/* * Mesa 3-D graphics library * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * Copyright (C) 2009 VMware, Inc. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /** * \file bufferobj.c * \brief Functions for the GL_ARB_vertex/pixel_buffer_object extensions. * \author Brian Paul, Ian Romanick */ #include #include /* for PRId64 macro */ #include "glheader.h" #include "enums.h" #include "hash.h" #include "imports.h" #include "image.h" #include "context.h" #include "bufferobj.h" #include "fbobject.h" #include "mtypes.h" #include "texobj.h" #include "teximage.h" #include "glformats.h" #include "texstore.h" #include "transformfeedback.h" #include "dispatch.h" /* Debug flags */ /*#define VBO_DEBUG*/ /*#define BOUNDS_CHECK*/ /** * Used as a placeholder for buffer objects between glGenBuffers() and * glBindBuffer() so that glIsBuffer() can work correctly. */ static struct gl_buffer_object DummyBufferObject; /** * Return pointer to address of a buffer object target. * \param ctx the GL context * \param target the buffer object target to be retrieved. * \return pointer to pointer to the buffer object bound to \c target in the * specified context or \c NULL if \c target is invalid. */ static inline struct gl_buffer_object ** get_buffer_target(struct gl_context *ctx, GLenum target) { /* Other targets are only supported in desktop OpenGL and OpenGL ES 3.0. */ if (!_mesa_is_desktop_gl(ctx) && !_mesa_is_gles3(ctx) && target != GL_ARRAY_BUFFER && target != GL_ELEMENT_ARRAY_BUFFER) return NULL; switch (target) { case GL_ARRAY_BUFFER_ARB: return &ctx->Array.ArrayBufferObj; case GL_ELEMENT_ARRAY_BUFFER_ARB: return &ctx->Array.VAO->IndexBufferObj; case GL_PIXEL_PACK_BUFFER_EXT: return &ctx->Pack.BufferObj; case GL_PIXEL_UNPACK_BUFFER_EXT: return &ctx->Unpack.BufferObj; case GL_COPY_READ_BUFFER: return &ctx->CopyReadBuffer; case GL_COPY_WRITE_BUFFER: return &ctx->CopyWriteBuffer; case GL_DRAW_INDIRECT_BUFFER: if ((ctx->API == API_OPENGL_CORE && ctx->Extensions.ARB_draw_indirect) || _mesa_is_gles31(ctx)) { return &ctx->DrawIndirectBuffer; } break; case GL_TRANSFORM_FEEDBACK_BUFFER: if (ctx->Extensions.EXT_transform_feedback) { return &ctx->TransformFeedback.CurrentBuffer; } break; case GL_TEXTURE_BUFFER: if (ctx->API == API_OPENGL_CORE && ctx->Extensions.ARB_texture_buffer_object) { return &ctx->Texture.BufferObject; } break; case GL_UNIFORM_BUFFER: if (ctx->Extensions.ARB_uniform_buffer_object) { return &ctx->UniformBuffer; } break; case GL_SHADER_STORAGE_BUFFER: if (ctx->Extensions.ARB_shader_storage_buffer_object) { return &ctx->ShaderStorageBuffer; } break; case GL_ATOMIC_COUNTER_BUFFER: if (ctx->Extensions.ARB_shader_atomic_counters) { return &ctx->AtomicBuffer; } break; case GL_EXTERNAL_VIRTUAL_MEMORY_BUFFER_AMD: if (ctx->Extensions.AMD_pinned_memory) { return &ctx->ExternalVirtualMemoryBuffer; } break; default: return NULL; } return NULL; } /** * Get the buffer object bound to the specified target in a GL context. * \param ctx the GL context * \param target the buffer object target to be retrieved. * \param error the GL error to record if target is illegal. * \return pointer to the buffer object bound to \c target in the * specified context or \c NULL if \c target is invalid. */ static inline struct gl_buffer_object * get_buffer(struct gl_context *ctx, const char *func, GLenum target, GLenum error) { struct gl_buffer_object **bufObj = get_buffer_target(ctx, target); if (!bufObj) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(target)", func); return NULL; } if (!_mesa_is_bufferobj(*bufObj)) { _mesa_error(ctx, error, "%s(no buffer bound)", func); return NULL; } return *bufObj; } /** * Convert a GLbitfield describing the mapped buffer access flags * into one of GL_READ_WRITE, GL_READ_ONLY, or GL_WRITE_ONLY. */ static GLenum simplified_access_mode(struct gl_context *ctx, GLbitfield access) { const GLbitfield rwFlags = GL_MAP_READ_BIT | GL_MAP_WRITE_BIT; if ((access & rwFlags) == rwFlags) return GL_READ_WRITE; if ((access & GL_MAP_READ_BIT) == GL_MAP_READ_BIT) return GL_READ_ONLY; if ((access & GL_MAP_WRITE_BIT) == GL_MAP_WRITE_BIT) return GL_WRITE_ONLY; /* Otherwise, AccessFlags is zero (the default state). * * Table 2.6 on page 31 (page 44 of the PDF) of the OpenGL 1.5 spec says: * * Name Type Initial Value Legal Values * ... ... ... ... * BUFFER_ACCESS enum READ_WRITE READ_ONLY, WRITE_ONLY * READ_WRITE * * However, table 6.8 in the GL_OES_mapbuffer extension says: * * Get Value Type Get Command Value Description * --------- ---- ----------- ----- ----------- * BUFFER_ACCESS_OES Z1 GetBufferParameteriv WRITE_ONLY_OES buffer map flag * * The difference is because GL_OES_mapbuffer only supports mapping buffers * write-only. */ assert(access == 0); return _mesa_is_gles(ctx) ? GL_WRITE_ONLY : GL_READ_WRITE; } /** * Test if the buffer is mapped, and if so, if the mapped range overlaps the * given range. * The regions do not overlap if and only if the end of the given * region is before the mapped region or the start of the given region * is after the mapped region. * * \param obj Buffer object target on which to operate. * \param offset Offset of the first byte of the subdata range. * \param size Size, in bytes, of the subdata range. * \return true if ranges overlap, false otherwise * */ static bool bufferobj_range_mapped(const struct gl_buffer_object *obj, GLintptr offset, GLsizeiptr size) { if (_mesa_bufferobj_mapped(obj, MAP_USER)) { const GLintptr end = offset + size; const GLintptr mapEnd = obj->Mappings[MAP_USER].Offset + obj->Mappings[MAP_USER].Length; if (!(end <= obj->Mappings[MAP_USER].Offset || offset >= mapEnd)) { return true; } } return false; } /** * Tests the subdata range parameters and sets the GL error code for * \c glBufferSubDataARB, \c glGetBufferSubDataARB and * \c glClearBufferSubData. * * \param ctx GL context. * \param bufObj The buffer object. * \param offset Offset of the first byte of the subdata range. * \param size Size, in bytes, of the subdata range. * \param mappedRange If true, checks if an overlapping range is mapped. * If false, checks if buffer is mapped. * \param caller Name of calling function for recording errors. * \return false if error, true otherwise * * \sa glBufferSubDataARB, glGetBufferSubDataARB, glClearBufferSubData */ static bool buffer_object_subdata_range_good(struct gl_context *ctx, struct gl_buffer_object *bufObj, GLintptr offset, GLsizeiptr size, bool mappedRange, const char *caller) { if (size < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(size < 0)", caller); return false; } if (offset < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(offset < 0)", caller); return false; } if (offset + size > bufObj->Size) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(offset %lu + size %lu > buffer size %lu)", caller, (unsigned long) offset, (unsigned long) size, (unsigned long) bufObj->Size); return false; } if (bufObj->Mappings[MAP_USER].AccessFlags & GL_MAP_PERSISTENT_BIT) return true; if (mappedRange) { if (bufferobj_range_mapped(bufObj, offset, size)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(range is mapped without persistent bit)", caller); return false; } } else { if (_mesa_bufferobj_mapped(bufObj, MAP_USER)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(buffer is mapped without persistent bit)", caller); return false; } } return true; } /** * Test the format and type parameters and set the GL error code for * \c glClearBufferData and \c glClearBufferSubData. * * \param ctx GL context. * \param internalformat Format to which the data is to be converted. * \param format Format of the supplied data. * \param type Type of the supplied data. * \param caller Name of calling function for recording errors. * \return If internalformat, format and type are legal the mesa_format * corresponding to internalformat, otherwise MESA_FORMAT_NONE. * * \sa glClearBufferData and glClearBufferSubData */ static mesa_format validate_clear_buffer_format(struct gl_context *ctx, GLenum internalformat, GLenum format, GLenum type, const char *caller) { mesa_format mesaFormat; GLenum errorFormatType; mesaFormat = _mesa_validate_texbuffer_format(ctx, internalformat); if (mesaFormat == MESA_FORMAT_NONE) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(invalid internalformat)", caller); return MESA_FORMAT_NONE; } /* NOTE: not mentioned in ARB_clear_buffer_object but according to * EXT_texture_integer there is no conversion between integer and * non-integer formats */ if (_mesa_is_enum_format_signed_int(format) != _mesa_is_format_integer_color(mesaFormat)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(integer vs non-integer)", caller); return MESA_FORMAT_NONE; } if (!_mesa_is_color_format(format)) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(format is not a color format)", caller); return MESA_FORMAT_NONE; } errorFormatType = _mesa_error_check_format_and_type(ctx, format, type); if (errorFormatType != GL_NO_ERROR) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(invalid format or type)", caller); return MESA_FORMAT_NONE; } return mesaFormat; } /** * Convert user-specified clear value to the specified internal format. * * \param ctx GL context. * \param internalformat Format to which the data is converted. * \param clearValue Points to the converted clear value. * \param format Format of the supplied data. * \param type Type of the supplied data. * \param data Data which is to be converted to internalformat. * \param caller Name of calling function for recording errors. * \return true if data could be converted, false otherwise. * * \sa glClearBufferData, glClearBufferSubData */ static bool convert_clear_buffer_data(struct gl_context *ctx, mesa_format internalformat, GLubyte *clearValue, GLenum format, GLenum type, const GLvoid *data, const char *caller) { GLenum internalformatBase = _mesa_get_format_base_format(internalformat); if (_mesa_texstore(ctx, 1, internalformatBase, internalformat, 0, &clearValue, 1, 1, 1, format, type, data, &ctx->Unpack)) { return true; } else { _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", caller); return false; } } /** * Allocate and initialize a new buffer object. * * Default callback for the \c dd_function_table::NewBufferObject() hook. */ static struct gl_buffer_object * _mesa_new_buffer_object(struct gl_context *ctx, GLuint name) { struct gl_buffer_object *obj; (void) ctx; obj = MALLOC_STRUCT(gl_buffer_object); _mesa_initialize_buffer_object(ctx, obj, name); return obj; } /** * Delete a buffer object. * * Default callback for the \c dd_function_table::DeleteBuffer() hook. */ static void _mesa_delete_buffer_object(struct gl_context *ctx, struct gl_buffer_object *bufObj) { (void) ctx; _mesa_align_free(bufObj->Data); /* assign strange values here to help w/ debugging */ bufObj->RefCount = -1000; bufObj->Name = ~0; mtx_destroy(&bufObj->Mutex); free(bufObj->Label); free(bufObj); } /** * Set ptr to bufObj w/ reference counting. * This is normally only called from the _mesa_reference_buffer_object() macro * when there's a real pointer change. */ void _mesa_reference_buffer_object_(struct gl_context *ctx, struct gl_buffer_object **ptr, struct gl_buffer_object *bufObj) { if (*ptr) { /* Unreference the old buffer */ GLboolean deleteFlag = GL_FALSE; struct gl_buffer_object *oldObj = *ptr; mtx_lock(&oldObj->Mutex); assert(oldObj->RefCount > 0); oldObj->RefCount--; #if 0 printf("BufferObj %p %d DECR to %d\n", (void *) oldObj, oldObj->Name, oldObj->RefCount); #endif deleteFlag = (oldObj->RefCount == 0); mtx_unlock(&oldObj->Mutex); if (deleteFlag) { /* some sanity checking: don't delete a buffer still in use */ #if 0 /* unfortunately, these tests are invalid during context tear-down */ assert(ctx->Array.ArrayBufferObj != bufObj); assert(ctx->Array.VAO->IndexBufferObj != bufObj); assert(ctx->Array.VAO->Vertex.BufferObj != bufObj); #endif assert(ctx->Driver.DeleteBuffer); ctx->Driver.DeleteBuffer(ctx, oldObj); } *ptr = NULL; } assert(!*ptr); if (bufObj) { /* reference new buffer */ mtx_lock(&bufObj->Mutex); if (bufObj->RefCount == 0) { /* this buffer's being deleted (look just above) */ /* Not sure this can every really happen. Warn if it does. */ _mesa_problem(NULL, "referencing deleted buffer object"); *ptr = NULL; } else { bufObj->RefCount++; #if 0 printf("BufferObj %p %d INCR to %d\n", (void *) bufObj, bufObj->Name, bufObj->RefCount); #endif *ptr = bufObj; } mtx_unlock(&bufObj->Mutex); } } /** * Initialize a buffer object to default values. */ void _mesa_initialize_buffer_object(struct gl_context *ctx, struct gl_buffer_object *obj, GLuint name) { memset(obj, 0, sizeof(struct gl_buffer_object)); mtx_init(&obj->Mutex, mtx_plain); obj->RefCount = 1; obj->Name = name; obj->Usage = GL_STATIC_DRAW_ARB; } /** * Callback called from _mesa_HashWalk() */ static void count_buffer_size(GLuint key, void *data, void *userData) { const struct gl_buffer_object *bufObj = (const struct gl_buffer_object *) data; GLuint *total = (GLuint *) userData; *total = *total + bufObj->Size; } /** * Compute total size (in bytes) of all buffer objects for the given context. * For debugging purposes. */ GLuint _mesa_total_buffer_object_memory(struct gl_context *ctx) { GLuint total = 0; _mesa_HashWalk(ctx->Shared->BufferObjects, count_buffer_size, &total); return total; } /** * Allocate space for and store data in a buffer object. Any data that was * previously stored in the buffer object is lost. If \c data is \c NULL, * memory will be allocated, but no copy will occur. * * This is the default callback for \c dd_function_table::BufferData() * Note that all GL error checking will have been done already. * * \param ctx GL context. * \param target Buffer object target on which to operate. * \param size Size, in bytes, of the new data store. * \param data Pointer to the data to store in the buffer object. This * pointer may be \c NULL. * \param usage Hints about how the data will be used. * \param bufObj Object to be used. * * \return GL_TRUE for success, GL_FALSE for failure * \sa glBufferDataARB, dd_function_table::BufferData. */ static GLboolean buffer_data_fallback(struct gl_context *ctx, GLenum target, GLsizeiptr size, const GLvoid *data, GLenum usage, GLenum storageFlags, struct gl_buffer_object *bufObj) { void * new_data; (void) target; _mesa_align_free( bufObj->Data ); new_data = _mesa_align_malloc( size, ctx->Const.MinMapBufferAlignment ); if (new_data) { bufObj->Data = (GLubyte *) new_data; bufObj->Size = size; bufObj->Usage = usage; bufObj->StorageFlags = storageFlags; if (data) { memcpy( bufObj->Data, data, size ); } return GL_TRUE; } else { return GL_FALSE; } } /** * Replace data in a subrange of buffer object. If the data range * specified by \c size + \c offset extends beyond the end of the buffer or * if \c data is \c NULL, no copy is performed. * * This is the default callback for \c dd_function_table::BufferSubData() * Note that all GL error checking will have been done already. * * \param ctx GL context. * \param offset Offset of the first byte to be modified. * \param size Size, in bytes, of the data range. * \param data Pointer to the data to store in the buffer object. * \param bufObj Object to be used. * * \sa glBufferSubDataARB, dd_function_table::BufferSubData. */ static void buffer_sub_data_fallback(struct gl_context *ctx, GLintptr offset, GLsizeiptr size, const GLvoid *data, struct gl_buffer_object *bufObj) { (void) ctx; /* this should have been caught in _mesa_BufferSubData() */ assert(size + offset <= bufObj->Size); if (bufObj->Data) { memcpy( (GLubyte *) bufObj->Data + offset, data, size ); } } /** * Retrieve data from a subrange of buffer object. If the data range * specified by \c size + \c offset extends beyond the end of the buffer or * if \c data is \c NULL, no copy is performed. * * This is the default callback for \c dd_function_table::GetBufferSubData() * Note that all GL error checking will have been done already. * * \param ctx GL context. * \param target Buffer object target on which to operate. * \param offset Offset of the first byte to be fetched. * \param size Size, in bytes, of the data range. * \param data Destination for data * \param bufObj Object to be used. * * \sa glBufferGetSubDataARB, dd_function_table::GetBufferSubData. */ static void _mesa_buffer_get_subdata( struct gl_context *ctx, GLintptrARB offset, GLsizeiptrARB size, GLvoid * data, struct gl_buffer_object * bufObj ) { (void) ctx; if (bufObj->Data && ((GLsizeiptrARB) (size + offset) <= bufObj->Size)) { memcpy( data, (GLubyte *) bufObj->Data + offset, size ); } } /** * Clear a subrange of the buffer object with copies of the supplied data. * If data is NULL the buffer is filled with zeros. * * This is the default callback for \c dd_function_table::ClearBufferSubData() * Note that all GL error checking will have been done already. * * \param ctx GL context. * \param offset Offset of the first byte to be cleared. * \param size Size, in bytes, of the to be cleared range. * \param clearValue Source of the data. * \param clearValueSize Size, in bytes, of the supplied data. * \param bufObj Object to be cleared. * * \sa glClearBufferSubData, glClearBufferData and * dd_function_table::ClearBufferSubData. */ void _mesa_ClearBufferSubData_sw(struct gl_context *ctx, GLintptr offset, GLsizeiptr size, const GLvoid *clearValue, GLsizeiptr clearValueSize, struct gl_buffer_object *bufObj) { GLsizeiptr i; GLubyte *dest; assert(ctx->Driver.MapBufferRange); dest = ctx->Driver.MapBufferRange(ctx, offset, size, GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT, bufObj, MAP_INTERNAL); if (!dest) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glClearBuffer[Sub]Data"); return; } if (clearValue == NULL) { /* Clear with zeros, per the spec */ memset(dest, 0, size); ctx->Driver.UnmapBuffer(ctx, bufObj, MAP_INTERNAL); return; } for (i = 0; i < size/clearValueSize; ++i) { memcpy(dest, clearValue, clearValueSize); dest += clearValueSize; } ctx->Driver.UnmapBuffer(ctx, bufObj, MAP_INTERNAL); } /** * Default fallback for \c dd_function_table::MapBufferRange(). * Called via glMapBufferRange(). */ static void * map_buffer_range_fallback(struct gl_context *ctx, GLintptr offset, GLsizeiptr length, GLbitfield access, struct gl_buffer_object *bufObj, gl_map_buffer_index index) { (void) ctx; assert(!_mesa_bufferobj_mapped(bufObj, index)); /* Just return a direct pointer to the data */ bufObj->Mappings[index].Pointer = bufObj->Data + offset; bufObj->Mappings[index].Length = length; bufObj->Mappings[index].Offset = offset; bufObj->Mappings[index].AccessFlags = access; return bufObj->Mappings[index].Pointer; } /** * Default fallback for \c dd_function_table::FlushMappedBufferRange(). * Called via glFlushMappedBufferRange(). */ static void flush_mapped_buffer_range_fallback(struct gl_context *ctx, GLintptr offset, GLsizeiptr length, struct gl_buffer_object *obj, gl_map_buffer_index index) { (void) ctx; (void) offset; (void) length; (void) obj; /* no-op */ } /** * Default callback for \c dd_function_table::UnmapBuffer(). * * The input parameters will have been already tested for errors. * * \sa glUnmapBufferARB, dd_function_table::UnmapBuffer */ static GLboolean unmap_buffer_fallback(struct gl_context *ctx, struct gl_buffer_object *bufObj, gl_map_buffer_index index) { (void) ctx; /* XXX we might assert here that bufObj->Pointer is non-null */ bufObj->Mappings[index].Pointer = NULL; bufObj->Mappings[index].Length = 0; bufObj->Mappings[index].Offset = 0; bufObj->Mappings[index].AccessFlags = 0x0; return GL_TRUE; } /** * Default fallback for \c dd_function_table::CopyBufferSubData(). * Called via glCopyBufferSubData(). */ static void copy_buffer_sub_data_fallback(struct gl_context *ctx, struct gl_buffer_object *src, struct gl_buffer_object *dst, GLintptr readOffset, GLintptr writeOffset, GLsizeiptr size) { GLubyte *srcPtr, *dstPtr; if (src == dst) { srcPtr = dstPtr = ctx->Driver.MapBufferRange(ctx, 0, src->Size, GL_MAP_READ_BIT | GL_MAP_WRITE_BIT, src, MAP_INTERNAL); if (!srcPtr) return; srcPtr += readOffset; dstPtr += writeOffset; } else { srcPtr = ctx->Driver.MapBufferRange(ctx, readOffset, size, GL_MAP_READ_BIT, src, MAP_INTERNAL); dstPtr = ctx->Driver.MapBufferRange(ctx, writeOffset, size, (GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT), dst, MAP_INTERNAL); } /* Note: the src and dst regions will never overlap. Trying to do so * would generate GL_INVALID_VALUE earlier. */ if (srcPtr && dstPtr) memcpy(dstPtr, srcPtr, size); ctx->Driver.UnmapBuffer(ctx, src, MAP_INTERNAL); if (dst != src) ctx->Driver.UnmapBuffer(ctx, dst, MAP_INTERNAL); } /** * Initialize the state associated with buffer objects */ void _mesa_init_buffer_objects( struct gl_context *ctx ) { GLuint i; memset(&DummyBufferObject, 0, sizeof(DummyBufferObject)); mtx_init(&DummyBufferObject.Mutex, mtx_plain); DummyBufferObject.RefCount = 1000*1000*1000; /* never delete */ _mesa_reference_buffer_object(ctx, &ctx->Array.ArrayBufferObj, ctx->Shared->NullBufferObj); _mesa_reference_buffer_object(ctx, &ctx->CopyReadBuffer, ctx->Shared->NullBufferObj); _mesa_reference_buffer_object(ctx, &ctx->CopyWriteBuffer, ctx->Shared->NullBufferObj); _mesa_reference_buffer_object(ctx, &ctx->UniformBuffer, ctx->Shared->NullBufferObj); _mesa_reference_buffer_object(ctx, &ctx->ShaderStorageBuffer, ctx->Shared->NullBufferObj); _mesa_reference_buffer_object(ctx, &ctx->AtomicBuffer, ctx->Shared->NullBufferObj); _mesa_reference_buffer_object(ctx, &ctx->DrawIndirectBuffer, ctx->Shared->NullBufferObj); for (i = 0; i < MAX_COMBINED_UNIFORM_BUFFERS; i++) { _mesa_reference_buffer_object(ctx, &ctx->UniformBufferBindings[i].BufferObject, ctx->Shared->NullBufferObj); ctx->UniformBufferBindings[i].Offset = -1; ctx->UniformBufferBindings[i].Size = -1; } for (i = 0; i < MAX_COMBINED_SHADER_STORAGE_BUFFERS; i++) { _mesa_reference_buffer_object(ctx, &ctx->ShaderStorageBufferBindings[i].BufferObject, ctx->Shared->NullBufferObj); ctx->ShaderStorageBufferBindings[i].Offset = -1; ctx->ShaderStorageBufferBindings[i].Size = -1; } for (i = 0; i < MAX_COMBINED_ATOMIC_BUFFERS; i++) { _mesa_reference_buffer_object(ctx, &ctx->AtomicBufferBindings[i].BufferObject, ctx->Shared->NullBufferObj); ctx->AtomicBufferBindings[i].Offset = -1; ctx->AtomicBufferBindings[i].Size = -1; } } void _mesa_free_buffer_objects( struct gl_context *ctx ) { GLuint i; _mesa_reference_buffer_object(ctx, &ctx->Array.ArrayBufferObj, NULL); _mesa_reference_buffer_object(ctx, &ctx->CopyReadBuffer, NULL); _mesa_reference_buffer_object(ctx, &ctx->CopyWriteBuffer, NULL); _mesa_reference_buffer_object(ctx, &ctx->UniformBuffer, NULL); _mesa_reference_buffer_object(ctx, &ctx->ShaderStorageBuffer, NULL); _mesa_reference_buffer_object(ctx, &ctx->AtomicBuffer, NULL); _mesa_reference_buffer_object(ctx, &ctx->DrawIndirectBuffer, NULL); for (i = 0; i < MAX_COMBINED_UNIFORM_BUFFERS; i++) { _mesa_reference_buffer_object(ctx, &ctx->UniformBufferBindings[i].BufferObject, NULL); } for (i = 0; i < MAX_COMBINED_SHADER_STORAGE_BUFFERS; i++) { _mesa_reference_buffer_object(ctx, &ctx->ShaderStorageBufferBindings[i].BufferObject, NULL); } for (i = 0; i < MAX_COMBINED_ATOMIC_BUFFERS; i++) { _mesa_reference_buffer_object(ctx, &ctx->AtomicBufferBindings[i].BufferObject, NULL); } } bool _mesa_handle_bind_buffer_gen(struct gl_context *ctx, GLenum target, GLuint buffer, struct gl_buffer_object **buf_handle, const char *caller) { struct gl_buffer_object *buf = *buf_handle; if (!buf && ctx->API == API_OPENGL_CORE) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(non-gen name)", caller); return false; } if (!buf || buf == &DummyBufferObject) { /* If this is a new buffer object id, or one which was generated but * never used before, allocate a buffer object now. */ assert(ctx->Driver.NewBufferObject); buf = ctx->Driver.NewBufferObject(ctx, buffer); if (!buf) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", caller); return false; } _mesa_HashInsert(ctx->Shared->BufferObjects, buffer, buf); *buf_handle = buf; } return true; } /** * Bind the specified target to buffer for the specified context. * Called by glBindBuffer() and other functions. */ static void bind_buffer_object(struct gl_context *ctx, GLenum target, GLuint buffer) { struct gl_buffer_object *oldBufObj; struct gl_buffer_object *newBufObj = NULL; struct gl_buffer_object **bindTarget = NULL; bindTarget = get_buffer_target(ctx, target); if (!bindTarget) { _mesa_error(ctx, GL_INVALID_ENUM, "glBindBufferARB(target 0x%x)", target); return; } /* Get pointer to old buffer object (to be unbound) */ oldBufObj = *bindTarget; if (oldBufObj && oldBufObj->Name == buffer && !oldBufObj->DeletePending) return; /* rebinding the same buffer object- no change */ /* * Get pointer to new buffer object (newBufObj) */ if (buffer == 0) { /* The spec says there's not a buffer object named 0, but we use * one internally because it simplifies things. */ newBufObj = ctx->Shared->NullBufferObj; } else { /* non-default buffer object */ newBufObj = _mesa_lookup_bufferobj(ctx, buffer); if (!_mesa_handle_bind_buffer_gen(ctx, target, buffer, &newBufObj, "glBindBuffer")) return; } /* bind new buffer */ _mesa_reference_buffer_object(ctx, bindTarget, newBufObj); } /** * Update the default buffer objects in the given context to reference those * specified in the shared state and release those referencing the old * shared state. */ void _mesa_update_default_objects_buffer_objects(struct gl_context *ctx) { /* Bind the NullBufferObj to remove references to those * in the shared context hash table. */ bind_buffer_object( ctx, GL_ARRAY_BUFFER_ARB, 0); bind_buffer_object( ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, 0); bind_buffer_object( ctx, GL_PIXEL_PACK_BUFFER_ARB, 0); bind_buffer_object( ctx, GL_PIXEL_UNPACK_BUFFER_ARB, 0); } /** * Return the gl_buffer_object for the given ID. * Always return NULL for ID 0. */ struct gl_buffer_object * _mesa_lookup_bufferobj(struct gl_context *ctx, GLuint buffer) { if (buffer == 0) return NULL; else return (struct gl_buffer_object *) _mesa_HashLookup(ctx->Shared->BufferObjects, buffer); } struct gl_buffer_object * _mesa_lookup_bufferobj_locked(struct gl_context *ctx, GLuint buffer) { return (struct gl_buffer_object *) _mesa_HashLookupLocked(ctx->Shared->BufferObjects, buffer); } /** * A convenience function for direct state access functions that throws * GL_INVALID_OPERATION if buffer is not the name of an existing * buffer object. */ struct gl_buffer_object * _mesa_lookup_bufferobj_err(struct gl_context *ctx, GLuint buffer, const char *caller) { struct gl_buffer_object *bufObj; bufObj = _mesa_lookup_bufferobj(ctx, buffer); if (!bufObj || bufObj == &DummyBufferObject) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(non-existent buffer object %u)", caller, buffer); return NULL; } return bufObj; } void _mesa_begin_bufferobj_lookups(struct gl_context *ctx) { _mesa_HashLockMutex(ctx->Shared->BufferObjects); } void _mesa_end_bufferobj_lookups(struct gl_context *ctx) { _mesa_HashUnlockMutex(ctx->Shared->BufferObjects); } /** * Look up a buffer object for a multi-bind function. * * Unlike _mesa_lookup_bufferobj(), this function also takes care * of generating an error if the buffer ID is not zero or the name * of an existing buffer object. * * If the buffer ID refers to an existing buffer object, a pointer * to the buffer object is returned. If the ID is zero, a pointer * to the shared NullBufferObj is returned. If the ID is not zero * and does not refer to a valid buffer object, this function * returns NULL. * * This function assumes that the caller has already locked the * hash table mutex by calling _mesa_begin_bufferobj_lookups(). */ struct gl_buffer_object * _mesa_multi_bind_lookup_bufferobj(struct gl_context *ctx, const GLuint *buffers, GLuint index, const char *caller) { struct gl_buffer_object *bufObj; if (buffers[index] != 0) { bufObj = _mesa_lookup_bufferobj_locked(ctx, buffers[index]); /* The multi-bind functions don't create the buffer objects when they don't exist. */ if (bufObj == &DummyBufferObject) bufObj = NULL; } else bufObj = ctx->Shared->NullBufferObj; if (!bufObj) { /* The ARB_multi_bind spec says: * * "An INVALID_OPERATION error is generated if any value * in is not zero or the name of an existing * buffer object (per binding)." */ _mesa_error(ctx, GL_INVALID_OPERATION, "%s(buffers[%u]=%u is not zero or the name " "of an existing buffer object)", caller, index, buffers[index]); } return bufObj; } /** * If *ptr points to obj, set ptr = the Null/default buffer object. * This is a helper for buffer object deletion. * The GL spec says that deleting a buffer object causes it to get * unbound from all arrays in the current context. */ static void unbind(struct gl_context *ctx, struct gl_buffer_object **ptr, struct gl_buffer_object *obj) { if (*ptr == obj) { _mesa_reference_buffer_object(ctx, ptr, ctx->Shared->NullBufferObj); } } /** * Plug default/fallback buffer object functions into the device * driver hooks. */ void _mesa_init_buffer_object_functions(struct dd_function_table *driver) { /* GL_ARB_vertex/pixel_buffer_object */ driver->NewBufferObject = _mesa_new_buffer_object; driver->DeleteBuffer = _mesa_delete_buffer_object; driver->BufferData = buffer_data_fallback; driver->BufferSubData = buffer_sub_data_fallback; driver->GetBufferSubData = _mesa_buffer_get_subdata; driver->UnmapBuffer = unmap_buffer_fallback; /* GL_ARB_clear_buffer_object */ driver->ClearBufferSubData = _mesa_ClearBufferSubData_sw; /* GL_ARB_map_buffer_range */ driver->MapBufferRange = map_buffer_range_fallback; driver->FlushMappedBufferRange = flush_mapped_buffer_range_fallback; /* GL_ARB_copy_buffer */ driver->CopyBufferSubData = copy_buffer_sub_data_fallback; } void _mesa_buffer_unmap_all_mappings(struct gl_context *ctx, struct gl_buffer_object *bufObj) { int i; for (i = 0; i < MAP_COUNT; i++) { if (_mesa_bufferobj_mapped(bufObj, i)) { ctx->Driver.UnmapBuffer(ctx, bufObj, i); assert(bufObj->Mappings[i].Pointer == NULL); bufObj->Mappings[i].AccessFlags = 0; } } } /**********************************************************************/ /* API Functions */ /**********************************************************************/ void GLAPIENTRY _mesa_BindBuffer(GLenum target, GLuint buffer) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glBindBuffer(%s, %u)\n", _mesa_enum_to_string(target), buffer); bind_buffer_object(ctx, target, buffer); } /** * Delete a set of buffer objects. * * \param n Number of buffer objects to delete. * \param ids Array of \c n buffer object IDs. */ void GLAPIENTRY _mesa_DeleteBuffers(GLsizei n, const GLuint *ids) { GET_CURRENT_CONTEXT(ctx); GLsizei i; FLUSH_VERTICES(ctx, 0); if (n < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glDeleteBuffersARB(n)"); return; } mtx_lock(&ctx->Shared->Mutex); for (i = 0; i < n; i++) { struct gl_buffer_object *bufObj = _mesa_lookup_bufferobj(ctx, ids[i]); if (bufObj) { struct gl_vertex_array_object *vao = ctx->Array.VAO; GLuint j; assert(bufObj->Name == ids[i] || bufObj == &DummyBufferObject); _mesa_buffer_unmap_all_mappings(ctx, bufObj); /* unbind any vertex pointers bound to this buffer */ for (j = 0; j < ARRAY_SIZE(vao->VertexBinding); j++) { unbind(ctx, &vao->VertexBinding[j].BufferObj, bufObj); } if (ctx->Array.ArrayBufferObj == bufObj) { _mesa_BindBuffer( GL_ARRAY_BUFFER_ARB, 0 ); } if (vao->IndexBufferObj == bufObj) { _mesa_BindBuffer( GL_ELEMENT_ARRAY_BUFFER_ARB, 0 ); } /* unbind ARB_draw_indirect binding point */ if (ctx->DrawIndirectBuffer == bufObj) { _mesa_BindBuffer( GL_DRAW_INDIRECT_BUFFER, 0 ); } /* unbind ARB_copy_buffer binding points */ if (ctx->CopyReadBuffer == bufObj) { _mesa_BindBuffer( GL_COPY_READ_BUFFER, 0 ); } if (ctx->CopyWriteBuffer == bufObj) { _mesa_BindBuffer( GL_COPY_WRITE_BUFFER, 0 ); } /* unbind transform feedback binding points */ if (ctx->TransformFeedback.CurrentBuffer == bufObj) { _mesa_BindBuffer( GL_TRANSFORM_FEEDBACK_BUFFER, 0 ); } for (j = 0; j < MAX_FEEDBACK_BUFFERS; j++) { if (ctx->TransformFeedback.CurrentObject->Buffers[j] == bufObj) { _mesa_BindBufferBase( GL_TRANSFORM_FEEDBACK_BUFFER, j, 0 ); } } /* unbind UBO binding points */ for (j = 0; j < ctx->Const.MaxUniformBufferBindings; j++) { if (ctx->UniformBufferBindings[j].BufferObject == bufObj) { _mesa_BindBufferBase( GL_UNIFORM_BUFFER, j, 0 ); } } if (ctx->UniformBuffer == bufObj) { _mesa_BindBuffer( GL_UNIFORM_BUFFER, 0 ); } /* unbind SSBO binding points */ for (j = 0; j < ctx->Const.MaxShaderStorageBufferBindings; j++) { if (ctx->ShaderStorageBufferBindings[j].BufferObject == bufObj) { _mesa_BindBufferBase(GL_SHADER_STORAGE_BUFFER, j, 0); } } if (ctx->ShaderStorageBuffer == bufObj) { _mesa_BindBuffer(GL_SHADER_STORAGE_BUFFER, 0); } /* unbind Atomci Buffer binding points */ for (j = 0; j < ctx->Const.MaxAtomicBufferBindings; j++) { if (ctx->AtomicBufferBindings[j].BufferObject == bufObj) { _mesa_BindBufferBase( GL_ATOMIC_COUNTER_BUFFER, j, 0 ); } } if (ctx->AtomicBuffer == bufObj) { _mesa_BindBuffer( GL_ATOMIC_COUNTER_BUFFER, 0 ); } /* unbind any pixel pack/unpack pointers bound to this buffer */ if (ctx->Pack.BufferObj == bufObj) { _mesa_BindBuffer( GL_PIXEL_PACK_BUFFER_EXT, 0 ); } if (ctx->Unpack.BufferObj == bufObj) { _mesa_BindBuffer( GL_PIXEL_UNPACK_BUFFER_EXT, 0 ); } if (ctx->Texture.BufferObject == bufObj) { _mesa_BindBuffer( GL_TEXTURE_BUFFER, 0 ); } if (ctx->ExternalVirtualMemoryBuffer == bufObj) { _mesa_BindBuffer(GL_EXTERNAL_VIRTUAL_MEMORY_BUFFER_AMD, 0); } /* The ID is immediately freed for re-use */ _mesa_HashRemove(ctx->Shared->BufferObjects, ids[i]); /* Make sure we do not run into the classic ABA problem on bind. * We don't want to allow re-binding a buffer object that's been * "deleted" by glDeleteBuffers(). * * The explicit rebinding to the default object in the current context * prevents the above in the current context, but another context * sharing the same objects might suffer from this problem. * The alternative would be to do the hash lookup in any case on bind * which would introduce more runtime overhead than this. */ bufObj->DeletePending = GL_TRUE; _mesa_reference_buffer_object(ctx, &bufObj, NULL); } } mtx_unlock(&ctx->Shared->Mutex); } /** * This is the implementation for glGenBuffers and glCreateBuffers. It is not * exposed to the rest of Mesa to encourage the use of nameless buffers in * driver internals. */ static void create_buffers(GLsizei n, GLuint *buffers, bool dsa) { GET_CURRENT_CONTEXT(ctx); GLuint first; GLint i; struct gl_buffer_object *buf; const char *func = dsa ? "glCreateBuffers" : "glGenBuffers"; if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "%s(%d)\n", func, n); if (n < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(n %d < 0)", func, n); return; } if (!buffers) { return; } /* * This must be atomic (generation and allocation of buffer object IDs) */ mtx_lock(&ctx->Shared->Mutex); first = _mesa_HashFindFreeKeyBlock(ctx->Shared->BufferObjects, n); /* Insert the ID and pointer into the hash table. If non-DSA, insert a * DummyBufferObject. Otherwise, create a new buffer object and insert * it. */ for (i = 0; i < n; i++) { buffers[i] = first + i; if (dsa) { assert(ctx->Driver.NewBufferObject); buf = ctx->Driver.NewBufferObject(ctx, buffers[i]); if (!buf) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func); mtx_unlock(&ctx->Shared->Mutex); return; } } else buf = &DummyBufferObject; _mesa_HashInsert(ctx->Shared->BufferObjects, buffers[i], buf); } mtx_unlock(&ctx->Shared->Mutex); } /** * Generate a set of unique buffer object IDs and store them in \c buffers. * * \param n Number of IDs to generate. * \param buffers Array of \c n locations to store the IDs. */ void GLAPIENTRY _mesa_GenBuffers(GLsizei n, GLuint *buffers) { create_buffers(n, buffers, false); } /** * Create a set of buffer objects and store their unique IDs in \c buffers. * * \param n Number of IDs to generate. * \param buffers Array of \c n locations to store the IDs. */ void GLAPIENTRY _mesa_CreateBuffers(GLsizei n, GLuint *buffers) { create_buffers(n, buffers, true); } /** * Determine if ID is the name of a buffer object. * * \param id ID of the potential buffer object. * \return \c GL_TRUE if \c id is the name of a buffer object, * \c GL_FALSE otherwise. */ GLboolean GLAPIENTRY _mesa_IsBuffer(GLuint id) { struct gl_buffer_object *bufObj; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE); mtx_lock(&ctx->Shared->Mutex); bufObj = _mesa_lookup_bufferobj(ctx, id); mtx_unlock(&ctx->Shared->Mutex); return bufObj && bufObj != &DummyBufferObject; } void _mesa_buffer_storage(struct gl_context *ctx, struct gl_buffer_object *bufObj, GLenum target, GLsizeiptr size, const GLvoid *data, GLbitfield flags, const char *func) { if (size <= 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(size <= 0)", func); return; } if (flags & ~(GL_MAP_READ_BIT | GL_MAP_WRITE_BIT | GL_MAP_PERSISTENT_BIT | GL_MAP_COHERENT_BIT | GL_DYNAMIC_STORAGE_BIT | GL_CLIENT_STORAGE_BIT)) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(invalid flag bits set)", func); return; } if (flags & GL_MAP_PERSISTENT_BIT && !(flags & (GL_MAP_READ_BIT | GL_MAP_WRITE_BIT))) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(PERSISTENT and flags!=READ/WRITE)", func); return; } if (flags & GL_MAP_COHERENT_BIT && !(flags & GL_MAP_PERSISTENT_BIT)) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(COHERENT and flags!=PERSISTENT)", func); return; } if (bufObj->Immutable) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(immutable)", func); return; } /* Unmap the existing buffer. We'll replace it now. Not an error. */ _mesa_buffer_unmap_all_mappings(ctx, bufObj); FLUSH_VERTICES(ctx, _NEW_BUFFER_OBJECT); bufObj->Written = GL_TRUE; bufObj->Immutable = GL_TRUE; assert(ctx->Driver.BufferData); if (!ctx->Driver.BufferData(ctx, target, size, data, GL_DYNAMIC_DRAW, flags, bufObj)) { if (target == GL_EXTERNAL_VIRTUAL_MEMORY_BUFFER_AMD) { /* Even though the interaction between AMD_pinned_memory and * glBufferStorage is not described in the spec, Graham Sellers * said that it should behave the same as glBufferData. */ _mesa_error(ctx, GL_INVALID_OPERATION, "%s", func); } else { _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func); } } } void GLAPIENTRY _mesa_BufferStorage(GLenum target, GLsizeiptr size, const GLvoid *data, GLbitfield flags) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = get_buffer(ctx, "glBufferStorage", target, GL_INVALID_OPERATION); if (!bufObj) return; _mesa_buffer_storage(ctx, bufObj, target, size, data, flags, "glBufferStorage"); } void GLAPIENTRY _mesa_NamedBufferStorage(GLuint buffer, GLsizeiptr size, const GLvoid *data, GLbitfield flags) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glNamedBufferStorage"); if (!bufObj) return; /* * In direct state access, buffer objects have an unspecified target since * they are not required to be bound. */ _mesa_buffer_storage(ctx, bufObj, GL_NONE, size, data, flags, "glNamedBufferStorage"); } void _mesa_buffer_data(struct gl_context *ctx, struct gl_buffer_object *bufObj, GLenum target, GLsizeiptr size, const GLvoid *data, GLenum usage, const char *func) { bool valid_usage; if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "%s(%s, %ld, %p, %s)\n", func, _mesa_enum_to_string(target), (long int) size, data, _mesa_enum_to_string(usage)); if (size < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(size < 0)", func); return; } switch (usage) { case GL_STREAM_DRAW_ARB: valid_usage = (ctx->API != API_OPENGLES); break; case GL_STATIC_DRAW_ARB: case GL_DYNAMIC_DRAW_ARB: valid_usage = true; break; case GL_STREAM_READ_ARB: case GL_STREAM_COPY_ARB: case GL_STATIC_READ_ARB: case GL_STATIC_COPY_ARB: case GL_DYNAMIC_READ_ARB: case GL_DYNAMIC_COPY_ARB: valid_usage = _mesa_is_desktop_gl(ctx) || _mesa_is_gles3(ctx); break; default: valid_usage = false; break; } if (!valid_usage) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(invalid usage: %s)", func, _mesa_enum_to_string(usage)); return; } if (bufObj->Immutable) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(immutable)", func); return; } /* Unmap the existing buffer. We'll replace it now. Not an error. */ _mesa_buffer_unmap_all_mappings(ctx, bufObj); FLUSH_VERTICES(ctx, _NEW_BUFFER_OBJECT); bufObj->Written = GL_TRUE; #ifdef VBO_DEBUG printf("glBufferDataARB(%u, sz %ld, from %p, usage 0x%x)\n", bufObj->Name, size, data, usage); #endif #ifdef BOUNDS_CHECK size += 100; #endif assert(ctx->Driver.BufferData); if (!ctx->Driver.BufferData(ctx, target, size, data, usage, GL_MAP_READ_BIT | GL_MAP_WRITE_BIT | GL_DYNAMIC_STORAGE_BIT, bufObj)) { if (target == GL_EXTERNAL_VIRTUAL_MEMORY_BUFFER_AMD) { /* From GL_AMD_pinned_memory: * * INVALID_OPERATION is generated by BufferData if is * EXTERNAL_VIRTUAL_MEMORY_BUFFER_AMD, and the store cannot be * mapped to the GPU address space. */ _mesa_error(ctx, GL_INVALID_OPERATION, "%s", func); } else { _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func); } } } void GLAPIENTRY _mesa_BufferData(GLenum target, GLsizeiptr size, const GLvoid *data, GLenum usage) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = get_buffer(ctx, "glBufferData", target, GL_INVALID_OPERATION); if (!bufObj) return; _mesa_buffer_data(ctx, bufObj, target, size, data, usage, "glBufferData"); } void GLAPIENTRY _mesa_NamedBufferData(GLuint buffer, GLsizeiptr size, const GLvoid *data, GLenum usage) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glNamedBufferData"); if (!bufObj) return; /* In direct state access, buffer objects have an unspecified target since * they are not required to be bound. */ _mesa_buffer_data(ctx, bufObj, GL_NONE, size, data, usage, "glNamedBufferData"); } /** * Implementation for glBufferSubData and glNamedBufferSubData. * * \param ctx GL context. * \param bufObj The buffer object. * \param offset Offset of the first byte of the subdata range. * \param size Size, in bytes, of the subdata range. * \param data The data store. * \param func Name of calling function for recording errors. * */ void _mesa_buffer_sub_data(struct gl_context *ctx, struct gl_buffer_object *bufObj, GLintptr offset, GLsizeiptr size, const GLvoid *data, const char *func) { if (!buffer_object_subdata_range_good(ctx, bufObj, offset, size, false, func)) { /* error already recorded */ return; } if (bufObj->Immutable && !(bufObj->StorageFlags & GL_DYNAMIC_STORAGE_BIT)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s", func); return; } if (size == 0) return; bufObj->Written = GL_TRUE; assert(ctx->Driver.BufferSubData); ctx->Driver.BufferSubData(ctx, offset, size, data, bufObj); } void GLAPIENTRY _mesa_BufferSubData(GLenum target, GLintptr offset, GLsizeiptr size, const GLvoid *data) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = get_buffer(ctx, "glBufferSubData", target, GL_INVALID_OPERATION); if (!bufObj) return; _mesa_buffer_sub_data(ctx, bufObj, offset, size, data, "glBufferSubData"); } void GLAPIENTRY _mesa_NamedBufferSubData(GLuint buffer, GLintptr offset, GLsizeiptr size, const GLvoid *data) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glNamedBufferSubData"); if (!bufObj) return; _mesa_buffer_sub_data(ctx, bufObj, offset, size, data, "glNamedBufferSubData"); } void GLAPIENTRY _mesa_GetBufferSubData(GLenum target, GLintptr offset, GLsizeiptr size, GLvoid *data) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = get_buffer(ctx, "glGetBufferSubData", target, GL_INVALID_OPERATION); if (!bufObj) return; if (!buffer_object_subdata_range_good(ctx, bufObj, offset, size, false, "glGetBufferSubData")) { return; } assert(ctx->Driver.GetBufferSubData); ctx->Driver.GetBufferSubData(ctx, offset, size, data, bufObj); } void GLAPIENTRY _mesa_GetNamedBufferSubData(GLuint buffer, GLintptr offset, GLsizeiptr size, GLvoid *data) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glGetNamedBufferSubData"); if (!bufObj) return; if (!buffer_object_subdata_range_good(ctx, bufObj, offset, size, false, "glGetNamedBufferSubData")) { return; } assert(ctx->Driver.GetBufferSubData); ctx->Driver.GetBufferSubData(ctx, offset, size, data, bufObj); } /** * \param subdata true if caller is *SubData, false if *Data */ void _mesa_clear_buffer_sub_data(struct gl_context *ctx, struct gl_buffer_object *bufObj, GLenum internalformat, GLintptr offset, GLsizeiptr size, GLenum format, GLenum type, const GLvoid *data, const char *func, bool subdata) { mesa_format mesaFormat; GLubyte clearValue[MAX_PIXEL_BYTES]; GLsizeiptr clearValueSize; /* This checks for disallowed mappings. */ if (!buffer_object_subdata_range_good(ctx, bufObj, offset, size, subdata, func)) { return; } mesaFormat = validate_clear_buffer_format(ctx, internalformat, format, type, func); if (mesaFormat == MESA_FORMAT_NONE) { return; } clearValueSize = _mesa_get_format_bytes(mesaFormat); if (offset % clearValueSize != 0 || size % clearValueSize != 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(offset or size is not a multiple of " "internalformat size)", func); return; } if (data == NULL) { /* clear to zeros, per the spec */ if (size > 0) { ctx->Driver.ClearBufferSubData(ctx, offset, size, NULL, clearValueSize, bufObj); } return; } if (!convert_clear_buffer_data(ctx, mesaFormat, clearValue, format, type, data, func)) { return; } if (size > 0) { ctx->Driver.ClearBufferSubData(ctx, offset, size, clearValue, clearValueSize, bufObj); } } void GLAPIENTRY _mesa_ClearBufferData(GLenum target, GLenum internalformat, GLenum format, GLenum type, const GLvoid *data) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = get_buffer(ctx, "glClearBufferData", target, GL_INVALID_VALUE); if (!bufObj) return; _mesa_clear_buffer_sub_data(ctx, bufObj, internalformat, 0, bufObj->Size, format, type, data, "glClearBufferData", false); } void GLAPIENTRY _mesa_ClearNamedBufferData(GLuint buffer, GLenum internalformat, GLenum format, GLenum type, const GLvoid *data) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glClearNamedBufferData"); if (!bufObj) return; _mesa_clear_buffer_sub_data(ctx, bufObj, internalformat, 0, bufObj->Size, format, type, data, "glClearNamedBufferData", false); } void GLAPIENTRY _mesa_ClearBufferSubData(GLenum target, GLenum internalformat, GLintptr offset, GLsizeiptr size, GLenum format, GLenum type, const GLvoid *data) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = get_buffer(ctx, "glClearBufferSubData", target, GL_INVALID_VALUE); if (!bufObj) return; _mesa_clear_buffer_sub_data(ctx, bufObj, internalformat, offset, size, format, type, data, "glClearBufferSubData", true); } void GLAPIENTRY _mesa_ClearNamedBufferSubData(GLuint buffer, GLenum internalformat, GLintptr offset, GLsizeiptr size, GLenum format, GLenum type, const GLvoid *data) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glClearNamedBufferSubData"); if (!bufObj) return; _mesa_clear_buffer_sub_data(ctx, bufObj, internalformat, offset, size, format, type, data, "glClearNamedBufferSubData", true); } GLboolean _mesa_unmap_buffer(struct gl_context *ctx, struct gl_buffer_object *bufObj, const char *func) { GLboolean status = GL_TRUE; ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE); if (!_mesa_bufferobj_mapped(bufObj, MAP_USER)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(buffer is not mapped)", func); return GL_FALSE; } #ifdef BOUNDS_CHECK if (bufObj->Access != GL_READ_ONLY_ARB) { GLubyte *buf = (GLubyte *) bufObj->Pointer; GLuint i; /* check that last 100 bytes are still = magic value */ for (i = 0; i < 100; i++) { GLuint pos = bufObj->Size - i - 1; if (buf[pos] != 123) { _mesa_warning(ctx, "Out of bounds buffer object write detected" " at position %d (value = %u)\n", pos, buf[pos]); } } } #endif #ifdef VBO_DEBUG if (bufObj->AccessFlags & GL_MAP_WRITE_BIT) { GLuint i, unchanged = 0; GLubyte *b = (GLubyte *) bufObj->Pointer; GLint pos = -1; /* check which bytes changed */ for (i = 0; i < bufObj->Size - 1; i++) { if (b[i] == (i & 0xff) && b[i+1] == ((i+1) & 0xff)) { unchanged++; if (pos == -1) pos = i; } } if (unchanged) { printf("glUnmapBufferARB(%u): %u of %ld unchanged, starting at %d\n", bufObj->Name, unchanged, bufObj->Size, pos); } } #endif status = ctx->Driver.UnmapBuffer(ctx, bufObj, MAP_USER); bufObj->Mappings[MAP_USER].AccessFlags = 0; assert(bufObj->Mappings[MAP_USER].Pointer == NULL); assert(bufObj->Mappings[MAP_USER].Offset == 0); assert(bufObj->Mappings[MAP_USER].Length == 0); return status; } GLboolean GLAPIENTRY _mesa_UnmapBuffer(GLenum target) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = get_buffer(ctx, "glUnmapBuffer", target, GL_INVALID_OPERATION); if (!bufObj) return GL_FALSE; return _mesa_unmap_buffer(ctx, bufObj, "glUnmapBuffer"); } GLboolean GLAPIENTRY _mesa_UnmapNamedBuffer(GLuint buffer) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glUnmapNamedBuffer"); if (!bufObj) return GL_FALSE; return _mesa_unmap_buffer(ctx, bufObj, "glUnmapNamedBuffer"); } static bool get_buffer_parameter(struct gl_context *ctx, struct gl_buffer_object *bufObj, GLenum pname, GLint64 *params, const char *func) { switch (pname) { case GL_BUFFER_SIZE_ARB: *params = bufObj->Size; break; case GL_BUFFER_USAGE_ARB: *params = bufObj->Usage; break; case GL_BUFFER_ACCESS_ARB: *params = simplified_access_mode(ctx, bufObj->Mappings[MAP_USER].AccessFlags); break; case GL_BUFFER_MAPPED_ARB: *params = _mesa_bufferobj_mapped(bufObj, MAP_USER); break; case GL_BUFFER_ACCESS_FLAGS: if (!ctx->Extensions.ARB_map_buffer_range) goto invalid_pname; *params = bufObj->Mappings[MAP_USER].AccessFlags; break; case GL_BUFFER_MAP_OFFSET: if (!ctx->Extensions.ARB_map_buffer_range) goto invalid_pname; *params = bufObj->Mappings[MAP_USER].Offset; break; case GL_BUFFER_MAP_LENGTH: if (!ctx->Extensions.ARB_map_buffer_range) goto invalid_pname; *params = bufObj->Mappings[MAP_USER].Length; break; case GL_BUFFER_IMMUTABLE_STORAGE: if (!ctx->Extensions.ARB_buffer_storage) goto invalid_pname; *params = bufObj->Immutable; break; case GL_BUFFER_STORAGE_FLAGS: if (!ctx->Extensions.ARB_buffer_storage) goto invalid_pname; *params = bufObj->StorageFlags; break; default: goto invalid_pname; } return true; invalid_pname: _mesa_error(ctx, GL_INVALID_ENUM, "%s(invalid pname: %s)", func, _mesa_enum_to_string(pname)); return false; } void GLAPIENTRY _mesa_GetBufferParameteriv(GLenum target, GLenum pname, GLint *params) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; GLint64 parameter; bufObj = get_buffer(ctx, "glGetBufferParameteriv", target, GL_INVALID_OPERATION); if (!bufObj) return; if (!get_buffer_parameter(ctx, bufObj, pname, ¶meter, "glGetBufferParameteriv")) return; /* Error already recorded. */ *params = (GLint) parameter; } void GLAPIENTRY _mesa_GetBufferParameteri64v(GLenum target, GLenum pname, GLint64 *params) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; GLint64 parameter; bufObj = get_buffer(ctx, "glGetBufferParameteri64v", target, GL_INVALID_OPERATION); if (!bufObj) return; if (!get_buffer_parameter(ctx, bufObj, pname, ¶meter, "glGetBufferParameteri64v")) return; /* Error already recorded. */ *params = parameter; } void GLAPIENTRY _mesa_GetNamedBufferParameteriv(GLuint buffer, GLenum pname, GLint *params) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; GLint64 parameter; bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glGetNamedBufferParameteriv"); if (!bufObj) return; if (!get_buffer_parameter(ctx, bufObj, pname, ¶meter, "glGetNamedBufferParameteriv")) return; /* Error already recorded. */ *params = (GLint) parameter; } void GLAPIENTRY _mesa_GetNamedBufferParameteri64v(GLuint buffer, GLenum pname, GLint64 *params) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; GLint64 parameter; bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glGetNamedBufferParameteri64v"); if (!bufObj) return; if (!get_buffer_parameter(ctx, bufObj, pname, ¶meter, "glGetNamedBufferParameteri64v")) return; /* Error already recorded. */ *params = parameter; } void GLAPIENTRY _mesa_GetBufferPointerv(GLenum target, GLenum pname, GLvoid **params) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; if (pname != GL_BUFFER_MAP_POINTER) { _mesa_error(ctx, GL_INVALID_ENUM, "glGetBufferPointerv(pname != " "GL_BUFFER_MAP_POINTER)"); return; } bufObj = get_buffer(ctx, "glGetBufferPointerv", target, GL_INVALID_OPERATION); if (!bufObj) return; *params = bufObj->Mappings[MAP_USER].Pointer; } void GLAPIENTRY _mesa_GetNamedBufferPointerv(GLuint buffer, GLenum pname, GLvoid **params) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; if (pname != GL_BUFFER_MAP_POINTER) { _mesa_error(ctx, GL_INVALID_ENUM, "glGetNamedBufferPointerv(pname != " "GL_BUFFER_MAP_POINTER)"); return; } bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glGetNamedBufferPointerv"); if (!bufObj) return; *params = bufObj->Mappings[MAP_USER].Pointer; } void _mesa_copy_buffer_sub_data(struct gl_context *ctx, struct gl_buffer_object *src, struct gl_buffer_object *dst, GLintptr readOffset, GLintptr writeOffset, GLsizeiptr size, const char *func) { if (_mesa_check_disallowed_mapping(src)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(readBuffer is mapped)", func); return; } if (_mesa_check_disallowed_mapping(dst)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(writeBuffer is mapped)", func); return; } if (readOffset < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(readOffset %d < 0)", func, (int) readOffset); return; } if (writeOffset < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(writeOffset %d < 0)", func, (int) writeOffset); return; } if (size < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(size %d < 0)", func, (int) size); return; } if (readOffset + size > src->Size) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(readOffset %d + size %d > src_buffer_size %d)", func, (int) readOffset, (int) size, (int) src->Size); return; } if (writeOffset + size > dst->Size) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(writeOffset %d + size %d > dst_buffer_size %d)", func, (int) writeOffset, (int) size, (int) dst->Size); return; } if (src == dst) { if (readOffset + size <= writeOffset) { /* OK */ } else if (writeOffset + size <= readOffset) { /* OK */ } else { /* overlapping src/dst is illegal */ _mesa_error(ctx, GL_INVALID_VALUE, "%s(overlapping src/dst)", func); return; } } ctx->Driver.CopyBufferSubData(ctx, src, dst, readOffset, writeOffset, size); } void GLAPIENTRY _mesa_CopyBufferSubData(GLenum readTarget, GLenum writeTarget, GLintptr readOffset, GLintptr writeOffset, GLsizeiptr size) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *src, *dst; src = get_buffer(ctx, "glCopyBufferSubData", readTarget, GL_INVALID_OPERATION); if (!src) return; dst = get_buffer(ctx, "glCopyBufferSubData", writeTarget, GL_INVALID_OPERATION); if (!dst) return; _mesa_copy_buffer_sub_data(ctx, src, dst, readOffset, writeOffset, size, "glCopyBufferSubData"); } void GLAPIENTRY _mesa_CopyNamedBufferSubData(GLuint readBuffer, GLuint writeBuffer, GLintptr readOffset, GLintptr writeOffset, GLsizeiptr size) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *src, *dst; src = _mesa_lookup_bufferobj_err(ctx, readBuffer, "glCopyNamedBufferSubData"); if (!src) return; dst = _mesa_lookup_bufferobj_err(ctx, writeBuffer, "glCopyNamedBufferSubData"); if (!dst) return; _mesa_copy_buffer_sub_data(ctx, src, dst, readOffset, writeOffset, size, "glCopyNamedBufferSubData"); } void * _mesa_map_buffer_range(struct gl_context *ctx, struct gl_buffer_object *bufObj, GLintptr offset, GLsizeiptr length, GLbitfield access, const char *func) { void *map; GLbitfield allowed_access; ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, NULL); if (offset < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(offset %ld < 0)", func, (long) offset); return NULL; } if (length < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(length %ld < 0)", func, (long) length); return NULL; } /* Page 38 of the PDF of the OpenGL ES 3.0 spec says: * * "An INVALID_OPERATION error is generated for any of the following * conditions: * * * is zero." * * Additionally, page 94 of the PDF of the OpenGL 4.5 core spec * (30.10.2014) also says this, so it's no longer allowed for desktop GL, * either. */ if (length == 0) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(length = 0)", func); return NULL; } allowed_access = GL_MAP_READ_BIT | GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT | GL_MAP_FLUSH_EXPLICIT_BIT | GL_MAP_UNSYNCHRONIZED_BIT; if (ctx->Extensions.ARB_buffer_storage) { allowed_access |= GL_MAP_PERSISTENT_BIT | GL_MAP_COHERENT_BIT; } if (access & ~allowed_access) { /* generate an error if any bits other than those allowed are set */ _mesa_error(ctx, GL_INVALID_VALUE, "%s(access has undefined bits set)", func); return NULL; } if ((access & (GL_MAP_READ_BIT | GL_MAP_WRITE_BIT)) == 0) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(access indicates neither read or write)", func); return NULL; } if ((access & GL_MAP_READ_BIT) && (access & (GL_MAP_INVALIDATE_RANGE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT | GL_MAP_UNSYNCHRONIZED_BIT))) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(read access with disallowed bits)", func); return NULL; } if ((access & GL_MAP_FLUSH_EXPLICIT_BIT) && ((access & GL_MAP_WRITE_BIT) == 0)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(access has flush explicit without write)", func); return NULL; } if (access & GL_MAP_READ_BIT && !(bufObj->StorageFlags & GL_MAP_READ_BIT)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(buffer does not allow read access)", func); return NULL; } if (access & GL_MAP_WRITE_BIT && !(bufObj->StorageFlags & GL_MAP_WRITE_BIT)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(buffer does not allow write access)", func); return NULL; } if (access & GL_MAP_COHERENT_BIT && !(bufObj->StorageFlags & GL_MAP_COHERENT_BIT)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(buffer does not allow coherent access)", func); return NULL; } if (access & GL_MAP_PERSISTENT_BIT && !(bufObj->StorageFlags & GL_MAP_PERSISTENT_BIT)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(buffer does not allow persistent access)", func); return NULL; } if (offset + length > bufObj->Size) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(offset %td + length %td > buffer_size %td)", func, offset, length, bufObj->Size); return NULL; } if (_mesa_bufferobj_mapped(bufObj, MAP_USER)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(buffer already mapped)", func); return NULL; } if (!bufObj->Size) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s(buffer size = 0)", func); return NULL; } assert(ctx->Driver.MapBufferRange); map = ctx->Driver.MapBufferRange(ctx, offset, length, access, bufObj, MAP_USER); if (!map) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s(map failed)", func); } else { /* The driver callback should have set all these fields. * This is important because other modules (like VBO) might call * the driver function directly. */ assert(bufObj->Mappings[MAP_USER].Pointer == map); assert(bufObj->Mappings[MAP_USER].Length == length); assert(bufObj->Mappings[MAP_USER].Offset == offset); assert(bufObj->Mappings[MAP_USER].AccessFlags == access); } if (access & GL_MAP_WRITE_BIT) bufObj->Written = GL_TRUE; #ifdef VBO_DEBUG if (strstr(func, "Range") == NULL) { /* If not MapRange */ printf("glMapBuffer(%u, sz %ld, access 0x%x)\n", bufObj->Name, bufObj->Size, access); /* Access must be write only */ if ((access & GL_MAP_WRITE_BIT) && (!(access & ~GL_MAP_WRITE_BIT))) { GLuint i; GLubyte *b = (GLubyte *) bufObj->Pointer; for (i = 0; i < bufObj->Size; i++) b[i] = i & 0xff; } } #endif #ifdef BOUNDS_CHECK if (strstr(func, "Range") == NULL) { /* If not MapRange */ GLubyte *buf = (GLubyte *) bufObj->Pointer; GLuint i; /* buffer is 100 bytes larger than requested, fill with magic value */ for (i = 0; i < 100; i++) { buf[bufObj->Size - i - 1] = 123; } } #endif return map; } void * GLAPIENTRY _mesa_MapBufferRange(GLenum target, GLintptr offset, GLsizeiptr length, GLbitfield access) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; if (!ctx->Extensions.ARB_map_buffer_range) { _mesa_error(ctx, GL_INVALID_OPERATION, "glMapBufferRange(ARB_map_buffer_range not supported)"); return NULL; } bufObj = get_buffer(ctx, "glMapBufferRange", target, GL_INVALID_OPERATION); if (!bufObj) return NULL; return _mesa_map_buffer_range(ctx, bufObj, offset, length, access, "glMapBufferRange"); } void * GLAPIENTRY _mesa_MapNamedBufferRange(GLuint buffer, GLintptr offset, GLsizeiptr length, GLbitfield access) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; if (!ctx->Extensions.ARB_map_buffer_range) { _mesa_error(ctx, GL_INVALID_OPERATION, "glMapNamedBufferRange(" "ARB_map_buffer_range not supported)"); return NULL; } bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glMapNamedBufferRange"); if (!bufObj) return NULL; return _mesa_map_buffer_range(ctx, bufObj, offset, length, access, "glMapNamedBufferRange"); } /** * Converts GLenum access from MapBuffer and MapNamedBuffer into * flags for input to _mesa_map_buffer_range. * * \return true if the type of requested access is permissible. */ static bool get_map_buffer_access_flags(struct gl_context *ctx, GLenum access, GLbitfield *flags) { switch (access) { case GL_READ_ONLY_ARB: *flags = GL_MAP_READ_BIT; return _mesa_is_desktop_gl(ctx); case GL_WRITE_ONLY_ARB: *flags = GL_MAP_WRITE_BIT; return true; case GL_READ_WRITE_ARB: *flags = GL_MAP_READ_BIT | GL_MAP_WRITE_BIT; return _mesa_is_desktop_gl(ctx); default: return false; } } void * GLAPIENTRY _mesa_MapBuffer(GLenum target, GLenum access) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; GLbitfield accessFlags; if (!get_map_buffer_access_flags(ctx, access, &accessFlags)) { _mesa_error(ctx, GL_INVALID_ENUM, "glMapBuffer(invalid access)"); return NULL; } bufObj = get_buffer(ctx, "glMapBuffer", target, GL_INVALID_OPERATION); if (!bufObj) return NULL; return _mesa_map_buffer_range(ctx, bufObj, 0, bufObj->Size, accessFlags, "glMapBuffer"); } void * GLAPIENTRY _mesa_MapNamedBuffer(GLuint buffer, GLenum access) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; GLbitfield accessFlags; if (!get_map_buffer_access_flags(ctx, access, &accessFlags)) { _mesa_error(ctx, GL_INVALID_ENUM, "glMapNamedBuffer(invalid access)"); return NULL; } bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glMapNamedBuffer"); if (!bufObj) return NULL; return _mesa_map_buffer_range(ctx, bufObj, 0, bufObj->Size, accessFlags, "glMapNamedBuffer"); } void _mesa_flush_mapped_buffer_range(struct gl_context *ctx, struct gl_buffer_object *bufObj, GLintptr offset, GLsizeiptr length, const char *func) { if (!ctx->Extensions.ARB_map_buffer_range) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(ARB_map_buffer_range not supported)", func); return; } if (offset < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(offset %ld < 0)", func, (long) offset); return; } if (length < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(length %ld < 0)", func, (long) length); return; } if (!_mesa_bufferobj_mapped(bufObj, MAP_USER)) { /* buffer is not mapped */ _mesa_error(ctx, GL_INVALID_OPERATION, "%s(buffer is not mapped)", func); return; } if ((bufObj->Mappings[MAP_USER].AccessFlags & GL_MAP_FLUSH_EXPLICIT_BIT) == 0) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(GL_MAP_FLUSH_EXPLICIT_BIT not set)", func); return; } if (offset + length > bufObj->Mappings[MAP_USER].Length) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(offset %ld + length %ld > mapped length %ld)", func, (long) offset, (long) length, (long) bufObj->Mappings[MAP_USER].Length); return; } assert(bufObj->Mappings[MAP_USER].AccessFlags & GL_MAP_WRITE_BIT); if (ctx->Driver.FlushMappedBufferRange) ctx->Driver.FlushMappedBufferRange(ctx, offset, length, bufObj, MAP_USER); } void GLAPIENTRY _mesa_FlushMappedBufferRange(GLenum target, GLintptr offset, GLsizeiptr length) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = get_buffer(ctx, "glFlushMappedBufferRange", target, GL_INVALID_OPERATION); if (!bufObj) return; _mesa_flush_mapped_buffer_range(ctx, bufObj, offset, length, "glFlushMappedBufferRange"); } void GLAPIENTRY _mesa_FlushMappedNamedBufferRange(GLuint buffer, GLintptr offset, GLsizeiptr length) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glFlushMappedNamedBufferRange"); if (!bufObj) return; _mesa_flush_mapped_buffer_range(ctx, bufObj, offset, length, "glFlushMappedNamedBufferRange"); } static GLenum buffer_object_purgeable(struct gl_context *ctx, GLuint name, GLenum option) { struct gl_buffer_object *bufObj; GLenum retval; bufObj = _mesa_lookup_bufferobj(ctx, name); if (!bufObj) { _mesa_error(ctx, GL_INVALID_VALUE, "glObjectPurgeable(name = 0x%x)", name); return 0; } if (!_mesa_is_bufferobj(bufObj)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glObjectPurgeable(buffer 0)" ); return 0; } if (bufObj->Purgeable) { _mesa_error(ctx, GL_INVALID_OPERATION, "glObjectPurgeable(name = 0x%x) is already purgeable", name); return GL_VOLATILE_APPLE; } bufObj->Purgeable = GL_TRUE; retval = GL_VOLATILE_APPLE; if (ctx->Driver.BufferObjectPurgeable) retval = ctx->Driver.BufferObjectPurgeable(ctx, bufObj, option); return retval; } static GLenum renderbuffer_purgeable(struct gl_context *ctx, GLuint name, GLenum option) { struct gl_renderbuffer *bufObj; GLenum retval; bufObj = _mesa_lookup_renderbuffer(ctx, name); if (!bufObj) { _mesa_error(ctx, GL_INVALID_VALUE, "glObjectUnpurgeable(name = 0x%x)", name); return 0; } if (bufObj->Purgeable) { _mesa_error(ctx, GL_INVALID_OPERATION, "glObjectPurgeable(name = 0x%x) is already purgeable", name); return GL_VOLATILE_APPLE; } bufObj->Purgeable = GL_TRUE; retval = GL_VOLATILE_APPLE; if (ctx->Driver.RenderObjectPurgeable) retval = ctx->Driver.RenderObjectPurgeable(ctx, bufObj, option); return retval; } static GLenum texture_object_purgeable(struct gl_context *ctx, GLuint name, GLenum option) { struct gl_texture_object *bufObj; GLenum retval; bufObj = _mesa_lookup_texture(ctx, name); if (!bufObj) { _mesa_error(ctx, GL_INVALID_VALUE, "glObjectPurgeable(name = 0x%x)", name); return 0; } if (bufObj->Purgeable) { _mesa_error(ctx, GL_INVALID_OPERATION, "glObjectPurgeable(name = 0x%x) is already purgeable", name); return GL_VOLATILE_APPLE; } bufObj->Purgeable = GL_TRUE; retval = GL_VOLATILE_APPLE; if (ctx->Driver.TextureObjectPurgeable) retval = ctx->Driver.TextureObjectPurgeable(ctx, bufObj, option); return retval; } GLenum GLAPIENTRY _mesa_ObjectPurgeableAPPLE(GLenum objectType, GLuint name, GLenum option) { GLenum retval; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, 0); if (name == 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glObjectPurgeable(name = 0x%x)", name); return 0; } switch (option) { case GL_VOLATILE_APPLE: case GL_RELEASED_APPLE: /* legal */ break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glObjectPurgeable(name = 0x%x) invalid option: %d", name, option); return 0; } switch (objectType) { case GL_TEXTURE: retval = texture_object_purgeable(ctx, name, option); break; case GL_RENDERBUFFER_EXT: retval = renderbuffer_purgeable(ctx, name, option); break; case GL_BUFFER_OBJECT_APPLE: retval = buffer_object_purgeable(ctx, name, option); break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glObjectPurgeable(name = 0x%x) invalid type: %d", name, objectType); return 0; } /* In strict conformance to the spec, we must only return VOLATILE when * when passed the VOLATILE option. Madness. * * XXX First fix the spec, then fix me. */ return option == GL_VOLATILE_APPLE ? GL_VOLATILE_APPLE : retval; } static GLenum buffer_object_unpurgeable(struct gl_context *ctx, GLuint name, GLenum option) { struct gl_buffer_object *bufObj; GLenum retval; bufObj = _mesa_lookup_bufferobj(ctx, name); if (!bufObj) { _mesa_error(ctx, GL_INVALID_VALUE, "glObjectUnpurgeable(name = 0x%x)", name); return 0; } if (! bufObj->Purgeable) { _mesa_error(ctx, GL_INVALID_OPERATION, "glObjectUnpurgeable(name = 0x%x) object is " " already \"unpurged\"", name); return 0; } bufObj->Purgeable = GL_FALSE; retval = option; if (ctx->Driver.BufferObjectUnpurgeable) retval = ctx->Driver.BufferObjectUnpurgeable(ctx, bufObj, option); return retval; } static GLenum renderbuffer_unpurgeable(struct gl_context *ctx, GLuint name, GLenum option) { struct gl_renderbuffer *bufObj; GLenum retval; bufObj = _mesa_lookup_renderbuffer(ctx, name); if (!bufObj) { _mesa_error(ctx, GL_INVALID_VALUE, "glObjectUnpurgeable(name = 0x%x)", name); return 0; } if (! bufObj->Purgeable) { _mesa_error(ctx, GL_INVALID_OPERATION, "glObjectUnpurgeable(name = 0x%x) object is " " already \"unpurged\"", name); return 0; } bufObj->Purgeable = GL_FALSE; retval = option; if (ctx->Driver.RenderObjectUnpurgeable) retval = ctx->Driver.RenderObjectUnpurgeable(ctx, bufObj, option); return retval; } static GLenum texture_object_unpurgeable(struct gl_context *ctx, GLuint name, GLenum option) { struct gl_texture_object *bufObj; GLenum retval; bufObj = _mesa_lookup_texture(ctx, name); if (!bufObj) { _mesa_error(ctx, GL_INVALID_VALUE, "glObjectUnpurgeable(name = 0x%x)", name); return 0; } if (! bufObj->Purgeable) { _mesa_error(ctx, GL_INVALID_OPERATION, "glObjectUnpurgeable(name = 0x%x) object is" " already \"unpurged\"", name); return 0; } bufObj->Purgeable = GL_FALSE; retval = option; if (ctx->Driver.TextureObjectUnpurgeable) retval = ctx->Driver.TextureObjectUnpurgeable(ctx, bufObj, option); return retval; } GLenum GLAPIENTRY _mesa_ObjectUnpurgeableAPPLE(GLenum objectType, GLuint name, GLenum option) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, 0); if (name == 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glObjectUnpurgeable(name = 0x%x)", name); return 0; } switch (option) { case GL_RETAINED_APPLE: case GL_UNDEFINED_APPLE: /* legal */ break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glObjectUnpurgeable(name = 0x%x) invalid option: %d", name, option); return 0; } switch (objectType) { case GL_BUFFER_OBJECT_APPLE: return buffer_object_unpurgeable(ctx, name, option); case GL_TEXTURE: return texture_object_unpurgeable(ctx, name, option); case GL_RENDERBUFFER_EXT: return renderbuffer_unpurgeable(ctx, name, option); default: _mesa_error(ctx, GL_INVALID_ENUM, "glObjectUnpurgeable(name = 0x%x) invalid type: %d", name, objectType); return 0; } } static void get_buffer_object_parameteriv(struct gl_context *ctx, GLuint name, GLenum pname, GLint *params) { struct gl_buffer_object *bufObj = _mesa_lookup_bufferobj(ctx, name); if (!bufObj) { _mesa_error(ctx, GL_INVALID_VALUE, "glGetObjectParameteriv(name = 0x%x) invalid object", name); return; } switch (pname) { case GL_PURGEABLE_APPLE: *params = bufObj->Purgeable; break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glGetObjectParameteriv(name = 0x%x) invalid enum: %d", name, pname); break; } } static void get_renderbuffer_parameteriv(struct gl_context *ctx, GLuint name, GLenum pname, GLint *params) { struct gl_renderbuffer *rb = _mesa_lookup_renderbuffer(ctx, name); if (!rb) { _mesa_error(ctx, GL_INVALID_VALUE, "glObjectUnpurgeable(name = 0x%x)", name); return; } switch (pname) { case GL_PURGEABLE_APPLE: *params = rb->Purgeable; break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glGetObjectParameteriv(name = 0x%x) invalid enum: %d", name, pname); break; } } static void get_texture_object_parameteriv(struct gl_context *ctx, GLuint name, GLenum pname, GLint *params) { struct gl_texture_object *texObj = _mesa_lookup_texture(ctx, name); if (!texObj) { _mesa_error(ctx, GL_INVALID_VALUE, "glObjectUnpurgeable(name = 0x%x)", name); return; } switch (pname) { case GL_PURGEABLE_APPLE: *params = texObj->Purgeable; break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glGetObjectParameteriv(name = 0x%x) invalid enum: %d", name, pname); break; } } void GLAPIENTRY _mesa_GetObjectParameterivAPPLE(GLenum objectType, GLuint name, GLenum pname, GLint *params) { GET_CURRENT_CONTEXT(ctx); if (name == 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glGetObjectParameteriv(name = 0x%x)", name); return; } switch (objectType) { case GL_TEXTURE: get_texture_object_parameteriv(ctx, name, pname, params); break; case GL_BUFFER_OBJECT_APPLE: get_buffer_object_parameteriv(ctx, name, pname, params); break; case GL_RENDERBUFFER_EXT: get_renderbuffer_parameteriv(ctx, name, pname, params); break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glGetObjectParameteriv(name = 0x%x) invalid type: %d", name, objectType); } } /** * Binds a buffer object to a uniform buffer binding point. * * The caller is responsible for flushing vertices and updating * NewDriverState. */ static void set_ubo_binding(struct gl_context *ctx, struct gl_uniform_buffer_binding *binding, struct gl_buffer_object *bufObj, GLintptr offset, GLsizeiptr size, GLboolean autoSize) { _mesa_reference_buffer_object(ctx, &binding->BufferObject, bufObj); binding->Offset = offset; binding->Size = size; binding->AutomaticSize = autoSize; /* If this is a real buffer object, mark it has having been used * at some point as a UBO. */ if (size >= 0) bufObj->UsageHistory |= USAGE_UNIFORM_BUFFER; } /** * Binds a buffer object to a shader storage buffer binding point. * * The caller is responsible for flushing vertices and updating * NewDriverState. */ static void set_ssbo_binding(struct gl_context *ctx, struct gl_shader_storage_buffer_binding *binding, struct gl_buffer_object *bufObj, GLintptr offset, GLsizeiptr size, GLboolean autoSize) { _mesa_reference_buffer_object(ctx, &binding->BufferObject, bufObj); binding->Offset = offset; binding->Size = size; binding->AutomaticSize = autoSize; /* If this is a real buffer object, mark it has having been used * at some point as a SSBO. */ if (size >= 0) bufObj->UsageHistory |= USAGE_SHADER_STORAGE_BUFFER; } /** * Binds a buffer object to a uniform buffer binding point. * * Unlike set_ubo_binding(), this function also flushes vertices * and updates NewDriverState. It also checks if the binding * has actually changed before updating it. */ static void bind_uniform_buffer(struct gl_context *ctx, GLuint index, struct gl_buffer_object *bufObj, GLintptr offset, GLsizeiptr size, GLboolean autoSize) { struct gl_uniform_buffer_binding *binding = &ctx->UniformBufferBindings[index]; if (binding->BufferObject == bufObj && binding->Offset == offset && binding->Size == size && binding->AutomaticSize == autoSize) { return; } FLUSH_VERTICES(ctx, 0); ctx->NewDriverState |= ctx->DriverFlags.NewUniformBuffer; set_ubo_binding(ctx, binding, bufObj, offset, size, autoSize); } /** * Binds a buffer object to a shader storage buffer binding point. * * Unlike set_ssbo_binding(), this function also flushes vertices * and updates NewDriverState. It also checks if the binding * has actually changed before updating it. */ static void bind_shader_storage_buffer(struct gl_context *ctx, GLuint index, struct gl_buffer_object *bufObj, GLintptr offset, GLsizeiptr size, GLboolean autoSize) { struct gl_shader_storage_buffer_binding *binding = &ctx->ShaderStorageBufferBindings[index]; if (binding->BufferObject == bufObj && binding->Offset == offset && binding->Size == size && binding->AutomaticSize == autoSize) { return; } FLUSH_VERTICES(ctx, 0); ctx->NewDriverState |= ctx->DriverFlags.NewShaderStorageBuffer; set_ssbo_binding(ctx, binding, bufObj, offset, size, autoSize); } /** * Bind a region of a buffer object to a uniform block binding point. * \param index the uniform buffer binding point index * \param bufObj the buffer object * \param offset offset to the start of buffer object region * \param size size of the buffer object region */ static void bind_buffer_range_uniform_buffer(struct gl_context *ctx, GLuint index, struct gl_buffer_object *bufObj, GLintptr offset, GLsizeiptr size) { if (index >= ctx->Const.MaxUniformBufferBindings) { _mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferRange(index=%d)", index); return; } if (offset & (ctx->Const.UniformBufferOffsetAlignment - 1)) { _mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferRange(offset misaligned %d/%d)", (int) offset, ctx->Const.UniformBufferOffsetAlignment); return; } if (bufObj == ctx->Shared->NullBufferObj) { offset = -1; size = -1; } _mesa_reference_buffer_object(ctx, &ctx->UniformBuffer, bufObj); bind_uniform_buffer(ctx, index, bufObj, offset, size, GL_FALSE); } /** * Bind a region of a buffer object to a shader storage block binding point. * \param index the shader storage buffer binding point index * \param bufObj the buffer object * \param offset offset to the start of buffer object region * \param size size of the buffer object region */ static void bind_buffer_range_shader_storage_buffer(struct gl_context *ctx, GLuint index, struct gl_buffer_object *bufObj, GLintptr offset, GLsizeiptr size) { if (index >= ctx->Const.MaxShaderStorageBufferBindings) { _mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferRange(index=%d)", index); return; } if (offset & (ctx->Const.ShaderStorageBufferOffsetAlignment - 1)) { _mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferRange(offset misaligned %d/%d)", (int) offset, ctx->Const.ShaderStorageBufferOffsetAlignment); return; } if (bufObj == ctx->Shared->NullBufferObj) { offset = -1; size = -1; } _mesa_reference_buffer_object(ctx, &ctx->ShaderStorageBuffer, bufObj); bind_shader_storage_buffer(ctx, index, bufObj, offset, size, GL_FALSE); } /** * Bind a buffer object to a uniform block binding point. * As above, but offset = 0. */ static void bind_buffer_base_uniform_buffer(struct gl_context *ctx, GLuint index, struct gl_buffer_object *bufObj) { if (index >= ctx->Const.MaxUniformBufferBindings) { _mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferBase(index=%d)", index); return; } _mesa_reference_buffer_object(ctx, &ctx->UniformBuffer, bufObj); if (bufObj == ctx->Shared->NullBufferObj) bind_uniform_buffer(ctx, index, bufObj, -1, -1, GL_TRUE); else bind_uniform_buffer(ctx, index, bufObj, 0, 0, GL_TRUE); } /** * Bind a buffer object to a shader storage block binding point. * As above, but offset = 0. */ static void bind_buffer_base_shader_storage_buffer(struct gl_context *ctx, GLuint index, struct gl_buffer_object *bufObj) { if (index >= ctx->Const.MaxShaderStorageBufferBindings) { _mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferBase(index=%d)", index); return; } _mesa_reference_buffer_object(ctx, &ctx->ShaderStorageBuffer, bufObj); if (bufObj == ctx->Shared->NullBufferObj) bind_shader_storage_buffer(ctx, index, bufObj, -1, -1, GL_TRUE); else bind_shader_storage_buffer(ctx, index, bufObj, 0, 0, GL_TRUE); } /** * Binds a buffer object to an atomic buffer binding point. * * The caller is responsible for validating the offset, * flushing the vertices and updating NewDriverState. */ static void set_atomic_buffer_binding(struct gl_context *ctx, struct gl_atomic_buffer_binding *binding, struct gl_buffer_object *bufObj, GLintptr offset, GLsizeiptr size) { _mesa_reference_buffer_object(ctx, &binding->BufferObject, bufObj); if (bufObj == ctx->Shared->NullBufferObj) { binding->Offset = -1; binding->Size = -1; } else { binding->Offset = offset; binding->Size = size; bufObj->UsageHistory |= USAGE_ATOMIC_COUNTER_BUFFER; } } /** * Binds a buffer object to an atomic buffer binding point. * * Unlike set_atomic_buffer_binding(), this function also validates the * index and offset, flushes vertices, and updates NewDriverState. * It also checks if the binding has actually changing before * updating it. */ static void bind_atomic_buffer(struct gl_context *ctx, unsigned index, struct gl_buffer_object *bufObj, GLintptr offset, GLsizeiptr size, const char *name) { struct gl_atomic_buffer_binding *binding; if (index >= ctx->Const.MaxAtomicBufferBindings) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(index=%d)", name, index); return; } if (offset & (ATOMIC_COUNTER_SIZE - 1)) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(offset misaligned %d/%d)", name, (int) offset, ATOMIC_COUNTER_SIZE); return; } _mesa_reference_buffer_object(ctx, &ctx->AtomicBuffer, bufObj); binding = &ctx->AtomicBufferBindings[index]; if (binding->BufferObject == bufObj && binding->Offset == offset && binding->Size == size) { return; } FLUSH_VERTICES(ctx, 0); ctx->NewDriverState |= ctx->DriverFlags.NewAtomicBuffer; set_atomic_buffer_binding(ctx, binding, bufObj, offset, size); } static inline bool bind_buffers_check_offset_and_size(struct gl_context *ctx, GLuint index, const GLintptr *offsets, const GLsizeiptr *sizes) { if (offsets[index] < 0) { /* The ARB_multi_bind spec says: * * "An INVALID_VALUE error is generated by BindBuffersRange if any * value in is less than zero (per binding)." */ _mesa_error(ctx, GL_INVALID_VALUE, "glBindBuffersRange(offsets[%u]=%" PRId64 " < 0)", index, (int64_t) offsets[index]); return false; } if (sizes[index] <= 0) { /* The ARB_multi_bind spec says: * * "An INVALID_VALUE error is generated by BindBuffersRange if any * value in is less than or equal to zero (per binding)." */ _mesa_error(ctx, GL_INVALID_VALUE, "glBindBuffersRange(sizes[%u]=%" PRId64 " <= 0)", index, (int64_t) sizes[index]); return false; } return true; } static bool error_check_bind_uniform_buffers(struct gl_context *ctx, GLuint first, GLsizei count, const char *caller) { if (!ctx->Extensions.ARB_uniform_buffer_object) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(target=GL_UNIFORM_BUFFER)", caller); return false; } /* The ARB_multi_bind_spec says: * * "An INVALID_OPERATION error is generated if + is * greater than the number of target-specific indexed binding points, * as described in section 6.7.1." */ if (first + count > ctx->Const.MaxUniformBufferBindings) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(first=%u + count=%d > the value of " "GL_MAX_UNIFORM_BUFFER_BINDINGS=%u)", caller, first, count, ctx->Const.MaxUniformBufferBindings); return false; } return true; } static bool error_check_bind_shader_storage_buffers(struct gl_context *ctx, GLuint first, GLsizei count, const char *caller) { if (!ctx->Extensions.ARB_shader_storage_buffer_object) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(target=GL_SHADER_STORAGE_BUFFER)", caller); return false; } /* The ARB_multi_bind_spec says: * * "An INVALID_OPERATION error is generated if + is * greater than the number of target-specific indexed binding points, * as described in section 6.7.1." */ if (first + count > ctx->Const.MaxShaderStorageBufferBindings) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(first=%u + count=%d > the value of " "GL_MAX_SHADER_STORAGE_BUFFER_BINDINGS=%u)", caller, first, count, ctx->Const.MaxShaderStorageBufferBindings); return false; } return true; } /** * Unbind all uniform buffers in the range * through +-1 */ static void unbind_uniform_buffers(struct gl_context *ctx, GLuint first, GLsizei count) { struct gl_buffer_object *bufObj = ctx->Shared->NullBufferObj; GLint i; for (i = 0; i < count; i++) set_ubo_binding(ctx, &ctx->UniformBufferBindings[first + i], bufObj, -1, -1, GL_TRUE); } /** * Unbind all shader storage buffers in the range * through +-1 */ static void unbind_shader_storage_buffers(struct gl_context *ctx, GLuint first, GLsizei count) { struct gl_buffer_object *bufObj = ctx->Shared->NullBufferObj; GLint i; for (i = 0; i < count; i++) set_ssbo_binding(ctx, &ctx->ShaderStorageBufferBindings[first + i], bufObj, -1, -1, GL_TRUE); } static void bind_uniform_buffers_base(struct gl_context *ctx, GLuint first, GLsizei count, const GLuint *buffers) { GLint i; if (!error_check_bind_uniform_buffers(ctx, first, count, "glBindBuffersBase")) return; /* Assume that at least one binding will be changed */ FLUSH_VERTICES(ctx, 0); ctx->NewDriverState |= ctx->DriverFlags.NewUniformBuffer; if (!buffers) { /* The ARB_multi_bind spec says: * * "If is NULL, all bindings from through * +-1 are reset to their unbound (zero) state." */ unbind_uniform_buffers(ctx, first, count); return; } /* Note that the error semantics for multi-bind commands differ from * those of other GL commands. * * The Issues section in the ARB_multi_bind spec says: * * "(11) Typically, OpenGL specifies that if an error is generated by a * command, that command has no effect. This is somewhat * unfortunate for multi-bind commands, because it would require a * first pass to scan the entire list of bound objects for errors * and then a second pass to actually perform the bindings. * Should we have different error semantics? * * RESOLVED: Yes. In this specification, when the parameters for * one of the binding points are invalid, that binding point * is not updated and an error will be generated. However, other * binding points in the same command will be updated if their * parameters are valid and no other error occurs." */ _mesa_begin_bufferobj_lookups(ctx); for (i = 0; i < count; i++) { struct gl_uniform_buffer_binding *binding = &ctx->UniformBufferBindings[first + i]; struct gl_buffer_object *bufObj; if (binding->BufferObject && binding->BufferObject->Name == buffers[i]) bufObj = binding->BufferObject; else bufObj = _mesa_multi_bind_lookup_bufferobj(ctx, buffers, i, "glBindBuffersBase"); if (bufObj) { if (bufObj == ctx->Shared->NullBufferObj) set_ubo_binding(ctx, binding, bufObj, -1, -1, GL_TRUE); else set_ubo_binding(ctx, binding, bufObj, 0, 0, GL_TRUE); } } _mesa_end_bufferobj_lookups(ctx); } static void bind_shader_storage_buffers_base(struct gl_context *ctx, GLuint first, GLsizei count, const GLuint *buffers) { GLint i; if (!error_check_bind_shader_storage_buffers(ctx, first, count, "glBindBuffersBase")) return; /* Assume that at least one binding will be changed */ FLUSH_VERTICES(ctx, 0); ctx->NewDriverState |= ctx->DriverFlags.NewShaderStorageBuffer; if (!buffers) { /* The ARB_multi_bind spec says: * * "If is NULL, all bindings from through * +-1 are reset to their unbound (zero) state." */ unbind_shader_storage_buffers(ctx, first, count); return; } /* Note that the error semantics for multi-bind commands differ from * those of other GL commands. * * The Issues section in the ARB_multi_bind spec says: * * "(11) Typically, OpenGL specifies that if an error is generated by a * command, that command has no effect. This is somewhat * unfortunate for multi-bind commands, because it would require a * first pass to scan the entire list of bound objects for errors * and then a second pass to actually perform the bindings. * Should we have different error semantics? * * RESOLVED: Yes. In this specification, when the parameters for * one of the binding points are invalid, that binding point * is not updated and an error will be generated. However, other * binding points in the same command will be updated if their * parameters are valid and no other error occurs." */ _mesa_begin_bufferobj_lookups(ctx); for (i = 0; i < count; i++) { struct gl_shader_storage_buffer_binding *binding = &ctx->ShaderStorageBufferBindings[first + i]; struct gl_buffer_object *bufObj; if (binding->BufferObject && binding->BufferObject->Name == buffers[i]) bufObj = binding->BufferObject; else bufObj = _mesa_multi_bind_lookup_bufferobj(ctx, buffers, i, "glBindBuffersBase"); if (bufObj) { if (bufObj == ctx->Shared->NullBufferObj) set_ssbo_binding(ctx, binding, bufObj, -1, -1, GL_TRUE); else set_ssbo_binding(ctx, binding, bufObj, 0, 0, GL_TRUE); } } _mesa_end_bufferobj_lookups(ctx); } static void bind_uniform_buffers_range(struct gl_context *ctx, GLuint first, GLsizei count, const GLuint *buffers, const GLintptr *offsets, const GLsizeiptr *sizes) { GLint i; if (!error_check_bind_uniform_buffers(ctx, first, count, "glBindBuffersRange")) return; /* Assume that at least one binding will be changed */ FLUSH_VERTICES(ctx, 0); ctx->NewDriverState |= ctx->DriverFlags.NewUniformBuffer; if (!buffers) { /* The ARB_multi_bind spec says: * * "If is NULL, all bindings from through * +-1 are reset to their unbound (zero) state. * In this case, the offsets and sizes associated with the * binding points are set to default values, ignoring * and ." */ unbind_uniform_buffers(ctx, first, count); return; } /* Note that the error semantics for multi-bind commands differ from * those of other GL commands. * * The Issues section in the ARB_multi_bind spec says: * * "(11) Typically, OpenGL specifies that if an error is generated by a * command, that command has no effect. This is somewhat * unfortunate for multi-bind commands, because it would require a * first pass to scan the entire list of bound objects for errors * and then a second pass to actually perform the bindings. * Should we have different error semantics? * * RESOLVED: Yes. In this specification, when the parameters for * one of the binding points are invalid, that binding point * is not updated and an error will be generated. However, other * binding points in the same command will be updated if their * parameters are valid and no other error occurs." */ _mesa_begin_bufferobj_lookups(ctx); for (i = 0; i < count; i++) { struct gl_uniform_buffer_binding *binding = &ctx->UniformBufferBindings[first + i]; struct gl_buffer_object *bufObj; if (!bind_buffers_check_offset_and_size(ctx, i, offsets, sizes)) continue; /* The ARB_multi_bind spec says: * * "An INVALID_VALUE error is generated by BindBuffersRange if any * pair of values in and does not respectively * satisfy the constraints described for those parameters for the * specified target, as described in section 6.7.1 (per binding)." * * Section 6.7.1 refers to table 6.5, which says: * * "┌───────────────────────────────────────────────────────────────┐ * │ Uniform buffer array bindings (see sec. 7.6) │ * ├─────────────────────┬─────────────────────────────────────────┤ * │ ... │ ... │ * │ offset restriction │ multiple of value of UNIFORM_BUFFER_- │ * │ │ OFFSET_ALIGNMENT │ * │ ... │ ... │ * │ size restriction │ none │ * └─────────────────────┴─────────────────────────────────────────┘" */ if (offsets[i] & (ctx->Const.UniformBufferOffsetAlignment - 1)) { _mesa_error(ctx, GL_INVALID_VALUE, "glBindBuffersRange(offsets[%u]=%" PRId64 " is misaligned; it must be a multiple of the value of " "GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT=%u when " "target=GL_UNIFORM_BUFFER)", i, (int64_t) offsets[i], ctx->Const.UniformBufferOffsetAlignment); continue; } if (binding->BufferObject && binding->BufferObject->Name == buffers[i]) bufObj = binding->BufferObject; else bufObj = _mesa_multi_bind_lookup_bufferobj(ctx, buffers, i, "glBindBuffersRange"); if (bufObj) { if (bufObj == ctx->Shared->NullBufferObj) set_ubo_binding(ctx, binding, bufObj, -1, -1, GL_FALSE); else set_ubo_binding(ctx, binding, bufObj, offsets[i], sizes[i], GL_FALSE); } } _mesa_end_bufferobj_lookups(ctx); } static void bind_shader_storage_buffers_range(struct gl_context *ctx, GLuint first, GLsizei count, const GLuint *buffers, const GLintptr *offsets, const GLsizeiptr *sizes) { GLint i; if (!error_check_bind_shader_storage_buffers(ctx, first, count, "glBindBuffersRange")) return; /* Assume that at least one binding will be changed */ FLUSH_VERTICES(ctx, 0); ctx->NewDriverState |= ctx->DriverFlags.NewShaderStorageBuffer; if (!buffers) { /* The ARB_multi_bind spec says: * * "If is NULL, all bindings from through * +-1 are reset to their unbound (zero) state. * In this case, the offsets and sizes associated with the * binding points are set to default values, ignoring * and ." */ unbind_shader_storage_buffers(ctx, first, count); return; } /* Note that the error semantics for multi-bind commands differ from * those of other GL commands. * * The Issues section in the ARB_multi_bind spec says: * * "(11) Typically, OpenGL specifies that if an error is generated by a * command, that command has no effect. This is somewhat * unfortunate for multi-bind commands, because it would require a * first pass to scan the entire list of bound objects for errors * and then a second pass to actually perform the bindings. * Should we have different error semantics? * * RESOLVED: Yes. In this specification, when the parameters for * one of the binding points are invalid, that binding point * is not updated and an error will be generated. However, other * binding points in the same command will be updated if their * parameters are valid and no other error occurs." */ _mesa_begin_bufferobj_lookups(ctx); for (i = 0; i < count; i++) { struct gl_shader_storage_buffer_binding *binding = &ctx->ShaderStorageBufferBindings[first + i]; struct gl_buffer_object *bufObj; if (!bind_buffers_check_offset_and_size(ctx, i, offsets, sizes)) continue; /* The ARB_multi_bind spec says: * * "An INVALID_VALUE error is generated by BindBuffersRange if any * pair of values in and does not respectively * satisfy the constraints described for those parameters for the * specified target, as described in section 6.7.1 (per binding)." * * Section 6.7.1 refers to table 6.5, which says: * * "┌───────────────────────────────────────────────────────────────┐ * │ Shader storage buffer array bindings (see sec. 7.8) │ * ├─────────────────────┬─────────────────────────────────────────┤ * │ ... │ ... │ * │ offset restriction │ multiple of value of SHADER_STORAGE_- │ * │ │ BUFFER_OFFSET_ALIGNMENT │ * │ ... │ ... │ * │ size restriction │ none │ * └─────────────────────┴─────────────────────────────────────────┘" */ if (offsets[i] & (ctx->Const.ShaderStorageBufferOffsetAlignment - 1)) { _mesa_error(ctx, GL_INVALID_VALUE, "glBindBuffersRange(offsets[%u]=%" PRId64 " is misaligned; it must be a multiple of the value of " "GL_SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT=%u when " "target=GL_SHADER_STORAGE_BUFFER)", i, (int64_t) offsets[i], ctx->Const.ShaderStorageBufferOffsetAlignment); continue; } if (binding->BufferObject && binding->BufferObject->Name == buffers[i]) bufObj = binding->BufferObject; else bufObj = _mesa_multi_bind_lookup_bufferobj(ctx, buffers, i, "glBindBuffersRange"); if (bufObj) { if (bufObj == ctx->Shared->NullBufferObj) set_ssbo_binding(ctx, binding, bufObj, -1, -1, GL_FALSE); else set_ssbo_binding(ctx, binding, bufObj, offsets[i], sizes[i], GL_FALSE); } } _mesa_end_bufferobj_lookups(ctx); } static bool error_check_bind_xfb_buffers(struct gl_context *ctx, struct gl_transform_feedback_object *tfObj, GLuint first, GLsizei count, const char *caller) { if (!ctx->Extensions.EXT_transform_feedback) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(target=GL_TRANSFORM_FEEDBACK_BUFFER)", caller); return false; } /* Page 398 of the PDF of the OpenGL 4.4 (Core Profile) spec says: * * "An INVALID_OPERATION error is generated : * * ... * • by BindBufferRange or BindBufferBase if target is TRANSFORM_- * FEEDBACK_BUFFER and transform feedback is currently active." * * We assume that this is also meant to apply to BindBuffersRange * and BindBuffersBase. */ if (tfObj->Active) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(Changing transform feedback buffers while " "transform feedback is active)", caller); return false; } /* The ARB_multi_bind_spec says: * * "An INVALID_OPERATION error is generated if + is * greater than the number of target-specific indexed binding points, * as described in section 6.7.1." */ if (first + count > ctx->Const.MaxTransformFeedbackBuffers) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(first=%u + count=%d > the value of " "GL_MAX_TRANSFORM_FEEDBACK_BUFFERS=%u)", caller, first, count, ctx->Const.MaxTransformFeedbackBuffers); return false; } return true; } /** * Unbind all transform feedback buffers in the range * through +-1 */ static void unbind_xfb_buffers(struct gl_context *ctx, struct gl_transform_feedback_object *tfObj, GLuint first, GLsizei count) { struct gl_buffer_object * const bufObj = ctx->Shared->NullBufferObj; GLint i; for (i = 0; i < count; i++) _mesa_set_transform_feedback_binding(ctx, tfObj, first + i, bufObj, 0, 0); } static void bind_xfb_buffers_base(struct gl_context *ctx, GLuint first, GLsizei count, const GLuint *buffers) { struct gl_transform_feedback_object *tfObj = ctx->TransformFeedback.CurrentObject; GLint i; if (!error_check_bind_xfb_buffers(ctx, tfObj, first, count, "glBindBuffersBase")) return; /* Assume that at least one binding will be changed */ FLUSH_VERTICES(ctx, 0); ctx->NewDriverState |= ctx->DriverFlags.NewTransformFeedback; if (!buffers) { /* The ARB_multi_bind spec says: * * "If is NULL, all bindings from through * +-1 are reset to their unbound (zero) state." */ unbind_xfb_buffers(ctx, tfObj, first, count); return; } /* Note that the error semantics for multi-bind commands differ from * those of other GL commands. * * The Issues section in the ARB_multi_bind spec says: * * "(11) Typically, OpenGL specifies that if an error is generated by a * command, that command has no effect. This is somewhat * unfortunate for multi-bind commands, because it would require a * first pass to scan the entire list of bound objects for errors * and then a second pass to actually perform the bindings. * Should we have different error semantics? * * RESOLVED: Yes. In this specification, when the parameters for * one of the binding points are invalid, that binding point * is not updated and an error will be generated. However, other * binding points in the same command will be updated if their * parameters are valid and no other error occurs." */ _mesa_begin_bufferobj_lookups(ctx); for (i = 0; i < count; i++) { struct gl_buffer_object * const boundBufObj = tfObj->Buffers[first + i]; struct gl_buffer_object *bufObj; if (boundBufObj && boundBufObj->Name == buffers[i]) bufObj = boundBufObj; else bufObj = _mesa_multi_bind_lookup_bufferobj(ctx, buffers, i, "glBindBuffersBase"); if (bufObj) _mesa_set_transform_feedback_binding(ctx, tfObj, first + i, bufObj, 0, 0); } _mesa_end_bufferobj_lookups(ctx); } static void bind_xfb_buffers_range(struct gl_context *ctx, GLuint first, GLsizei count, const GLuint *buffers, const GLintptr *offsets, const GLsizeiptr *sizes) { struct gl_transform_feedback_object *tfObj = ctx->TransformFeedback.CurrentObject; GLint i; if (!error_check_bind_xfb_buffers(ctx, tfObj, first, count, "glBindBuffersRange")) return; /* Assume that at least one binding will be changed */ FLUSH_VERTICES(ctx, 0); ctx->NewDriverState |= ctx->DriverFlags.NewTransformFeedback; if (!buffers) { /* The ARB_multi_bind spec says: * * "If is NULL, all bindings from through * +-1 are reset to their unbound (zero) state. * In this case, the offsets and sizes associated with the * binding points are set to default values, ignoring * and ." */ unbind_xfb_buffers(ctx, tfObj, first, count); return; } /* Note that the error semantics for multi-bind commands differ from * those of other GL commands. * * The Issues section in the ARB_multi_bind spec says: * * "(11) Typically, OpenGL specifies that if an error is generated by a * command, that command has no effect. This is somewhat * unfortunate for multi-bind commands, because it would require a * first pass to scan the entire list of bound objects for errors * and then a second pass to actually perform the bindings. * Should we have different error semantics? * * RESOLVED: Yes. In this specification, when the parameters for * one of the binding points are invalid, that binding point * is not updated and an error will be generated. However, other * binding points in the same command will be updated if their * parameters are valid and no other error occurs." */ _mesa_begin_bufferobj_lookups(ctx); for (i = 0; i < count; i++) { const GLuint index = first + i; struct gl_buffer_object * const boundBufObj = tfObj->Buffers[index]; struct gl_buffer_object *bufObj; if (!bind_buffers_check_offset_and_size(ctx, i, offsets, sizes)) continue; /* The ARB_multi_bind spec says: * * "An INVALID_VALUE error is generated by BindBuffersRange if any * pair of values in and does not respectively * satisfy the constraints described for those parameters for the * specified target, as described in section 6.7.1 (per binding)." * * Section 6.7.1 refers to table 6.5, which says: * * "┌───────────────────────────────────────────────────────────────┐ * │ Transform feedback array bindings (see sec. 13.2.2) │ * ├───────────────────────┬───────────────────────────────────────┤ * │ ... │ ... │ * │ offset restriction │ multiple of 4 │ * │ ... │ ... │ * │ size restriction │ multiple of 4 │ * └───────────────────────┴───────────────────────────────────────┘" */ if (offsets[i] & 0x3) { _mesa_error(ctx, GL_INVALID_VALUE, "glBindBuffersRange(offsets[%u]=%" PRId64 " is misaligned; it must be a multiple of 4 when " "target=GL_TRANSFORM_FEEDBACK_BUFFER)", i, (int64_t) offsets[i]); continue; } if (sizes[i] & 0x3) { _mesa_error(ctx, GL_INVALID_VALUE, "glBindBuffersRange(sizes[%u]=%" PRId64 " is misaligned; it must be a multiple of 4 when " "target=GL_TRANSFORM_FEEDBACK_BUFFER)", i, (int64_t) sizes[i]); continue; } if (boundBufObj && boundBufObj->Name == buffers[i]) bufObj = boundBufObj; else bufObj = _mesa_multi_bind_lookup_bufferobj(ctx, buffers, i, "glBindBuffersRange"); if (bufObj) _mesa_set_transform_feedback_binding(ctx, tfObj, index, bufObj, offsets[i], sizes[i]); } _mesa_end_bufferobj_lookups(ctx); } static bool error_check_bind_atomic_buffers(struct gl_context *ctx, GLuint first, GLsizei count, const char *caller) { if (!ctx->Extensions.ARB_shader_atomic_counters) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(target=GL_ATOMIC_COUNTER_BUFFER)", caller); return false; } /* The ARB_multi_bind_spec says: * * "An INVALID_OPERATION error is generated if + is * greater than the number of target-specific indexed binding points, * as described in section 6.7.1." */ if (first + count > ctx->Const.MaxAtomicBufferBindings) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(first=%u + count=%d > the value of " "GL_MAX_ATOMIC_BUFFER_BINDINGS=%u)", caller, first, count, ctx->Const.MaxAtomicBufferBindings); return false; } return true; } /** * Unbind all atomic counter buffers in the range * through +-1 */ static void unbind_atomic_buffers(struct gl_context *ctx, GLuint first, GLsizei count) { struct gl_buffer_object * const bufObj = ctx->Shared->NullBufferObj; GLint i; for (i = 0; i < count; i++) set_atomic_buffer_binding(ctx, &ctx->AtomicBufferBindings[first + i], bufObj, -1, -1); } static void bind_atomic_buffers_base(struct gl_context *ctx, GLuint first, GLsizei count, const GLuint *buffers) { GLint i; if (!error_check_bind_atomic_buffers(ctx, first, count, "glBindBuffersBase")) return; /* Assume that at least one binding will be changed */ FLUSH_VERTICES(ctx, 0); ctx->NewDriverState |= ctx->DriverFlags.NewAtomicBuffer; if (!buffers) { /* The ARB_multi_bind spec says: * * "If is NULL, all bindings from through * +-1 are reset to their unbound (zero) state." */ unbind_atomic_buffers(ctx, first, count); return; } /* Note that the error semantics for multi-bind commands differ from * those of other GL commands. * * The Issues section in the ARB_multi_bind spec says: * * "(11) Typically, OpenGL specifies that if an error is generated by a * command, that command has no effect. This is somewhat * unfortunate for multi-bind commands, because it would require a * first pass to scan the entire list of bound objects for errors * and then a second pass to actually perform the bindings. * Should we have different error semantics? * * RESOLVED: Yes. In this specification, when the parameters for * one of the binding points are invalid, that binding point * is not updated and an error will be generated. However, other * binding points in the same command will be updated if their * parameters are valid and no other error occurs." */ _mesa_begin_bufferobj_lookups(ctx); for (i = 0; i < count; i++) { struct gl_atomic_buffer_binding *binding = &ctx->AtomicBufferBindings[first + i]; struct gl_buffer_object *bufObj; if (binding->BufferObject && binding->BufferObject->Name == buffers[i]) bufObj = binding->BufferObject; else bufObj = _mesa_multi_bind_lookup_bufferobj(ctx, buffers, i, "glBindBuffersBase"); if (bufObj) set_atomic_buffer_binding(ctx, binding, bufObj, 0, 0); } _mesa_end_bufferobj_lookups(ctx); } static void bind_atomic_buffers_range(struct gl_context *ctx, GLuint first, GLsizei count, const GLuint *buffers, const GLintptr *offsets, const GLsizeiptr *sizes) { GLint i; if (!error_check_bind_atomic_buffers(ctx, first, count, "glBindBuffersRange")) return; /* Assume that at least one binding will be changed */ FLUSH_VERTICES(ctx, 0); ctx->NewDriverState |= ctx->DriverFlags.NewAtomicBuffer; if (!buffers) { /* The ARB_multi_bind spec says: * * "If is NULL, all bindings from through * +-1 are reset to their unbound (zero) state. * In this case, the offsets and sizes associated with the * binding points are set to default values, ignoring * and ." */ unbind_atomic_buffers(ctx, first, count); return; } /* Note that the error semantics for multi-bind commands differ from * those of other GL commands. * * The Issues section in the ARB_multi_bind spec says: * * "(11) Typically, OpenGL specifies that if an error is generated by a * command, that command has no effect. This is somewhat * unfortunate for multi-bind commands, because it would require a * first pass to scan the entire list of bound objects for errors * and then a second pass to actually perform the bindings. * Should we have different error semantics? * * RESOLVED: Yes. In this specification, when the parameters for * one of the binding points are invalid, that binding point * is not updated and an error will be generated. However, other * binding points in the same command will be updated if their * parameters are valid and no other error occurs." */ _mesa_begin_bufferobj_lookups(ctx); for (i = 0; i < count; i++) { struct gl_atomic_buffer_binding *binding = &ctx->AtomicBufferBindings[first + i]; struct gl_buffer_object *bufObj; if (!bind_buffers_check_offset_and_size(ctx, i, offsets, sizes)) continue; /* The ARB_multi_bind spec says: * * "An INVALID_VALUE error is generated by BindBuffersRange if any * pair of values in and does not respectively * satisfy the constraints described for those parameters for the * specified target, as described in section 6.7.1 (per binding)." * * Section 6.7.1 refers to table 6.5, which says: * * "┌───────────────────────────────────────────────────────────────┐ * │ Atomic counter array bindings (see sec. 7.7.2) │ * ├───────────────────────┬───────────────────────────────────────┤ * │ ... │ ... │ * │ offset restriction │ multiple of 4 │ * │ ... │ ... │ * │ size restriction │ none │ * └───────────────────────┴───────────────────────────────────────┘" */ if (offsets[i] & (ATOMIC_COUNTER_SIZE - 1)) { _mesa_error(ctx, GL_INVALID_VALUE, "glBindBuffersRange(offsets[%u]=%" PRId64 " is misaligned; it must be a multiple of %d when " "target=GL_ATOMIC_COUNTER_BUFFER)", i, (int64_t) offsets[i], ATOMIC_COUNTER_SIZE); continue; } if (binding->BufferObject && binding->BufferObject->Name == buffers[i]) bufObj = binding->BufferObject; else bufObj = _mesa_multi_bind_lookup_bufferobj(ctx, buffers, i, "glBindBuffersRange"); if (bufObj) set_atomic_buffer_binding(ctx, binding, bufObj, offsets[i], sizes[i]); } _mesa_end_bufferobj_lookups(ctx); } void GLAPIENTRY _mesa_BindBufferRange(GLenum target, GLuint index, GLuint buffer, GLintptr offset, GLsizeiptr size) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; if (buffer == 0) { bufObj = ctx->Shared->NullBufferObj; } else { bufObj = _mesa_lookup_bufferobj(ctx, buffer); } if (!_mesa_handle_bind_buffer_gen(ctx, target, buffer, &bufObj, "glBindBufferRange")) return; if (!bufObj) { _mesa_error(ctx, GL_INVALID_OPERATION, "glBindBufferRange(invalid buffer=%u)", buffer); return; } if (buffer != 0) { if (size <= 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferRange(size=%d)", (int) size); return; } } switch (target) { case GL_TRANSFORM_FEEDBACK_BUFFER: _mesa_bind_buffer_range_transform_feedback(ctx, ctx->TransformFeedback.CurrentObject, index, bufObj, offset, size, false); return; case GL_UNIFORM_BUFFER: bind_buffer_range_uniform_buffer(ctx, index, bufObj, offset, size); return; case GL_SHADER_STORAGE_BUFFER: bind_buffer_range_shader_storage_buffer(ctx, index, bufObj, offset, size); return; case GL_ATOMIC_COUNTER_BUFFER: bind_atomic_buffer(ctx, index, bufObj, offset, size, "glBindBufferRange"); return; default: _mesa_error(ctx, GL_INVALID_ENUM, "glBindBufferRange(target)"); return; } } void GLAPIENTRY _mesa_BindBufferBase(GLenum target, GLuint index, GLuint buffer) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; if (buffer == 0) { bufObj = ctx->Shared->NullBufferObj; } else { bufObj = _mesa_lookup_bufferobj(ctx, buffer); } if (!_mesa_handle_bind_buffer_gen(ctx, target, buffer, &bufObj, "glBindBufferBase")) return; if (!bufObj) { _mesa_error(ctx, GL_INVALID_OPERATION, "glBindBufferBase(invalid buffer=%u)", buffer); return; } /* Note that there's some oddness in the GL 3.1-GL 3.3 specifications with * regards to BindBufferBase. It says (GL 3.1 core spec, page 63): * * "BindBufferBase is equivalent to calling BindBufferRange with offset * zero and size equal to the size of buffer." * * but it says for glGetIntegeri_v (GL 3.1 core spec, page 230): * * "If the parameter (starting offset or size) was not specified when the * buffer object was bound, zero is returned." * * What happens if the size of the buffer changes? Does the size of the * buffer at the moment glBindBufferBase was called still play a role, like * the first quote would imply, or is the size meaningless in the * glBindBufferBase case like the second quote would suggest? The GL 4.1 * core spec page 45 says: * * "It is equivalent to calling BindBufferRange with offset zero, while * size is determined by the size of the bound buffer at the time the * binding is used." * * My interpretation is that the GL 4.1 spec was a clarification of the * behavior, not a change. In particular, this choice will only make * rendering work in cases where it would have had undefined results. */ switch (target) { case GL_TRANSFORM_FEEDBACK_BUFFER: _mesa_bind_buffer_base_transform_feedback(ctx, ctx->TransformFeedback.CurrentObject, index, bufObj, false); return; case GL_UNIFORM_BUFFER: bind_buffer_base_uniform_buffer(ctx, index, bufObj); return; case GL_SHADER_STORAGE_BUFFER: bind_buffer_base_shader_storage_buffer(ctx, index, bufObj); return; case GL_ATOMIC_COUNTER_BUFFER: bind_atomic_buffer(ctx, index, bufObj, 0, 0, "glBindBufferBase"); return; default: _mesa_error(ctx, GL_INVALID_ENUM, "glBindBufferBase(target)"); return; } } void GLAPIENTRY _mesa_BindBuffersRange(GLenum target, GLuint first, GLsizei count, const GLuint *buffers, const GLintptr *offsets, const GLsizeiptr *sizes) { GET_CURRENT_CONTEXT(ctx); switch (target) { case GL_TRANSFORM_FEEDBACK_BUFFER: bind_xfb_buffers_range(ctx, first, count, buffers, offsets, sizes); return; case GL_UNIFORM_BUFFER: bind_uniform_buffers_range(ctx, first, count, buffers, offsets, sizes); return; case GL_SHADER_STORAGE_BUFFER: bind_shader_storage_buffers_range(ctx, first, count, buffers, offsets, sizes); return; case GL_ATOMIC_COUNTER_BUFFER: bind_atomic_buffers_range(ctx, first, count, buffers, offsets, sizes); return; default: _mesa_error(ctx, GL_INVALID_ENUM, "glBindBuffersRange(target=%s)", _mesa_enum_to_string(target)); break; } } void GLAPIENTRY _mesa_BindBuffersBase(GLenum target, GLuint first, GLsizei count, const GLuint *buffers) { GET_CURRENT_CONTEXT(ctx); switch (target) { case GL_TRANSFORM_FEEDBACK_BUFFER: bind_xfb_buffers_base(ctx, first, count, buffers); return; case GL_UNIFORM_BUFFER: bind_uniform_buffers_base(ctx, first, count, buffers); return; case GL_SHADER_STORAGE_BUFFER: bind_shader_storage_buffers_base(ctx, first, count, buffers); return; case GL_ATOMIC_COUNTER_BUFFER: bind_atomic_buffers_base(ctx, first, count, buffers); return; default: _mesa_error(ctx, GL_INVALID_ENUM, "glBindBuffersBase(target=%s)", _mesa_enum_to_string(target)); break; } } void GLAPIENTRY _mesa_InvalidateBufferSubData(GLuint buffer, GLintptr offset, GLsizeiptr length) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; const GLintptr end = offset + length; bufObj = _mesa_lookup_bufferobj(ctx, buffer); if (!bufObj) { _mesa_error(ctx, GL_INVALID_VALUE, "glInvalidateBufferSubData(name = 0x%x) invalid object", buffer); return; } /* The GL_ARB_invalidate_subdata spec says: * * "An INVALID_VALUE error is generated if or is * negative, or if + is greater than the value of * BUFFER_SIZE." */ if (end < 0 || end > bufObj->Size) { _mesa_error(ctx, GL_INVALID_VALUE, "glInvalidateBufferSubData(invalid offset or length)"); return; } /* The OpenGL 4.4 (Core Profile) spec says: * * "An INVALID_OPERATION error is generated if buffer is currently * mapped by MapBuffer or if the invalidate range intersects the range * currently mapped by MapBufferRange, unless it was mapped * with MAP_PERSISTENT_BIT set in the MapBufferRange access flags." */ if (!(bufObj->Mappings[MAP_USER].AccessFlags & GL_MAP_PERSISTENT_BIT) && bufferobj_range_mapped(bufObj, offset, length)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glInvalidateBufferSubData(intersection with mapped " "range)"); return; } /* We don't actually do anything for this yet. Just return after * validating the parameters and generating the required errors. */ return; } void GLAPIENTRY _mesa_InvalidateBufferData(GLuint buffer) { GET_CURRENT_CONTEXT(ctx); struct gl_buffer_object *bufObj; bufObj = _mesa_lookup_bufferobj(ctx, buffer); if (!bufObj) { _mesa_error(ctx, GL_INVALID_VALUE, "glInvalidateBufferData(name = 0x%x) invalid object", buffer); return; } /* The OpenGL 4.4 (Core Profile) spec says: * * "An INVALID_OPERATION error is generated if buffer is currently * mapped by MapBuffer or if the invalidate range intersects the range * currently mapped by MapBufferRange, unless it was mapped * with MAP_PERSISTENT_BIT set in the MapBufferRange access flags." */ if (_mesa_check_disallowed_mapping(bufObj)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glInvalidateBufferData(intersection with mapped " "range)"); return; } /* We don't actually do anything for this yet. Just return after * validating the parameters and generating the required errors. */ return; }