)); break; case OPCODE_PUSH_MATRIX: CALL_PushMatrix(ctx->Exec, ()); break; case OPCODE_PUSH_NAME: CALL_PushName(ctx->Exec, (n[1].ui)); break; case OPCODE_RASTER_POS: CALL_RasterPos4f(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f)); break; case OPCODE_READ_BUFFER: CALL_ReadBuffer(ctx->Exec, (n[1].e)); break; case OPCODE_RESET_HISTOGRAM: CALL_ResetHistogram(ctx->Exec, (n[1].e)); break; case OPCODE_RESET_MIN_MAX: CALL_ResetMinmax(ctx->Exec, (n[1].e)); break; case OPCODE_ROTATE: CALL_Rotatef(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f)); break; case OPCODE_SCALE: CALL_Scalef(ctx->Exec, (n[1].f, n[2].f, n[3].f)); break; case OPCODE_SCISSOR: CALL_Scissor(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i)); break; case OPCODE_SHADE_MODEL: CALL_ShadeModel(ctx->Exec, (n[1].e)); break; case OPCODE_PROVOKING_VERTEX: CALL_ProvokingVertex(ctx->Exec, (n[1].e)); break; case OPCODE_STENCIL_FUNC: CALL_StencilFunc(ctx->Exec, (n[1].e, n[2].i, n[3].ui)); break; case OPCODE_STENCIL_MASK: CALL_StencilMask(ctx->Exec, (n[1].ui)); break; case OPCODE_STENCIL_OP: CALL_StencilOp(ctx->Exec, (n[1].e, n[2].e, n[3].e)); break; case OPCODE_STENCIL_FUNC_SEPARATE: CALL_StencilFuncSeparate(ctx->Exec, (n[1].e, n[2].e, n[3].i, n[4].ui)); break; case OPCODE_STENCIL_MASK_SEPARATE: CALL_StencilMaskSeparate(ctx->Exec, (n[1].e, n[2].ui)); break; case OPCODE_STENCIL_OP_SEPARATE: CALL_StencilOpSeparate(ctx->Exec, (n[1].e, n[2].e, n[3].e, n[4].e)); break; case OPCODE_TEXENV: { GLfloat params[4]; params[0] = n[3].f; params[1] = n[4].f; params[2] = n[5].f; params[3] = n[6].f; CALL_TexEnvfv(ctx->Exec, (n[1].e, n[2].e, params)); } break; case OPCODE_TEXGEN: { GLfloat params[4]; params[0] = n[3].f; params[1] = n[4].f; params[2] = n[5].f; params[3] = n[6].f; CALL_TexGenfv(ctx->Exec, (n[1].e, n[2].e, params)); } break; case OPCODE_TEXPARAMETER: { GLfloat params[4]; params[0] = n[3].f; params[1] = n[4].f; params[2] = n[5].f; params[3] = n[6].f; CALL_TexParameterfv(ctx->Exec, (n[1].e, n[2].e, params)); } break; case OPCODE_TEX_IMAGE1D: { const struct gl_pixelstore_attrib save = ctx->Unpack; ctx->Unpack = ctx->DefaultPacking; CALL_TexImage1D(ctx->Exec, (n[1].e, /* target */ n[2].i, /* level */ n[3].i, /* components */ n[4].i, /* width */ n[5].e, /* border */ n[6].e, /* format */ n[7].e, /* type */ n[8].data)); ctx->Unpack = save; /* restore */ } break; case OPCODE_TEX_IMAGE2D: { const struct gl_pixelstore_attrib save = ctx->Unpack; ctx->Unpack = ctx->DefaultPacking; CALL_TexImage2D(ctx->Exec, (n[1].e, /* target */ n[2].i, /* level */ n[3].i, /* components */ n[4].i, /* width */ n[5].i, /* height */ n[6].e, /* border */ n[7].e, /* format */ n[8].e, /* type */ n[9].data)); ctx->Unpack = save; /* restore */ } break; case OPCODE_TEX_IMAGE3D: { const struct gl_pixelstore_attrib save = ctx->Unpack; ctx->Unpack = ctx->DefaultPacking; CALL_TexImage3D(ctx->Exec, (n[1].e, /* target */ n[2].i, /* level */ n[3].i, /* components */ n[4].i, /* width */ n[5].i, /* height */ n[6].i, /* depth */ n[7].e, /* border */ n[8].e, /* format */ n[9].e, /* type */ n[10].data)); ctx->Unpack = save; /* restore */ } break; case OPCODE_TEX_SUB_IMAGE1D: { const struct gl_pixelstore_attrib save = ctx->Unpack; ctx->Unpack = ctx->DefaultPacking; CALL_TexSubImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].i, n[5].e, n[6].e, n[7].data)); ctx->Unpack = save; /* restore */ } break; case OPCODE_TEX_SUB_IMAGE2D: { const struct gl_pixelstore_attrib save = ctx->Unpack; ctx->Unpack = ctx->DefaultPacking; CALL_TexSubImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].i, n[5].e, n[6].i, n[7].e, n[8].e, n[9].data)); ctx->Unpack = save; /* restore */ } break; case OPCODE_TEX_SUB_IMAGE3D: { const struct gl_pixelstore_attrib save = ctx->Unpack; ctx->Unpack = ctx->DefaultPacking; CALL_TexSubImage3D(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].i, n[5].i, n[6].i, n[7].i, n[8].i, n[9].e, n[10].e, n[11].data)); ctx->Unpack = save; /* restore */ } break; case OPCODE_TRANSLATE: CALL_Translatef(ctx->Exec, (n[1].f, n[2].f, n[3].f)); break; case OPCODE_VIEWPORT: CALL_Viewport(ctx->Exec, (n[1].i, n[2].i, (GLsizei) n[3].i, (GLsizei) n[4].i)); break; case OPCODE_WINDOW_POS: CALL_WindowPos4fMESA(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f)); break; case OPCODE_ACTIVE_TEXTURE: /* GL_ARB_multitexture */ CALL_ActiveTexture(ctx->Exec, (n[1].e)); break; case OPCODE_COMPRESSED_TEX_IMAGE_1D: /* GL_ARB_texture_compression */ CALL_CompressedTexImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].e, n[4].i, n[5].i, n[6].i, n[7].data)); break; case OPCODE_COMPRESSED_TEX_IMAGE_2D: /* GL_ARB_texture_compression */ CALL_CompressedTexImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].e, n[4].i, n[5].i, n[6].i, n[7].i, n[8].data)); break; case OPCODE_COMPRESSED_TEX_IMAGE_3D: /* GL_ARB_texture_compression */ CALL_CompressedTexImage3D(ctx->Exec, (n[1].e, n[2].i, n[3].e, n[4].i, n[5].i, n[6].i, n[7].i, n[8].i, n[9].data)); break; case OPCODE_COMPRESSED_TEX_SUB_IMAGE_1D: /* GL_ARB_texture_compress */ CALL_CompressedTexSubImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].i, n[5].e, n[6].i, n[7].data)); break; case OPCODE_COMPRESSED_TEX_SUB_IMAGE_2D: /* GL_ARB_texture_compress */ CALL_CompressedTexSubImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].i, n[5].i, n[6].i, n[7].e, n[8].i, n[9].data)); break; case OPCODE_COMPRESSED_TEX_SUB_IMAGE_3D: /* GL_ARB_texture_compress */ CALL_CompressedTexSubImage3D(ctx->Exec, (n[1].e, n[2].i, n[3].i, n[4].i, n[5].i, n[6].i, n[7].i, n[8].i, n[9].e, n[10].i, n[11].data)); break; case OPCODE_SAMPLE_COVERAGE: /* GL_ARB_multisample */ CALL_SampleCoverage(ctx->Exec, (n[1].f, n[2].b)); break; case OPCODE_WINDOW_POS_ARB: /* GL_ARB_window_pos */ CALL_WindowPos3f(ctx->Exec, (n[1].f, n[2].f, n[3].f)); break; case OPCODE_BIND_PROGRAM_NV: /* GL_ARB_vertex_program */ CALL_BindProgramARB(ctx->Exec, (n[1].e, n[2].ui)); break; case OPCODE_PROGRAM_LOCAL_PARAMETER_ARB: CALL_ProgramLocalParameter4fARB(ctx->Exec, (n[1].e, n[2].ui, n[3].f, n[4].f, n[5].f, n[6].f)); break; case OPCODE_ACTIVE_STENCIL_FACE_EXT: CALL_ActiveStencilFaceEXT(ctx->Exec, (n[1].e)); break; case OPCODE_DEPTH_BOUNDS_EXT: CALL_DepthBoundsEXT(ctx->Exec, (n[1].f, n[2].f)); break; case OPCODE_PROGRAM_STRING_ARB: CALL_ProgramStringARB(ctx->Exec, (n[1].e, n[2].e, n[3].i, n[4].data)); break; case OPCODE_PROGRAM_ENV_PARAMETER_ARB: CALL_ProgramEnvParameter4fARB(ctx->Exec, (n[1].e, n[2].ui, n[3].f, n[4].f, n[5].f, n[6].f)); break; case OPCODE_BEGIN_QUERY_ARB: CALL_BeginQuery(ctx->Exec, (n[1].e, n[2].ui)); break; case OPCODE_END_QUERY_ARB: CALL_EndQuery(ctx->Exec, (n[1].e)); break; case OPCODE_QUERY_COUNTER: CALL_QueryCounter(ctx->Exec, (n[1].ui, n[2].e)); break; case OPCODE_BEGIN_QUERY_INDEXED: CALL_BeginQueryIndexed(ctx->Exec, (n[1].e, n[2].ui, n[3].ui)); break; case OPCODE_END_QUERY_INDEXED: CALL_EndQueryIndexed(ctx->Exec, (n[1].e, n[2].ui)); break; case OPCODE_DRAW_BUFFERS_ARB: { GLenum buffers[MAX_DRAW_BUFFERS]; GLint i, count = MIN2(n[1].i, MAX_DRAW_BUFFERS); for (i = 0; i < count; i++) buffers[i] = n[2 + i].e; CALL_DrawBuffers(ctx->Exec, (n[1].i, buffers)); } break; case OPCODE_BLIT_FRAMEBUFFER: CALL_BlitFramebuffer(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i, n[5].i, n[6].i, n[7].i, n[8].i, n[9].i, n[10].e)); break; case OPCODE_USE_PROGRAM: CALL_UseProgram(ctx->Exec, (n[1].ui)); break; case OPCODE_USE_SHADER_PROGRAM_EXT: CALL_UseShaderProgramEXT(ctx->Exec, (n[1].ui, n[2].ui)); break; case OPCODE_ACTIVE_PROGRAM_EXT: CALL_ActiveProgramEXT(ctx->Exec, (n[1].ui)); break; case OPCODE_UNIFORM_1F: CALL_Uniform1f(ctx->Exec, (n[1].i, n[2].f)); break; case OPCODE_UNIFORM_2F: CALL_Uniform2f(ctx->Exec, (n[1].i, n[2].f, n[3].f)); break; case OPCODE_UNIFORM_3F: CALL_Uniform3f(ctx->Exec, (n[1].i, n[2].f, n[3].f, n[4].f)); break; case OPCODE_UNIFORM_4F: CALL_Uniform4f(ctx->Exec, (n[1].i, n[2].f, n[3].f, n[4].f, n[5].f)); break; case OPCODE_UNIFORM_1FV: CALL_Uniform1fv(ctx->Exec, (n[1].i, n[2].i, n[3].data)); break; case OPCODE_UNIFORM_2FV: CALL_Uniform2fv(ctx->Exec, (n[1].i, n[2].i, n[3].data)); break; case OPCODE_UNIFORM_3FV: CALL_Uniform3fv(ctx->Exec, (n[1].i, n[2].i, n[3].data)); break; case OPCODE_UNIFORM_4FV: CALL_Uniform4fv(ctx->Exec, (n[1].i, n[2].i, n[3].data)); break; case OPCODE_UNIFORM_1I: CALL_Uniform1i(ctx->Exec, (n[1].i, n[2].i)); break; case OPCODE_UNIFORM_2I: CALL_Uniform2i(ctx->Exec, (n[1].i, n[2].i, n[3].i)); break; case OPCODE_UNIFORM_3I: CALL_Uniform3i(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i)); break; case OPCODE_UNIFORM_4I: CALL_Uniform4i(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i, n[5].i)); break; case OPCODE_UNIFORM_1IV: CALL_Uniform1iv(ctx->Exec, (n[1].i, n[2].i, n[3].data)); break; case OPCODE_UNIFORM_2IV: CALL_Uniform2iv(ctx->Exec, (n[1].i, n[2].i, n[3].data)); break; case OPCODE_UNIFORM_3IV: CALL_Uniform3iv(ctx->Exec, (n[1].i, n[2].i, n[3].data)); break; case OPCODE_UNIFORM_4IV: CALL_Uniform4iv(ctx->Exec, (n[1].i, n[2].i, n[3].data)); break; case OPCODE_UNIFORM_1UI: /*CALL_Uniform1uiARB(ctx->Exec, (n[1].i, n[2].i));*/ break; case OPCODE_UNIFORM_2UI: /*CALL_Uniform2uiARB(ctx->Exec, (n[1].i, n[2].i, n[3].i));*/ break; case OPCODE_UNIFORM_3UI: /*CALL_Uniform3uiARB(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i));*/ break; case OPCODE_UNIFORM_4UI: /*CALL_Uniform4uiARB(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i, n[5].i)); */ break; case OPCODE_UNIFORM_1UIV: /*CALL_Uniform1uivARB(ctx->Exec, (n[1].i, n[2].i, n[3].data));*/ break; case OPCODE_UNIFORM_2UIV: /*CALL_Uniform2uivARB(ctx->Exec, (n[1].i, n[2].i, n[3].data));*/ break; case OPCODE_UNIFORM_3UIV: /*CALL_Uniform3uivARB(ctx->Exec, (n[1].i, n[2].i, n[3].data));*/ break; case OPCODE_UNIFORM_4UIV: /*CALL_Uniform4uivARB(ctx->Exec, (n[1].i, n[2].i, n[3].data));*/ break; case OPCODE_UNIFORM_MATRIX22: CALL_UniformMatrix2fv(ctx->Exec, (n[1].i, n[2].i, n[3].b, n[4].data)); break; case OPCODE_UNIFORM_MATRIX33: CALL_UniformMatrix3fv(ctx->Exec, (n[1].i, n[2].i, n[3].b, n[4].data)); break; case OPCODE_UNIFORM_MATRIX44: CALL_UniformMatrix4fv(ctx->Exec, (n[1].i, n[2].i, n[3].b, n[4].data)); break; case OPCODE_UNIFORM_MATRIX23: CALL_UniformMatrix2x3fv(ctx->Exec, (n[1].i, n[2].i, n[3].b, n[4].data)); break; case OPCODE_UNIFORM_MATRIX32: CALL_UniformMatrix3x2fv(ctx->Exec, (n[1].i, n[2].i, n[3].b, n[4].data)); break; case OPCODE_UNIFORM_MATRIX24: CALL_UniformMatrix2x4fv(ctx->Exec, (n[1].i, n[2].i, n[3].b, n[4].data)); break; case OPCODE_UNIFORM_MATRIX42: CALL_UniformMatrix4x2fv(ctx->Exec, (n[1].i, n[2].i, n[3].b, n[4].data)); break; case OPCODE_UNIFORM_MATRIX34: CALL_UniformMatrix3x4fv(ctx->Exec, (n[1].i, n[2].i, n[3].b, n[4].data)); break; case OPCODE_UNIFORM_MATRIX43: CALL_UniformMatrix4x3fv(ctx->Exec, (n[1].i, n[2].i, n[3].b, n[4].data)); break; case OPCODE_CLAMP_COLOR: CALL_ClampColor(ctx->Exec, (n[1].e, n[2].e)); break; case OPCODE_TEX_BUMP_PARAMETER_ATI: { GLfloat values[4]; GLuint i, pname = n[1].ui; for (i = 0; i < 4; i++) values[i] = n[1 + i].f; CALL_TexBumpParameterfvATI(ctx->Exec, (pname, values)); } break; case OPCODE_BIND_FRAGMENT_SHADER_ATI: CALL_BindFragmentShaderATI(ctx->Exec, (n[1].i)); break; case OPCODE_SET_FRAGMENT_SHADER_CONSTANTS_ATI: { GLfloat values[4]; GLuint i, dst = n[1].ui; for (i = 0; i < 4; i++) values[i] = n[1 + i].f; CALL_SetFragmentShaderConstantATI(ctx->Exec, (dst, values)); } break; case OPCODE_ATTR_1F_NV: CALL_VertexAttrib1fNV(ctx->Exec, (n[1].e, n[2].f)); break; case OPCODE_ATTR_2F_NV: /* Really shouldn't have to do this - the Node structure * is convenient, but it would be better to store the data * packed appropriately so that it can be sent directly * on. With x86_64 becoming common, this will start to * matter more. */ if (sizeof(Node) == sizeof(GLfloat)) CALL_VertexAttrib2fvNV(ctx->Exec, (n[1].e, &n[2].f)); else CALL_VertexAttrib2fNV(ctx->Exec, (n[1].e, n[2].f, n[3].f)); break; case OPCODE_ATTR_3F_NV: if (sizeof(Node) == sizeof(GLfloat)) CALL_VertexAttrib3fvNV(ctx->Exec, (n[1].e, &n[2].f)); else CALL_VertexAttrib3fNV(ctx->Exec, (n[1].e, n[2].f, n[3].f, n[4].f)); break; case OPCODE_ATTR_4F_NV: if (sizeof(Node) == sizeof(GLfloat)) CALL_VertexAttrib4fvNV(ctx->Exec, (n[1].e, &n[2].f)); else CALL_VertexAttrib4fNV(ctx->Exec, (n[1].e, n[2].f, n[3].f, n[4].f, n[5].f)); break; case OPCODE_ATTR_1F_ARB: CALL_VertexAttrib1fARB(ctx->Exec, (n[1].e, n[2].f)); break; case OPCODE_ATTR_2F_ARB: /* Really shouldn't have to do this - the Node structure * is convenient, but it would be better to store the data * packed appropriately so that it can be sent directly * on. With x86_64 becoming common, this will start to * matter more. */ if (sizeof(Node) == sizeof(GLfloat)) CALL_VertexAttrib2fvARB(ctx->Exec, (n[1].e, &n[2].f)); else CALL_VertexAttrib2fARB(ctx->Exec, (n[1].e, n[2].f, n[3].f)); break; case OPCODE_ATTR_3F_ARB: if (sizeof(Node) == sizeof(GLfloat)) CALL_VertexAttrib3fvARB(ctx->Exec, (n[1].e, &n[2].f)); else CALL_VertexAttrib3fARB(ctx->Exec, (n[1].e, n[2].f, n[3].f, n[4].f)); break; case OPCODE_ATTR_4F_ARB: if (sizeof(Node) == sizeof(GLfloat)) CALL_VertexAttrib4fvARB(ctx->Exec, (n[1].e, &n[2].f)); else CALL_VertexAttrib4fARB(ctx->Exec, (n[1].e, n[2].f, n[3].f, n[4].f, n[5].f)); break; case OPCODE_MATERIAL: if (sizeof(Node) == sizeof(GLfloat)) CALL_Materialfv(ctx->Exec, (n[1].e, n[2].e, &n[3].f)); else { GLfloat f[4]; f[0] = n[3].f; f[1] = n[4].f; f[2] = n[5].f; f[3] = n[6].f; CALL_Materialfv(ctx->Exec, (n[1].e, n[2].e, f)); } break; case OPCODE_BEGIN: CALL_Begin(ctx->Exec, (n[1].e)); break; case OPCODE_END: CALL_End(ctx->Exec, ()); break; case OPCODE_RECTF: CALL_Rectf(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f)); break; case OPCODE_EVAL_C1: CALL_EvalCoord1f(ctx->Exec, (n[1].f)); break; case OPCODE_EVAL_C2: CALL_EvalCoord2f(ctx->Exec, (n[1].f, n[2].f)); break; case OPCODE_EVAL_P1: CALL_EvalPoint1(ctx->Exec, (n[1].i)); break; case OPCODE_EVAL_P2: CALL_EvalPoint2(ctx->Exec, (n[1].i, n[2].i)); break; /* GL_EXT_texture_integer */ case OPCODE_CLEARCOLOR_I: CALL_ClearColorIiEXT(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i)); break; case OPCODE_CLEARCOLOR_UI: CALL_ClearColorIuiEXT(ctx->Exec, (n[1].ui, n[2].ui, n[3].ui, n[4].ui)); break; case OPCODE_TEXPARAMETER_I: { GLint params[4]; params[0] = n[3].i; params[1] = n[4].i; params[2] = n[5].i; params[3] = n[6].i; CALL_TexParameterIiv(ctx->Exec, (n[1].e, n[2].e, params)); } break; case OPCODE_TEXPARAMETER_UI: { GLuint params[4]; params[0] = n[3].ui; params[1] = n[4].ui; params[2] = n[5].ui; params[3] = n[6].ui; CALL_TexParameterIuiv(ctx->Exec, (n[1].e, n[2].e, params)); } break; case OPCODE_VERTEX_ATTRIB_DIVISOR: /* GL_ARB_instanced_arrays */ CALL_VertexAttribDivisor(ctx->Exec, (n[1].ui, n[2].ui)); break; case OPCODE_TEXTURE_BARRIER_NV: CALL_TextureBarrierNV(ctx->Exec, ()); break; /* GL_EXT/ARB_transform_feedback */ case OPCODE_BEGIN_TRANSFORM_FEEDBACK: CALL_BeginTransformFeedback(ctx->Exec, (n[1].e)); break; case OPCODE_END_TRANSFORM_FEEDBACK: CALL_EndTransformFeedback(ctx->Exec, ()); break; case OPCODE_BIND_TRANSFORM_FEEDBACK: CALL_BindTransformFeedback(ctx->Exec, (n[1].e, n[2].ui)); break; case OPCODE_PAUSE_TRANSFORM_FEEDBACK: CALL_PauseTransformFeedback(ctx->Exec, ()); break; case OPCODE_RESUME_TRANSFORM_FEEDBACK: CALL_ResumeTransformFeedback(ctx->Exec, ()); break; case OPCODE_DRAW_TRANSFORM_FEEDBACK: CALL_DrawTransformFeedback(ctx->Exec, (n[1].e, n[2].ui)); break; case OPCODE_DRAW_TRANSFORM_FEEDBACK_STREAM: CALL_DrawTransformFeedbackStream(ctx->Exec, (n[1].e, n[2].ui, n[3].ui)); break; case OPCODE_DRAW_TRANSFORM_FEEDBACK_INSTANCED: CALL_DrawTransformFeedbackInstanced(ctx->Exec, (n[1].e, n[2].ui, n[3].si)); break; case OPCODE_DRAW_TRANSFORM_FEEDBACK_STREAM_INSTANCED: CALL_DrawTransformFeedbackStreamInstanced(ctx->Exec, (n[1].e, n[2].ui, n[3].ui, n[4].si)); break; case OPCODE_BIND_SAMPLER: CALL_BindSampler(ctx->Exec, (n[1].ui, n[2].ui)); break; case OPCODE_SAMPLER_PARAMETERIV: { GLint params[4]; params[0] = n[3].i; params[1] = n[4].i; params[2] = n[5].i; params[3] = n[6].i; CALL_SamplerParameteriv(ctx->Exec, (n[1].ui, n[2].e, params)); } break; case OPCODE_SAMPLER_PARAMETERFV: { GLfloat params[4]; params[0] = n[3].f; params[1] = n[4].f; params[2] = n[5].f; params[3] = n[6].f; CALL_SamplerParameterfv(ctx->Exec, (n[1].ui, n[2].e, params)); } break; case OPCODE_SAMPLER_PARAMETERIIV: { GLint params[4]; params[0] = n[3].i; params[1] = n[4].i; params[2] = n[5].i; params[3] = n[6].i; CALL_SamplerParameterIiv(ctx->Exec, (n[1].ui, n[2].e, params)); } break; case OPCODE_SAMPLER_PARAMETERUIV: { GLuint params[4]; params[0] = n[3].ui; params[1] = n[4].ui; params[2] = n[5].ui; params[3] = n[6].ui; CALL_SamplerParameterIuiv(ctx->Exec, (n[1].ui, n[2].e, params)); } break; /* GL_ARB_geometry_shader4 */ case OPCODE_PROGRAM_PARAMETERI: CALL_ProgramParameteri(ctx->Exec, (n[1].ui, n[2].e, n[3].i)); break; case OPCODE_FRAMEBUFFER_TEXTURE: CALL_FramebufferTexture(ctx->Exec, (n[1].e, n[2].e, n[3].ui, n[4].i)); break; case OPCODE_FRAMEBUFFER_TEXTURE_FACE: CALL_FramebufferTextureFaceARB(ctx->Exec, (n[1].e, n[2].e, n[3].ui, n[4].i, n[5].e)); break; /* GL_ARB_sync */ case OPCODE_WAIT_SYNC: { union uint64_pair p; p.uint32[0] = n[3].ui; p.uint32[1] = n[4].ui; CALL_WaitSync(ctx->Exec, (n[1].data, n[2].bf, p.uint64)); } break; /* GL_NV_conditional_render */ case OPCODE_BEGIN_CONDITIONAL_RENDER: CALL_BeginConditionalRender(ctx->Exec, (n[1].i, n[2].e)); break; case OPCODE_END_CONDITIONAL_RENDER: CALL_EndConditionalRender(ctx->Exec, ()); break; case OPCODE_UNIFORM_BLOCK_BINDING: CALL_UniformBlockBinding(ctx->Exec, (n[1].ui, n[2].ui, n[3].ui)); break; case OPCODE_CONTINUE: n = (Node *) n[1].next; break; case OPCODE_END_OF_LIST: done = GL_TRUE; break; default: { char msg[1000]; _mesa_snprintf(msg, sizeof(msg), "Error in execute_list: opcode=%d", (int) opcode); _mesa_problem(ctx, "%s", msg); } done = GL_TRUE; } /* increment n to point to next compiled command */ if (opcode != OPCODE_CONTINUE) { n += InstSize[opcode]; } } } if (ctx->Driver.EndCallList) ctx->Driver.EndCallList(ctx); ctx->ListState.CallDepth--; } /**********************************************************************/ /* GL functions */ /**********************************************************************/ /** * Test if a display list number is valid. */ GLboolean GLAPIENTRY _mesa_IsList(GLuint list) { GET_CURRENT_CONTEXT(ctx); FLUSH_VERTICES(ctx, 0); /* must be called before assert */ ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE); return islist(ctx, list); } /** * Delete a sequence of consecutive display lists. */ void GLAPIENTRY _mesa_DeleteLists(GLuint list, GLsizei range) { GET_CURRENT_CONTEXT(ctx); GLuint i; FLUSH_VERTICES(ctx, 0); /* must be called before assert */ ASSERT_OUTSIDE_BEGIN_END(ctx); if (range < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glDeleteLists"); return; } for (i = list; i < list + range; i++) { destroy_list(ctx, i); } } /** * Return a display list number, n, such that lists n through n+range-1 * are free. */ GLuint GLAPIENTRY _mesa_GenLists(GLsizei range) { GET_CURRENT_CONTEXT(ctx); GLuint base; FLUSH_VERTICES(ctx, 0); /* must be called before assert */ ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, 0); if (range < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glGenLists"); return 0; } if (range == 0) { return 0; } /* * Make this an atomic operation */ _glthread_LOCK_MUTEX(ctx->Shared->Mutex); base = _mesa_HashFindFreeKeyBlock(ctx->Shared->DisplayList, range); if (base) { /* reserve the list IDs by with empty/dummy lists */ GLint i; for (i = 0; i < range; i++) { _mesa_HashInsert(ctx->Shared->DisplayList, base + i, make_list(base + i, 1)); } } _glthread_UNLOCK_MUTEX(ctx->Shared->Mutex); return base; } /** * Begin a new display list. */ void GLAPIENTRY _mesa_NewList(GLuint name, GLenum mode) { GET_CURRENT_CONTEXT(ctx); FLUSH_CURRENT(ctx, 0); /* must be called before assert */ ASSERT_OUTSIDE_BEGIN_END(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glNewList %u %s\n", name, _mesa_lookup_enum_by_nr(mode)); if (name == 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glNewList"); return; } if (mode != GL_COMPILE && mode != GL_COMPILE_AND_EXECUTE) { _mesa_error(ctx, GL_INVALID_ENUM, "glNewList"); return; } if (ctx->ListState.CurrentList) { /* already compiling a display list */ _mesa_error(ctx, GL_INVALID_OPERATION, "glNewList"); return; } ctx->CompileFlag = GL_TRUE; ctx->ExecuteFlag = (mode == GL_COMPILE_AND_EXECUTE); /* Reset acumulated list state: */ invalidate_saved_current_state( ctx ); /* Allocate new display list */ ctx->ListState.CurrentList = make_list(name, BLOCK_SIZE); ctx->ListState.CurrentBlock = ctx->ListState.CurrentList->Head; ctx->ListState.CurrentPos = 0; ctx->Driver.NewList(ctx, name, mode); ctx->CurrentDispatch = ctx->Save; _glapi_set_dispatch(ctx->CurrentDispatch); } /** * End definition of current display list. */ void GLAPIENTRY _mesa_EndList(void) { GET_CURRENT_CONTEXT(ctx); SAVE_FLUSH_VERTICES(ctx); FLUSH_VERTICES(ctx, 0); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glEndList\n"); /* Check that a list is under construction */ if (!ctx->ListState.CurrentList) { _mesa_error(ctx, GL_INVALID_OPERATION, "glEndList"); return; } /* Call before emitting END_OF_LIST, in case the driver wants to * emit opcodes itself. */ ctx->Driver.EndList(ctx); (void) alloc_instruction(ctx, OPCODE_END_OF_LIST, 0); /* Destroy old list, if any */ destroy_list(ctx, ctx->ListState.CurrentList->Name); /* Install the new list */ _mesa_HashInsert(ctx->Shared->DisplayList, ctx->ListState.CurrentList->Name, ctx->ListState.CurrentList); if (MESA_VERBOSE & VERBOSE_DISPLAY_LIST) mesa_print_display_list(ctx->ListState.CurrentList->Name); ctx->ListState.CurrentList = NULL; ctx->ExecuteFlag = GL_TRUE; ctx->CompileFlag = GL_FALSE; ctx->CurrentDispatch = ctx->Exec; _glapi_set_dispatch(ctx->CurrentDispatch); } void GLAPIENTRY _mesa_CallList(GLuint list) { GLboolean save_compile_flag; GET_CURRENT_CONTEXT(ctx); FLUSH_CURRENT(ctx, 0); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glCallList %d\n", list); if (list == 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glCallList(list==0)"); return; } if (0) mesa_print_display_list( list ); /* VERY IMPORTANT: Save the CompileFlag status, turn it off, * execute the display list, and restore the CompileFlag. */ save_compile_flag = ctx->CompileFlag; if (save_compile_flag) { ctx->CompileFlag = GL_FALSE; } execute_list(ctx, list); ctx->CompileFlag = save_compile_flag; /* also restore API function pointers to point to "save" versions */ if (save_compile_flag) { ctx->CurrentDispatch = ctx->Save; _glapi_set_dispatch(ctx->CurrentDispatch); } } /** * Execute glCallLists: call multiple display lists. */ void GLAPIENTRY _mesa_CallLists(GLsizei n, GLenum type, const GLvoid * lists) { GET_CURRENT_CONTEXT(ctx); GLint i; GLboolean save_compile_flag; if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glCallLists %d\n", n); switch (type) { case GL_BYTE: case GL_UNSIGNED_BYTE: case GL_SHORT: case GL_UNSIGNED_SHORT: case GL_INT: case GL_UNSIGNED_INT: case GL_FLOAT: case GL_2_BYTES: case GL_3_BYTES: case GL_4_BYTES: /* OK */ break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glCallLists(type)"); return; } /* Save the CompileFlag status, turn it off, execute display list, * and restore the CompileFlag. */ save_compile_flag = ctx->CompileFlag; ctx->CompileFlag = GL_FALSE; for (i = 0; i < n; i++) { GLuint list = (GLuint) (ctx->List.ListBase + translate_id(i, type, lists)); execute_list(ctx, list); } ctx->CompileFlag = save_compile_flag; /* also restore API function pointers to point to "save" versions */ if (save_compile_flag) { ctx->CurrentDispatch = ctx->Save; _glapi_set_dispatch(ctx->CurrentDispatch); } } /** * Set the offset added to list numbers in glCallLists. */ void GLAPIENTRY _mesa_ListBase(GLuint base) { GET_CURRENT_CONTEXT(ctx); FLUSH_VERTICES(ctx, 0); /* must be called before assert */ ASSERT_OUTSIDE_BEGIN_END(ctx); ctx->List.ListBase = base; } /** * Setup the given dispatch table to point to Mesa's display list * building functions. * * This does not include any of the tnl functions - they are * initialized from _mesa_init_api_defaults and from the active vtxfmt * struct. */ void _mesa_initialize_save_table(const struct gl_context *ctx) { struct _glapi_table *table = ctx->Save; int numEntries = MAX2(_gloffset_COUNT, _glapi_get_dispatch_table_size()); /* Initially populate the dispatch table with the contents of the * normal-execution dispatch table. This lets us skip populating functions * that should be called directly instead of compiled into display lists. */ memcpy(table, ctx->Exec, numEntries * sizeof(_glapi_proc)); _mesa_loopback_init_api_table(ctx, table); /* GL 1.0 */ SET_Accum(table, save_Accum); SET_AlphaFunc(table, save_AlphaFunc); SET_Bitmap(table, save_Bitmap); SET_BlendFunc(table, save_BlendFunc); SET_CallList(table, save_CallList); SET_CallLists(table, save_CallLists); SET_Clear(table, save_Clear); SET_ClearAccum(table, save_ClearAccum); SET_ClearColor(table, save_ClearColor); SET_ClearDepth(table, save_ClearDepth); SET_ClearIndex(table, save_ClearIndex); SET_ClearStencil(table, save_ClearStencil); SET_ClipPlane(table, save_ClipPlane); SET_ColorMask(table, save_ColorMask); SET_ColorMaski(table, save_ColorMaskIndexed); SET_ColorMaterial(table, save_ColorMaterial); SET_CopyPixels(table, save_CopyPixels); SET_CullFace(table, save_CullFace); SET_DepthFunc(table, save_DepthFunc); SET_DepthMask(table, save_DepthMask); SET_DepthRange(table, save_DepthRange); SET_Disable(table, save_Disable); SET_Disablei(table, save_DisableIndexed); SET_DrawBuffer(table, save_DrawBuffer); SET_DrawPixels(table, save_DrawPixels); SET_Enable(table, save_Enable); SET_Enablei(table, save_EnableIndexed); SET_EvalMesh1(table, save_EvalMesh1); SET_EvalMesh2(table, save_EvalMesh2); SET_Fogf(table, save_Fogf); SET_Fogfv(table, save_Fogfv); SET_Fogi(table, save_Fogi); SET_Fogiv(table, save_Fogiv); SET_FrontFace(table, save_FrontFace); SET_Frustum(table, save_Frustum); SET_Hint(table, save_Hint); SET_IndexMask(table, save_IndexMask); SET_InitNames(table, save_InitNames); SET_LightModelf(table, save_LightModelf); SET_LightModelfv(table, save_LightModelfv); SET_LightModeli(table, save_LightModeli); SET_LightModeliv(table, save_LightModeliv); SET_Lightf(table, save_Lightf); SET_Lightfv(table, save_Lightfv); SET_Lighti(table, save_Lighti); SET_Lightiv(table, save_Lightiv); SET_LineStipple(table, save_LineStipple); SET_LineWidth(table, save_LineWidth); SET_ListBase(table, save_ListBase); SET_LoadIdentity(table, save_LoadIdentity); SET_LoadMatrixd(table, save_LoadMatrixd); SET_LoadMatrixf(table, save_LoadMatrixf); SET_LoadName(table, save_LoadName); SET_LogicOp(table, save_LogicOp); SET_Map1d(table, save_Map1d); SET_Map1f(table, save_Map1f); SET_Map2d(table, save_Map2d); SET_Map2f(table, save_Map2f); SET_MapGrid1d(table, save_MapGrid1d); SET_MapGrid1f(table, save_MapGrid1f); SET_MapGrid2d(table, save_MapGrid2d); SET_MapGrid2f(table, save_MapGrid2f); SET_MatrixMode(table, save_MatrixMode); SET_MultMatrixd(table, save_MultMatrixd); SET_MultMatrixf(table, save_MultMatrixf); SET_NewList(table, save_NewList); SET_Ortho(table, save_Ortho); SET_PassThrough(table, save_PassThrough); SET_PixelMapfv(table, save_PixelMapfv); SET_PixelMapuiv(table, save_PixelMapuiv); SET_PixelMapusv(table, save_PixelMapusv); SET_PixelTransferf(table, save_PixelTransferf); SET_PixelTransferi(table, save_PixelTransferi); SET_PixelZoom(table, save_PixelZoom); SET_PointSize(table, save_PointSize); SET_PolygonMode(table, save_PolygonMode); SET_PolygonOffset(table, save_PolygonOffset); SET_PolygonStipple(table, save_PolygonStipple); SET_PopAttrib(table, save_PopAttrib); SET_PopMatrix(table, save_PopMatrix); SET_PopName(table, save_PopName); SET_PushAttrib(table, save_PushAttrib); SET_PushMatrix(table, save_PushMatrix); SET_PushName(table, save_PushName); SET_RasterPos2d(table, save_RasterPos2d); SET_RasterPos2dv(table, save_RasterPos2dv); SET_RasterPos2f(table, save_RasterPos2f); SET_RasterPos2fv(table, save_RasterPos2fv); SET_RasterPos2i(table, save_RasterPos2i); SET_RasterPos2iv(table, save_RasterPos2iv); SET_RasterPos2s(table, save_RasterPos2s); SET_RasterPos2sv(table, save_RasterPos2sv); SET_RasterPos3d(table, save_RasterPos3d); SET_RasterPos3dv(table, save_RasterPos3dv); SET_RasterPos3f(table, save_RasterPos3f); SET_RasterPos3fv(table, save_RasterPos3fv); SET_RasterPos3i(table, save_RasterPos3i); SET_RasterPos3iv(table, save_RasterPos3iv); SET_RasterPos3s(table, save_RasterPos3s); SET_RasterPos3sv(table, save_RasterPos3sv); SET_RasterPos4d(table, save_RasterPos4d); SET_RasterPos4dv(table, save_RasterPos4dv); SET_RasterPos4f(table, save_RasterPos4f); SET_RasterPos4fv(table, save_RasterPos4fv); SET_RasterPos4i(table, save_RasterPos4i); SET_RasterPos4iv(table, save_RasterPos4iv); SET_RasterPos4s(table, save_RasterPos4s); SET_RasterPos4sv(table, save_RasterPos4sv); SET_ReadBuffer(table, save_ReadBuffer); SET_Rotated(table, save_Rotated); SET_Rotatef(table, save_Rotatef); SET_Scaled(table, save_Scaled); SET_Scalef(table, save_Scalef); SET_Scissor(table, save_Scissor); SET_ShadeModel(table, save_ShadeModel); SET_StencilFunc(table, save_StencilFunc); SET_StencilMask(table, save_StencilMask); SET_StencilOp(table, save_StencilOp); SET_TexEnvf(table, save_TexEnvf); SET_TexEnvfv(table, save_TexEnvfv); SET_TexEnvi(table, save_TexEnvi); SET_TexEnviv(table, save_TexEnviv); SET_TexGend(table, save_TexGend); SET_TexGendv(table, save_TexGendv); SET_TexGenf(table, save_TexGenf); SET_TexGenfv(table, save_TexGenfv); SET_TexGeni(table, save_TexGeni); SET_TexGeniv(table, save_TexGeniv); SET_TexImage1D(table, save_TexImage1D); SET_TexImage2D(table, save_TexImage2D); SET_TexParameterf(table, save_TexParameterf); SET_TexParameterfv(table, save_TexParameterfv); SET_TexParameteri(table, save_TexParameteri); SET_TexParameteriv(table, save_TexParameteriv); SET_Translated(table, save_Translated); SET_Translatef(table, save_Translatef); SET_Viewport(table, save_Viewport); /* GL 1.1 */ SET_BindTexture(table, save_BindTexture); SET_CopyTexImage1D(table, save_CopyTexImage1D); SET_CopyTexImage2D(table, save_CopyTexImage2D); SET_CopyTexSubImage1D(table, save_CopyTexSubImage1D); SET_CopyTexSubImage2D(table, save_CopyTexSubImage2D); SET_PrioritizeTextures(table, save_PrioritizeTextures); SET_TexSubImage1D(table, save_TexSubImage1D); SET_TexSubImage2D(table, save_TexSubImage2D); /* GL 1.2 */ SET_CopyTexSubImage3D(table, save_CopyTexSubImage3D); SET_TexImage3D(table, save_TexImage3D); SET_TexSubImage3D(table, save_TexSubImage3D); /* GL 2.0 */ SET_StencilFuncSeparate(table, save_StencilFuncSeparate); SET_StencilMaskSeparate(table, save_StencilMaskSeparate); SET_StencilOpSeparate(table, save_StencilOpSeparate); /* ATI_separate_stencil */ SET_StencilFuncSeparateATI(table, save_StencilFuncSeparateATI); /* GL_ARB_imaging */ /* Not all are supported */ SET_BlendColor(table, save_BlendColor); SET_BlendEquation(table, save_BlendEquation); SET_ColorSubTable(table, save_ColorSubTable); SET_ColorTable(table, save_ColorTable); SET_ColorTableParameterfv(table, save_ColorTableParameterfv); SET_ColorTableParameteriv(table, save_ColorTableParameteriv); SET_ConvolutionFilter1D(table, save_ConvolutionFilter1D); SET_ConvolutionFilter2D(table, save_ConvolutionFilter2D); SET_ConvolutionParameterf(table, save_ConvolutionParameterf); SET_ConvolutionParameterfv(table, save_ConvolutionParameterfv); SET_ConvolutionParameteri(table, save_ConvolutionParameteri); SET_ConvolutionParameteriv(table, save_ConvolutionParameteriv); SET_CopyColorSubTable(table, save_CopyColorSubTable); SET_CopyColorTable(table, save_CopyColorTable); SET_Histogram(table, save_Histogram); SET_Minmax(table, save_Minmax); SET_ResetHistogram(table, save_ResetHistogram); SET_ResetMinmax(table, save_ResetMinmax); /* 2. GL_EXT_blend_color */ #if 0 SET_BlendColorEXT(table, save_BlendColorEXT); #endif /* 3. GL_EXT_polygon_offset */ SET_PolygonOffsetEXT(table, save_PolygonOffsetEXT); /* 6. GL_EXT_texture3d */ #if 0 SET_CopyTexSubImage3DEXT(table, save_CopyTexSubImage3D); SET_TexImage3DEXT(table, save_TexImage3DEXT); SET_TexSubImage3DEXT(table, save_TexSubImage3D); #endif /* 14. GL_SGI_color_table */ #if 0 SET_ColorTableSGI(table, save_ColorTable); SET_ColorSubTableSGI(table, save_ColorSubTable); #endif /* 37. GL_EXT_blend_minmax */ #if 0 SET_BlendEquationEXT(table, save_BlendEquationEXT); #endif /* 54. GL_EXT_point_parameters */ SET_PointParameterf(table, save_PointParameterfEXT); SET_PointParameterfv(table, save_PointParameterfvEXT); /* 173. GL_EXT_blend_func_separate */ SET_BlendFuncSeparate(table, save_BlendFuncSeparateEXT); /* 197. GL_MESA_window_pos */ SET_WindowPos2d(table, save_WindowPos2dMESA); SET_WindowPos2dv(table, save_WindowPos2dvMESA); SET_WindowPos2f(table, save_WindowPos2fMESA); SET_WindowPos2fv(table, save_WindowPos2fvMESA); SET_WindowPos2i(table, save_WindowPos2iMESA); SET_WindowPos2iv(table, save_WindowPos2ivMESA); SET_WindowPos2s(table, save_WindowPos2sMESA); SET_WindowPos2sv(table, save_WindowPos2svMESA); SET_WindowPos3d(table, save_WindowPos3dMESA); SET_WindowPos3dv(table, save_WindowPos3dvMESA); SET_WindowPos3f(table, save_WindowPos3fMESA); SET_WindowPos3fv(table, save_WindowPos3fvMESA); SET_WindowPos3i(table, save_WindowPos3iMESA); SET_WindowPos3iv(table, save_WindowPos3ivMESA); SET_WindowPos3s(table, save_WindowPos3sMESA); SET_WindowPos3sv(table, save_WindowPos3svMESA); SET_WindowPos4dMESA(table, save_WindowPos4dMESA); SET_WindowPos4dvMESA(table, save_WindowPos4dvMESA); SET_WindowPos4fMESA(table, save_WindowPos4fMESA); SET_WindowPos4fvMESA(table, save_WindowPos4fvMESA); SET_WindowPos4iMESA(table, save_WindowPos4iMESA); SET_WindowPos4ivMESA(table, save_WindowPos4ivMESA); SET_WindowPos4sMESA(table, save_WindowPos4sMESA); SET_WindowPos4svMESA(table, save_WindowPos4svMESA); /* 233. GL_NV_vertex_program */ /* The following commands DO NOT go into display lists: * AreProgramsResidentNV, IsProgramNV, GenProgramsNV, DeleteProgramsNV, * VertexAttribPointerNV, GetProgram*, GetVertexAttrib* */ SET_BindProgramARB(table, save_BindProgramNV); /* 244. GL_ATI_envmap_bumpmap */ SET_TexBumpParameterivATI(table, save_TexBumpParameterivATI); SET_TexBumpParameterfvATI(table, save_TexBumpParameterfvATI); /* 245. GL_ATI_fragment_shader */ SET_BindFragmentShaderATI(table, save_BindFragmentShaderATI); SET_SetFragmentShaderConstantATI(table, save_SetFragmentShaderConstantATI); /* 262. GL_NV_point_sprite */ SET_PointParameteri(table, save_PointParameteriNV); SET_PointParameteriv(table, save_PointParameterivNV); /* 268. GL_EXT_stencil_two_side */ SET_ActiveStencilFaceEXT(table, save_ActiveStencilFaceEXT); /* ???. GL_EXT_depth_bounds_test */ SET_DepthBoundsEXT(table, save_DepthBoundsEXT); /* ARB 1. GL_ARB_multitexture */ SET_ActiveTexture(table, save_ActiveTextureARB); /* ARB 3. GL_ARB_transpose_matrix */ SET_LoadTransposeMatrixd(table, save_LoadTransposeMatrixdARB); SET_LoadTransposeMatrixf(table, save_LoadTransposeMatrixfARB); SET_MultTransposeMatrixd(table, save_MultTransposeMatrixdARB); SET_MultTransposeMatrixf(table, save_MultTransposeMatrixfARB); /* ARB 5. GL_ARB_multisample */ SET_SampleCoverage(table, save_SampleCoverageARB); /* ARB 12. GL_ARB_texture_compression */ SET_CompressedTexImage3D(table, save_CompressedTexImage3DARB); SET_CompressedTexImage2D(table, save_CompressedTexImage2DARB); SET_CompressedTexImage1D(table, save_CompressedTexImage1DARB); SET_CompressedTexSubImage3D(table, save_CompressedTexSubImage3DARB); SET_CompressedTexSubImage2D(table, save_CompressedTexSubImage2DARB); SET_CompressedTexSubImage1D(table, save_CompressedTexSubImage1DARB); /* ARB 14. GL_ARB_point_parameters */ /* aliased with EXT_point_parameters functions */ /* ARB 25. GL_ARB_window_pos */ /* aliased with MESA_window_pos functions */ /* ARB 26. GL_ARB_vertex_program */ /* ARB 27. GL_ARB_fragment_program */ /* glVertexAttrib* functions alias the NV ones, handled elsewhere */ SET_ProgramStringARB(table, save_ProgramStringARB); SET_BindProgramARB(table, save_BindProgramNV); SET_ProgramEnvParameter4dARB(table, save_ProgramEnvParameter4dARB); SET_ProgramEnvParameter4dvARB(table, save_ProgramEnvParameter4dvARB); SET_ProgramEnvParameter4fARB(table, save_ProgramEnvParameter4fARB); SET_ProgramEnvParameter4fvARB(table, save_ProgramEnvParameter4fvARB); SET_ProgramLocalParameter4dARB(table, save_ProgramLocalParameter4dARB); SET_ProgramLocalParameter4dvARB(table, save_ProgramLocalParameter4dvARB); SET_ProgramLocalParameter4fARB(table, save_ProgramLocalParameter4fARB); SET_ProgramLocalParameter4fvARB(table, save_ProgramLocalParameter4fvARB); SET_BeginQuery(table, save_BeginQueryARB); SET_EndQuery(table, save_EndQueryARB); SET_QueryCounter(table, save_QueryCounter); SET_DrawBuffers(table, save_DrawBuffersARB); SET_BlitFramebuffer(table, save_BlitFramebufferEXT); SET_UseProgram(table, save_UseProgramObjectARB); SET_Uniform1f(table, save_Uniform1fARB); SET_Uniform2f(table, save_Uniform2fARB); SET_Uniform3f(table, save_Uniform3fARB); SET_Uniform4f(table, save_Uniform4fARB); SET_Uniform1fv(table, save_Uniform1fvARB); SET_Uniform2fv(table, save_Uniform2fvARB); SET_Uniform3fv(table, save_Uniform3fvARB); SET_Uniform4fv(table, save_Uniform4fvARB); SET_Uniform1i(table, save_Uniform1iARB); SET_Uniform2i(table, save_Uniform2iARB); SET_Uniform3i(table, save_Uniform3iARB); SET_Uniform4i(table, save_Uniform4iARB); SET_Uniform1iv(table, save_Uniform1ivARB); SET_Uniform2iv(table, save_Uniform2ivARB); SET_Uniform3iv(table, save_Uniform3ivARB); SET_Uniform4iv(table, save_Uniform4ivARB); SET_UniformMatrix2fv(table, save_UniformMatrix2fvARB); SET_UniformMatrix3fv(table, save_UniformMatrix3fvARB); SET_UniformMatrix4fv(table, save_UniformMatrix4fvARB); SET_UniformMatrix2x3fv(table, save_UniformMatrix2x3fv); SET_UniformMatrix3x2fv(table, save_UniformMatrix3x2fv); SET_UniformMatrix2x4fv(table, save_UniformMatrix2x4fv); SET_UniformMatrix4x2fv(table, save_UniformMatrix4x2fv); SET_UniformMatrix3x4fv(table, save_UniformMatrix3x4fv); SET_UniformMatrix4x3fv(table, save_UniformMatrix4x3fv); /* 299. GL_EXT_blend_equation_separate */ SET_BlendEquationSeparate(table, save_BlendEquationSeparateEXT); /* GL_EXT_gpu_program_parameters */ SET_ProgramEnvParameters4fvEXT(table, save_ProgramEnvParameters4fvEXT); SET_ProgramLocalParameters4fvEXT(table, save_ProgramLocalParameters4fvEXT); /* 364. GL_EXT_provoking_vertex */ SET_ProvokingVertex(table, save_ProvokingVertexEXT); /* GL_EXT_texture_integer */ SET_ClearColorIiEXT(table, save_ClearColorIi); SET_ClearColorIuiEXT(table, save_ClearColorIui); SET_TexParameterIiv(table, save_TexParameterIiv); SET_TexParameterIuiv(table, save_TexParameterIuiv); /* 377. GL_EXT_separate_shader_objects */ SET_UseShaderProgramEXT(table, save_UseShaderProgramEXT); SET_ActiveProgramEXT(table, save_ActiveProgramEXT); /* GL_ARB_color_buffer_float */ SET_ClampColor(table, save_ClampColorARB); /* GL 3.0 */ SET_ClearBufferiv(table, save_ClearBufferiv); SET_ClearBufferuiv(table, save_ClearBufferuiv); SET_ClearBufferfv(table, save_ClearBufferfv); SET_ClearBufferfi(table, save_ClearBufferfi); #if 0 SET_Uniform1ui(table, save_Uniform1ui); SET_Uniform2ui(table, save_Uniform2ui); SET_Uniform3ui(table, save_Uniform3ui); SET_Uniform4ui(table, save_Uniform4ui); SET_Uniform1uiv(table, save_Uniform1uiv); SET_Uniform2uiv(table, save_Uniform2uiv); SET_Uniform3uiv(table, save_Uniform3uiv); SET_Uniform4uiv(table, save_Uniform4uiv); #else (void) save_Uniform1ui; (void) save_Uniform2ui; (void) save_Uniform3ui; (void) save_Uniform4ui; (void) save_Uniform1uiv; (void) save_Uniform2uiv; (void) save_Uniform3uiv; (void) save_Uniform4uiv; #endif /* These are: */ SET_BeginTransformFeedback(table, save_BeginTransformFeedback); SET_EndTransformFeedback(table, save_EndTransformFeedback); SET_BindTransformFeedback(table, save_BindTransformFeedback); SET_PauseTransformFeedback(table, save_PauseTransformFeedback); SET_ResumeTransformFeedback(table, save_ResumeTransformFeedback); SET_DrawTransformFeedback(table, save_DrawTransformFeedback); SET_DrawTransformFeedbackStream(table, save_DrawTransformFeedbackStream); SET_DrawTransformFeedbackInstanced(table, save_DrawTransformFeedbackInstanced); SET_DrawTransformFeedbackStreamInstanced(table, save_DrawTransformFeedbackStreamInstanced); SET_BeginQueryIndexed(table, save_BeginQueryIndexed); SET_EndQueryIndexed(table, save_EndQueryIndexed); /* GL_ARB_instanced_arrays */ SET_VertexAttribDivisor(table, save_VertexAttribDivisor); /* GL_NV_texture_barrier */ SET_TextureBarrierNV(table, save_TextureBarrierNV); SET_BindSampler(table, save_BindSampler); SET_SamplerParameteri(table, save_SamplerParameteri); SET_SamplerParameterf(table, save_SamplerParameterf); SET_SamplerParameteriv(table, save_SamplerParameteriv); SET_SamplerParameterfv(table, save_SamplerParameterfv); SET_SamplerParameterIiv(table, save_SamplerParameterIiv); SET_SamplerParameterIuiv(table, save_SamplerParameterIuiv); /* GL_ARB_draw_buffer_blend */ SET_BlendFunciARB(table, save_BlendFunci); SET_BlendFuncSeparateiARB(table, save_BlendFuncSeparatei); SET_BlendEquationiARB(table, save_BlendEquationi); SET_BlendEquationSeparateiARB(table, save_BlendEquationSeparatei); /* GL_ARB_geometry_shader4 */ SET_ProgramParameteri(table, save_ProgramParameteri); SET_FramebufferTexture(table, save_FramebufferTexture); SET_FramebufferTextureFaceARB(table, save_FramebufferTextureFace); /* GL_NV_conditional_render */ SET_BeginConditionalRender(table, save_BeginConditionalRender); SET_EndConditionalRender(table, save_EndConditionalRender); /* GL_ARB_sync */ SET_WaitSync(table, save_WaitSync); /* GL_ARB_uniform_buffer_object */ SET_UniformBlockBinding(table, save_UniformBlockBinding); } static const char * enum_string(GLenum k) { return _mesa_lookup_enum_by_nr(k); } /** * Print the commands in a display list. For debugging only. * TODO: many commands aren't handled yet. */ static void GLAPIENTRY print_list(struct gl_context *ctx, GLuint list) { struct gl_display_list *dlist; Node *n; GLboolean done; if (!islist(ctx, list)) { printf("%u is not a display list ID\n", list); return; } dlist = lookup_list(ctx, list); if (!dlist) return; n = dlist->Head; printf("START-LIST %u, address %p\n", list, (void *) n); done = n ? GL_FALSE : GL_TRUE; while (!done) { const OpCode opcode = n[0].opcode; if (is_ext_opcode(opcode)) { n += ext_opcode_print(ctx, n); } else { switch (opcode) { case OPCODE_ACCUM: printf("Accum %s %g\n", enum_string(n[1].e), n[2].f); break; case OPCODE_BITMAP: printf("Bitmap %d %d %g %g %g %g %p\n", n[1].i, n[2].i, n[3].f, n[4].f, n[5].f, n[6].f, (void *) n[7].data); break; case OPCODE_CALL_LIST: printf("CallList %d\n", (int) n[1].ui); break; case OPCODE_CALL_LIST_OFFSET: printf("CallList %d + offset %u = %u\n", (int) n[1].ui, ctx->List.ListBase, ctx->List.ListBase + n[1].ui); break; case OPCODE_COLOR_TABLE_PARAMETER_FV: printf("ColorTableParameterfv %s %s %f %f %f %f\n", enum_string(n[1].e), enum_string(n[2].e), n[3].f, n[4].f, n[5].f, n[6].f); break; case OPCODE_COLOR_TABLE_PARAMETER_IV: printf("ColorTableParameteriv %s %s %d %d %d %d\n", enum_string(n[1].e), enum_string(n[2].e), n[3].i, n[4].i, n[5].i, n[6].i); break; case OPCODE_DISABLE: printf("Disable %s\n", enum_string(n[1].e)); break; case OPCODE_ENABLE: printf("Enable %s\n", enum_string(n[1].e)); break; case OPCODE_FRUSTUM: printf("Frustum %g %g %g %g %g %g\n", n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f); break; case OPCODE_LINE_STIPPLE: printf("LineStipple %d %x\n", n[1].i, (int) n[2].us); break; case OPCODE_LOAD_IDENTITY: printf("LoadIdentity\n"); break; case OPCODE_LOAD_MATRIX: printf("LoadMatrix\n"); printf(" %8f %8f %8f %8f\n", n[1].f, n[5].f, n[9].f, n[13].f); printf(" %8f %8f %8f %8f\n", n[2].f, n[6].f, n[10].f, n[14].f); printf(" %8f %8f %8f %8f\n", n[3].f, n[7].f, n[11].f, n[15].f); printf(" %8f %8f %8f %8f\n", n[4].f, n[8].f, n[12].f, n[16].f); break; case OPCODE_MULT_MATRIX: printf("MultMatrix (or Rotate)\n"); printf(" %8f %8f %8f %8f\n", n[1].f, n[5].f, n[9].f, n[13].f); printf(" %8f %8f %8f %8f\n", n[2].f, n[6].f, n[10].f, n[14].f); printf(" %8f %8f %8f %8f\n", n[3].f, n[7].f, n[11].f, n[15].f); printf(" %8f %8f %8f %8f\n", n[4].f, n[8].f, n[12].f, n[16].f); break; case OPCODE_ORTHO: printf("Ortho %g %g %g %g %g %g\n", n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f); break; case OPCODE_POP_ATTRIB: printf("PopAttrib\n"); break; case OPCODE_POP_MATRIX: printf("PopMatrix\n"); break; case OPCODE_POP_NAME: printf("PopName\n"); break; case OPCODE_PUSH_ATTRIB: printf("PushAttrib %x\n", n[1].bf); break; case OPCODE_PUSH_MATRIX: printf("PushMatrix\n"); break; case OPCODE_PUSH_NAME: printf("PushName %d\n", (int) n[1].ui); break; case OPCODE_RASTER_POS: printf("RasterPos %g %g %g %g\n", n[1].f, n[2].f, n[3].f, n[4].f); break; case OPCODE_ROTATE: printf("Rotate %g %g %g %g\n", n[1].f, n[2].f, n[3].f, n[4].f); break; case OPCODE_SCALE: printf("Scale %g %g %g\n", n[1].f, n[2].f, n[3].f); break; case OPCODE_TRANSLATE: printf("Translate %g %g %g\n", n[1].f, n[2].f, n[3].f); break; case OPCODE_BIND_TEXTURE: printf("BindTexture %s %d\n", _mesa_lookup_enum_by_nr(n[1].ui), n[2].ui); break; case OPCODE_SHADE_MODEL: printf("ShadeModel %s\n", _mesa_lookup_enum_by_nr(n[1].ui)); break; case OPCODE_MAP1: printf("Map1 %s %.3f %.3f %d %d\n", _mesa_lookup_enum_by_nr(n[1].ui), n[2].f, n[3].f, n[4].i, n[5].i); break; case OPCODE_MAP2: printf("Map2 %s %.3f %.3f %.3f %.3f %d %d %d %d\n", _mesa_lookup_enum_by_nr(n[1].ui), n[2].f, n[3].f, n[4].f, n[5].f, n[6].i, n[7].i, n[8].i, n[9].i); break; case OPCODE_MAPGRID1: printf("MapGrid1 %d %.3f %.3f\n", n[1].i, n[2].f, n[3].f); break; case OPCODE_MAPGRID2: printf("MapGrid2 %d %.3f %.3f, %d %.3f %.3f\n", n[1].i, n[2].f, n[3].f, n[4].i, n[5].f, n[6].f); break; case OPCODE_EVALMESH1: printf("EvalMesh1 %d %d\n", n[1].i, n[2].i); break; case OPCODE_EVALMESH2: printf("EvalMesh2 %d %d %d %d\n", n[1].i, n[2].i, n[3].i, n[4].i); break; case OPCODE_ATTR_1F_NV: printf("ATTR_1F_NV attr %d: %f\n", n[1].i, n[2].f); break; case OPCODE_ATTR_2F_NV: printf("ATTR_2F_NV attr %d: %f %f\n", n[1].i, n[2].f, n[3].f); break; case OPCODE_ATTR_3F_NV: printf("ATTR_3F_NV attr %d: %f %f %f\n", n[1].i, n[2].f, n[3].f, n[4].f); break; case OPCODE_ATTR_4F_NV: printf("ATTR_4F_NV attr %d: %f %f %f %f\n", n[1].i, n[2].f, n[3].f, n[4].f, n[5].f); break; case OPCODE_ATTR_1F_ARB: printf("ATTR_1F_ARB attr %d: %f\n", n[1].i, n[2].f); break; case OPCODE_ATTR_2F_ARB: printf("ATTR_2F_ARB attr %d: %f %f\n", n[1].i, n[2].f, n[3].f); break; case OPCODE_ATTR_3F_ARB: printf("ATTR_3F_ARB attr %d: %f %f %f\n", n[1].i, n[2].f, n[3].f, n[4].f); break; case OPCODE_ATTR_4F_ARB: printf("ATTR_4F_ARB attr %d: %f %f %f %f\n", n[1].i, n[2].f, n[3].f, n[4].f, n[5].f); break; case OPCODE_MATERIAL: printf("MATERIAL %x %x: %f %f %f %f\n", n[1].i, n[2].i, n[3].f, n[4].f, n[5].f, n[6].f); break; case OPCODE_BEGIN: printf("BEGIN %x\n", n[1].i); break; case OPCODE_END: printf("END\n"); break; case OPCODE_RECTF: printf("RECTF %f %f %f %f\n", n[1].f, n[2].f, n[3].f, n[4].f); break; case OPCODE_EVAL_C1: printf("EVAL_C1 %f\n", n[1].f); break; case OPCODE_EVAL_C2: printf("EVAL_C2 %f %f\n", n[1].f, n[2].f); break; case OPCODE_EVAL_P1: printf("EVAL_P1 %d\n", n[1].i); break; case OPCODE_EVAL_P2: printf("EVAL_P2 %d %d\n", n[1].i, n[2].i); break; case OPCODE_PROVOKING_VERTEX: printf("ProvokingVertex %s\n", _mesa_lookup_enum_by_nr(n[1].ui)); break; /* * meta opcodes/commands */ case OPCODE_ERROR: printf("Error: %s %s\n", enum_string(n[1].e), (const char *) n[2].data); break; case OPCODE_CONTINUE: printf("DISPLAY-LIST-CONTINUE\n"); n = (Node *) n[1].next; break; case OPCODE_END_OF_LIST: printf("END-LIST %u\n", list); done = GL_TRUE; break; default: if (opcode < 0 || opcode > OPCODE_END_OF_LIST) { printf ("ERROR IN DISPLAY LIST: opcode = %d, address = %p\n", opcode, (void *) n); return; } else { printf("command %d, %u operands\n", opcode, InstSize[opcode]); } } /* increment n to point to next compiled command */ if (opcode != OPCODE_CONTINUE) { n += InstSize[opcode]; } } } } /** * Clients may call this function to help debug display list problems. * This function is _ONLY_FOR_DEBUGGING_PURPOSES_. It may be removed, * changed, or break in the future without notice. */ void mesa_print_display_list(GLuint list) { GET_CURRENT_CONTEXT(ctx); print_list(ctx, list); } /**********************************************************************/ /***** Initialization *****/ /**********************************************************************/ void _mesa_save_vtxfmt_init(GLvertexformat * vfmt) { _MESA_INIT_ARRAYELT_VTXFMT(vfmt, _ae_); vfmt->Begin = save_Begin; _MESA_INIT_DLIST_VTXFMT(vfmt, save_); vfmt->Color3f = save_Color3f; vfmt->Color3fv = save_Color3fv; vfmt->Color4f = save_Color4f; vfmt->Color4fv = save_Color4fv; vfmt->EdgeFlag = save_EdgeFlag; vfmt->End = save_End; _MESA_INIT_EVAL_VTXFMT(vfmt, save_); vfmt->FogCoordfEXT = save_FogCoordfEXT; vfmt->FogCoordfvEXT = save_FogCoordfvEXT; vfmt->Indexf = save_Indexf; vfmt->Indexfv = save_Indexfv; vfmt->Materialfv = save_Materialfv; vfmt->MultiTexCoord1fARB = save_MultiTexCoord1f; vfmt->MultiTexCoord1fvARB = save_MultiTexCoord1fv; vfmt->MultiTexCoord2fARB = save_MultiTexCoord2f; vfmt->MultiTexCoord2fvARB = save_MultiTexCoord2fv; vfmt->MultiTexCoord3fARB = save_MultiTexCoord3f; vfmt->MultiTexCoord3fvARB = save_MultiTexCoord3fv; vfmt->MultiTexCoord4fARB = save_MultiTexCoord4f; vfmt->MultiTexCoord4fvARB = save_MultiTexCoord4fv; vfmt->Normal3f = save_Normal3f; vfmt->Normal3fv = save_Normal3fv; vfmt->SecondaryColor3fEXT = save_SecondaryColor3fEXT; vfmt->SecondaryColor3fvEXT = save_SecondaryColor3fvEXT; vfmt->TexCoord1f = save_TexCoord1f; vfmt->TexCoord1fv = save_TexCoord1fv; vfmt->TexCoord2f = save_TexCoord2f; vfmt->TexCoord2fv = save_TexCoord2fv; vfmt->TexCoord3f = save_TexCoord3f; vfmt->TexCoord3fv = save_TexCoord3fv; vfmt->TexCoord4f = save_TexCoord4f; vfmt->TexCoord4fv = save_TexCoord4fv; vfmt->Vertex2f = save_Vertex2f; vfmt->Vertex2fv = save_Vertex2fv; vfmt->Vertex3f = save_Vertex3f; vfmt->Vertex3fv = save_Vertex3fv; vfmt->Vertex4f = save_Vertex4f; vfmt->Vertex4fv = save_Vertex4fv; vfmt->VertexAttrib1fARB = save_VertexAttrib1fARB; vfmt->VertexAttrib1fvARB = save_VertexAttrib1fvARB; vfmt->VertexAttrib2fARB = save_VertexAttrib2fARB; vfmt->VertexAttrib2fvARB = save_VertexAttrib2fvARB; vfmt->VertexAttrib3fARB = save_VertexAttrib3fARB; vfmt->VertexAttrib3fvARB = save_VertexAttrib3fvARB; vfmt->VertexAttrib4fARB = save_VertexAttrib4fARB; vfmt->VertexAttrib4fvARB = save_VertexAttrib4fvARB; vfmt->Rectf = save_Rectf; /* GL_ARB_draw_instanced */ vfmt->DrawArraysInstanced = save_DrawArraysInstancedARB; vfmt->DrawElementsInstanced = save_DrawElementsInstancedARB; /* GL_ARB_draw_elements_base_vertex */ vfmt->DrawElementsInstancedBaseVertex = save_DrawElementsInstancedBaseVertexARB; /* GL_ARB_base_instance */ vfmt->DrawArraysInstancedBaseInstance = save_DrawArraysInstancedBaseInstance; vfmt->DrawElementsInstancedBaseInstance = save_DrawElementsInstancedBaseInstance; vfmt->DrawElementsInstancedBaseVertexBaseInstance = save_DrawElementsInstancedBaseVertexBaseInstance; /* The driver is required to implement these as * 1) They can probably do a better job. * 2) A lot of new mechanisms would have to be added to this module * to support it. That code would probably never get used, * because of (1). */ #if 0 vfmt->DrawArrays = 0; vfmt->DrawElements = 0; vfmt->DrawRangeElements = 0; vfmt->MultiDrawElemementsEXT = 0; vfmt->DrawElementsBaseVertex = 0; vfmt->DrawRangeElementsBaseVertex = 0; vfmt->MultiDrawElemementsBaseVertex = 0; #endif } void _mesa_install_dlist_vtxfmt(struct _glapi_table *disp, const GLvertexformat *vfmt) { SET_CallList(disp, vfmt->CallList); SET_CallLists(disp, vfmt->CallLists); } /** * Initialize display list state for given context. */ void _mesa_init_display_list(struct gl_context *ctx) { static GLboolean tableInitialized = GL_FALSE; /* zero-out the instruction size table, just once */ if (!tableInitialized) { memset(InstSize, 0, sizeof(InstSize)); tableInitialized = GL_TRUE; } /* extension info */ ctx->ListExt = CALLOC_STRUCT(gl_list_extensions); /* Display list */ ctx->ListState.CallDepth = 0; ctx->ExecuteFlag = GL_TRUE; ctx->CompileFlag = GL_FALSE; ctx->ListState.CurrentBlock = NULL; ctx->ListState.CurrentPos = 0; /* Display List group */ ctx->List.ListBase = 0; _mesa_save_vtxfmt_init(&ctx->ListState.ListVtxfmt); } void _mesa_free_display_list_data(struct gl_context *ctx) { free(ctx->ListExt); ctx->ListExt = NULL; }