/** * \file blend.c * Blending operations. */ /* * Mesa 3-D graphics library * * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "glheader.h" #include "blend.h" #include "context.h" #include "enums.h" #include "macros.h" #include "mtypes.h" #include "state.h" /** * Check if given blend source factor is legal. * \return GL_TRUE if legal, GL_FALSE otherwise. */ static GLboolean legal_src_factor(const struct gl_context *ctx, GLenum factor) { switch (factor) { case GL_SRC_COLOR: case GL_ONE_MINUS_SRC_COLOR: case GL_ZERO: case GL_ONE: case GL_DST_COLOR: case GL_ONE_MINUS_DST_COLOR: case GL_SRC_ALPHA: case GL_ONE_MINUS_SRC_ALPHA: case GL_DST_ALPHA: case GL_ONE_MINUS_DST_ALPHA: case GL_SRC_ALPHA_SATURATE: return GL_TRUE; case GL_CONSTANT_COLOR: case GL_ONE_MINUS_CONSTANT_COLOR: case GL_CONSTANT_ALPHA: case GL_ONE_MINUS_CONSTANT_ALPHA: return _mesa_is_desktop_gl(ctx) || ctx->API == API_OPENGLES2; case GL_SRC1_COLOR: case GL_SRC1_ALPHA: case GL_ONE_MINUS_SRC1_COLOR: case GL_ONE_MINUS_SRC1_ALPHA: return ctx->API != API_OPENGLES && ctx->Extensions.ARB_blend_func_extended; default: return GL_FALSE; } } /** * Check if given blend destination factor is legal. * \return GL_TRUE if legal, GL_FALSE otherwise. */ static GLboolean legal_dst_factor(const struct gl_context *ctx, GLenum factor) { switch (factor) { case GL_DST_COLOR: case GL_ONE_MINUS_DST_COLOR: case GL_ZERO: case GL_ONE: case GL_SRC_COLOR: case GL_ONE_MINUS_SRC_COLOR: case GL_SRC_ALPHA: case GL_ONE_MINUS_SRC_ALPHA: case GL_DST_ALPHA: case GL_ONE_MINUS_DST_ALPHA: return GL_TRUE; case GL_CONSTANT_COLOR: case GL_ONE_MINUS_CONSTANT_COLOR: case GL_CONSTANT_ALPHA: case GL_ONE_MINUS_CONSTANT_ALPHA: return _mesa_is_desktop_gl(ctx) || ctx->API == API_OPENGLES2; case GL_SRC_ALPHA_SATURATE: return (ctx->API != API_OPENGLES && ctx->Extensions.ARB_blend_func_extended) || _mesa_is_gles3(ctx); case GL_SRC1_COLOR: case GL_SRC1_ALPHA: case GL_ONE_MINUS_SRC1_COLOR: case GL_ONE_MINUS_SRC1_ALPHA: return ctx->API != API_OPENGLES && ctx->Extensions.ARB_blend_func_extended; default: return GL_FALSE; } } /** * Check if src/dest RGB/A blend factors are legal. If not generate * a GL error. * \return GL_TRUE if factors are legal, GL_FALSE otherwise. */ static GLboolean validate_blend_factors(struct gl_context *ctx, const char *func, GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorA, GLenum dfactorA) { if (!legal_src_factor(ctx, sfactorRGB)) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(sfactorRGB = %s)", func, _mesa_enum_to_string(sfactorRGB)); return GL_FALSE; } if (!legal_dst_factor(ctx, dfactorRGB)) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(dfactorRGB = %s)", func, _mesa_enum_to_string(dfactorRGB)); return GL_FALSE; } if (sfactorA != sfactorRGB && !legal_src_factor(ctx, sfactorA)) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(sfactorA = %s)", func, _mesa_enum_to_string(sfactorA)); return GL_FALSE; } if (dfactorA != dfactorRGB && !legal_dst_factor(ctx, dfactorA)) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(dfactorA = %s)", func, _mesa_enum_to_string(dfactorA)); return GL_FALSE; } return GL_TRUE; } static GLboolean blend_factor_is_dual_src(GLenum factor) { return (factor == GL_SRC1_COLOR || factor == GL_SRC1_ALPHA || factor == GL_ONE_MINUS_SRC1_COLOR || factor == GL_ONE_MINUS_SRC1_ALPHA); } static void update_uses_dual_src(struct gl_context *ctx, int buf) { ctx->Color.Blend[buf]._UsesDualSrc = (blend_factor_is_dual_src(ctx->Color.Blend[buf].SrcRGB) || blend_factor_is_dual_src(ctx->Color.Blend[buf].DstRGB) || blend_factor_is_dual_src(ctx->Color.Blend[buf].SrcA) || blend_factor_is_dual_src(ctx->Color.Blend[buf].DstA)); } /** * Return the number of per-buffer blend states to update in * glBlendFunc, glBlendFuncSeparate, glBlendEquation, etc. */ static inline unsigned num_buffers(const struct gl_context *ctx) { return ctx->Extensions.ARB_draw_buffers_blend ? ctx->Const.MaxDrawBuffers : 1; } /* Returns true if there was no change */ static bool skip_blend_state_update(const struct gl_context *ctx, GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorA, GLenum dfactorA) { /* Check if we're really changing any state. If not, return early. */ if (ctx->Color._BlendFuncPerBuffer) { const unsigned numBuffers = num_buffers(ctx); /* Check all per-buffer states */ for (unsigned buf = 0; buf < numBuffers; buf++) { if (ctx->Color.Blend[buf].SrcRGB != sfactorRGB || ctx->Color.Blend[buf].DstRGB != dfactorRGB || ctx->Color.Blend[buf].SrcA != sfactorA || ctx->Color.Blend[buf].DstA != dfactorA) { return false; } } } else { /* only need to check 0th per-buffer state */ if (ctx->Color.Blend[0].SrcRGB != sfactorRGB || ctx->Color.Blend[0].DstRGB != dfactorRGB || ctx->Color.Blend[0].SrcA != sfactorA || ctx->Color.Blend[0].DstA != dfactorA) { return false; } } return true; } static void blend_func_separate(struct gl_context *ctx, GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorA, GLenum dfactorA) { FLUSH_VERTICES(ctx, ctx->DriverFlags.NewBlend ? 0 : _NEW_COLOR); ctx->NewDriverState |= ctx->DriverFlags.NewBlend; const unsigned numBuffers = num_buffers(ctx); for (unsigned buf = 0; buf < numBuffers; buf++) { ctx->Color.Blend[buf].SrcRGB = sfactorRGB; ctx->Color.Blend[buf].DstRGB = dfactorRGB; ctx->Color.Blend[buf].SrcA = sfactorA; ctx->Color.Blend[buf].DstA = dfactorA; } update_uses_dual_src(ctx, 0); for (unsigned buf = 1; buf < numBuffers; buf++) { ctx->Color.Blend[buf]._UsesDualSrc = ctx->Color.Blend[0]._UsesDualSrc; } ctx->Color._BlendFuncPerBuffer = GL_FALSE; if (ctx->Driver.BlendFuncSeparate) { ctx->Driver.BlendFuncSeparate(ctx, sfactorRGB, dfactorRGB, sfactorA, dfactorA); } } /** * Specify the blending operation. * * \param sfactor source factor operator. * \param dfactor destination factor operator. * * \sa glBlendFunc, glBlendFuncSeparateEXT */ void GLAPIENTRY _mesa_BlendFunc( GLenum sfactor, GLenum dfactor ) { GET_CURRENT_CONTEXT(ctx); if (skip_blend_state_update(ctx, sfactor, dfactor, sfactor, dfactor)) return; if (!validate_blend_factors(ctx, "glBlendFunc", sfactor, dfactor, sfactor, dfactor)) { return; } blend_func_separate(ctx, sfactor, dfactor, sfactor, dfactor); } void GLAPIENTRY _mesa_BlendFunc_no_error(GLenum sfactor, GLenum dfactor) { GET_CURRENT_CONTEXT(ctx); if (skip_blend_state_update(ctx, sfactor, dfactor, sfactor, dfactor)) return; blend_func_separate(ctx, sfactor, dfactor, sfactor, dfactor); } /** * Set the separate blend source/dest factors for all draw buffers. * * \param sfactorRGB RGB source factor operator. * \param dfactorRGB RGB destination factor operator. * \param sfactorA alpha source factor operator. * \param dfactorA alpha destination factor operator. */ void GLAPIENTRY _mesa_BlendFuncSeparate( GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorA, GLenum dfactorA ) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glBlendFuncSeparate %s %s %s %s\n", _mesa_enum_to_string(sfactorRGB), _mesa_enum_to_string(dfactorRGB), _mesa_enum_to_string(sfactorA), _mesa_enum_to_string(dfactorA)); if (skip_blend_state_update(ctx, sfactorRGB, dfactorRGB, sfactorA, dfactorA)) return; if (!validate_blend_factors(ctx, "glBlendFuncSeparate", sfactorRGB, dfactorRGB, sfactorA, dfactorA)) { return; } blend_func_separate(ctx, sfactorRGB, dfactorRGB, sfactorA, dfactorA); } void GLAPIENTRY _mesa_BlendFuncSeparate_no_error(GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorA, GLenum dfactorA) { GET_CURRENT_CONTEXT(ctx); if (skip_blend_state_update(ctx, sfactorRGB, dfactorRGB, sfactorA, dfactorA)) return; blend_func_separate(ctx, sfactorRGB, dfactorRGB, sfactorA, dfactorA); } void GLAPIENTRY _mesa_BlendFunciARB_no_error(GLuint buf, GLenum sfactor, GLenum dfactor) { _mesa_BlendFuncSeparateiARB_no_error(buf, sfactor, dfactor, sfactor, dfactor); } /** * Set blend source/dest factors for one color buffer/target. */ void GLAPIENTRY _mesa_BlendFunciARB(GLuint buf, GLenum sfactor, GLenum dfactor) { _mesa_BlendFuncSeparateiARB(buf, sfactor, dfactor, sfactor, dfactor); } static ALWAYS_INLINE void blend_func_separatei(GLuint buf, GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorA, GLenum dfactorA, bool no_error) { GET_CURRENT_CONTEXT(ctx); if (!no_error) { if (!ctx->Extensions.ARB_draw_buffers_blend) { _mesa_error(ctx, GL_INVALID_OPERATION, "glBlendFunc[Separate]i()"); return; } if (buf >= ctx->Const.MaxDrawBuffers) { _mesa_error(ctx, GL_INVALID_VALUE, "glBlendFuncSeparatei(buffer=%u)", buf); return; } } if (ctx->Color.Blend[buf].SrcRGB == sfactorRGB && ctx->Color.Blend[buf].DstRGB == dfactorRGB && ctx->Color.Blend[buf].SrcA == sfactorA && ctx->Color.Blend[buf].DstA == dfactorA) return; /* no change */ if (!no_error && !validate_blend_factors(ctx, "glBlendFuncSeparatei", sfactorRGB, dfactorRGB, sfactorA, dfactorA)) { return; } FLUSH_VERTICES(ctx, ctx->DriverFlags.NewBlend ? 0 : _NEW_COLOR); ctx->NewDriverState |= ctx->DriverFlags.NewBlend; ctx->Color.Blend[buf].SrcRGB = sfactorRGB; ctx->Color.Blend[buf].DstRGB = dfactorRGB; ctx->Color.Blend[buf].SrcA = sfactorA; ctx->Color.Blend[buf].DstA = dfactorA; update_uses_dual_src(ctx, buf); ctx->Color._BlendFuncPerBuffer = GL_TRUE; } void GLAPIENTRY _mesa_BlendFuncSeparateiARB_no_error(GLuint buf, GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorA, GLenum dfactorA) { blend_func_separatei(buf, sfactorRGB, dfactorRGB, sfactorA, dfactorA, true); } /** * Set separate blend source/dest factors for one color buffer/target. */ void GLAPIENTRY _mesa_BlendFuncSeparateiARB(GLuint buf, GLenum sfactorRGB, GLenum dfactorRGB, GLenum sfactorA, GLenum dfactorA) { blend_func_separatei(buf, sfactorRGB, dfactorRGB, sfactorA, dfactorA, false); } /** * Return true if \p mode is a legal blending equation, excluding * GL_KHR_blend_equation_advanced modes. */ static bool legal_simple_blend_equation(const struct gl_context *ctx, GLenum mode) { switch (mode) { case GL_FUNC_ADD: case GL_FUNC_SUBTRACT: case GL_FUNC_REVERSE_SUBTRACT: return GL_TRUE; case GL_MIN: case GL_MAX: return ctx->Extensions.EXT_blend_minmax; default: return GL_FALSE; } } static enum gl_advanced_blend_mode advanced_blend_mode_from_gl_enum(GLenum mode) { switch (mode) { case GL_MULTIPLY_KHR: return BLEND_MULTIPLY; case GL_SCREEN_KHR: return BLEND_SCREEN; case GL_OVERLAY_KHR: return BLEND_OVERLAY; case GL_DARKEN_KHR: return BLEND_DARKEN; case GL_LIGHTEN_KHR: return BLEND_LIGHTEN; case GL_COLORDODGE_KHR: return BLEND_COLORDODGE; case GL_COLORBURN_KHR: return BLEND_COLORBURN; case GL_HARDLIGHT_KHR: return BLEND_HARDLIGHT; case GL_SOFTLIGHT_KHR: return BLEND_SOFTLIGHT; case GL_DIFFERENCE_KHR: return BLEND_DIFFERENCE; case GL_EXCLUSION_KHR: return BLEND_EXCLUSION; case GL_HSL_HUE_KHR: return BLEND_HSL_HUE; case GL_HSL_SATURATION_KHR: return BLEND_HSL_SATURATION; case GL_HSL_COLOR_KHR: return BLEND_HSL_COLOR; case GL_HSL_LUMINOSITY_KHR: return BLEND_HSL_LUMINOSITY; default: return BLEND_NONE; } } /** * If \p mode is one of the advanced blending equations defined by * GL_KHR_blend_equation_advanced (and the extension is supported), * return the corresponding BLEND_* enum. Otherwise, return BLEND_NONE * (which can also be treated as false). */ static enum gl_advanced_blend_mode advanced_blend_mode(const struct gl_context *ctx, GLenum mode) { return _mesa_has_KHR_blend_equation_advanced(ctx) ? advanced_blend_mode_from_gl_enum(mode) : BLEND_NONE; } /* This is really an extension function! */ void GLAPIENTRY _mesa_BlendEquation( GLenum mode ) { GET_CURRENT_CONTEXT(ctx); const unsigned numBuffers = num_buffers(ctx); unsigned buf; bool changed = false; enum gl_advanced_blend_mode advanced_mode = advanced_blend_mode(ctx, mode); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glBlendEquation(%s)\n", _mesa_enum_to_string(mode)); if (ctx->Color._BlendEquationPerBuffer) { /* Check all per-buffer states */ for (buf = 0; buf < numBuffers; buf++) { if (ctx->Color.Blend[buf].EquationRGB != mode || ctx->Color.Blend[buf].EquationA != mode) { changed = true; break; } } } else { /* only need to check 0th per-buffer state */ if (ctx->Color.Blend[0].EquationRGB != mode || ctx->Color.Blend[0].EquationA != mode) { changed = true; } } if (!changed) return; if (!legal_simple_blend_equation(ctx, mode) && !advanced_mode) { _mesa_error(ctx, GL_INVALID_ENUM, "glBlendEquation"); return; } _mesa_flush_vertices_for_blend_adv(ctx, ctx->Color.BlendEnabled, advanced_mode); for (buf = 0; buf < numBuffers; buf++) { ctx->Color.Blend[buf].EquationRGB = mode; ctx->Color.Blend[buf].EquationA = mode; } ctx->Color._BlendEquationPerBuffer = GL_FALSE; ctx->Color._AdvancedBlendMode = advanced_mode; if (ctx->Driver.BlendEquationSeparate) ctx->Driver.BlendEquationSeparate(ctx, mode, mode); } /** * Set blend equation for one color buffer/target. */ static void blend_equationi(struct gl_context *ctx, GLuint buf, GLenum mode, enum gl_advanced_blend_mode advanced_mode) { if (ctx->Color.Blend[buf].EquationRGB == mode && ctx->Color.Blend[buf].EquationA == mode) return; /* no change */ _mesa_flush_vertices_for_blend_adv(ctx, ctx->Color.BlendEnabled, advanced_mode); ctx->Color.Blend[buf].EquationRGB = mode; ctx->Color.Blend[buf].EquationA = mode; ctx->Color._BlendEquationPerBuffer = GL_TRUE; if (buf == 0) ctx->Color._AdvancedBlendMode = advanced_mode; } void GLAPIENTRY _mesa_BlendEquationiARB_no_error(GLuint buf, GLenum mode) { GET_CURRENT_CONTEXT(ctx); enum gl_advanced_blend_mode advanced_mode = advanced_blend_mode(ctx, mode); blend_equationi(ctx, buf, mode, advanced_mode); } void GLAPIENTRY _mesa_BlendEquationiARB(GLuint buf, GLenum mode) { GET_CURRENT_CONTEXT(ctx); enum gl_advanced_blend_mode advanced_mode = advanced_blend_mode(ctx, mode); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glBlendEquationi(%u, %s)\n", buf, _mesa_enum_to_string(mode)); if (buf >= ctx->Const.MaxDrawBuffers) { _mesa_error(ctx, GL_INVALID_VALUE, "glBlendEquationi(buffer=%u)", buf); return; } if (!legal_simple_blend_equation(ctx, mode) && !advanced_mode) { _mesa_error(ctx, GL_INVALID_ENUM, "glBlendEquationi"); return; } blend_equationi(ctx, buf, mode, advanced_mode); } static void blend_equation_separate(struct gl_context *ctx, GLenum modeRGB, GLenum modeA, bool no_error) { const unsigned numBuffers = num_buffers(ctx); unsigned buf; bool changed = false; if (ctx->Color._BlendEquationPerBuffer) { /* Check all per-buffer states */ for (buf = 0; buf < numBuffers; buf++) { if (ctx->Color.Blend[buf].EquationRGB != modeRGB || ctx->Color.Blend[buf].EquationA != modeA) { changed = true; break; } } } else { /* only need to check 0th per-buffer state */ if (ctx->Color.Blend[0].EquationRGB != modeRGB || ctx->Color.Blend[0].EquationA != modeA) { changed = true; } } if (!changed) return; if (!no_error) { if ((modeRGB != modeA) && !ctx->Extensions.EXT_blend_equation_separate) { _mesa_error(ctx, GL_INVALID_OPERATION, "glBlendEquationSeparateEXT not supported by driver"); return; } /* Only allow simple blending equations. * The GL_KHR_blend_equation_advanced spec says: * * "NOTE: These enums are not accepted by the or * parameters of BlendEquationSeparate or BlendEquationSeparatei." */ if (!legal_simple_blend_equation(ctx, modeRGB)) { _mesa_error(ctx, GL_INVALID_ENUM, "glBlendEquationSeparateEXT(modeRGB)"); return; } if (!legal_simple_blend_equation(ctx, modeA)) { _mesa_error(ctx, GL_INVALID_ENUM, "glBlendEquationSeparateEXT(modeA)"); return; } } _mesa_flush_vertices_for_blend_state(ctx); for (buf = 0; buf < numBuffers; buf++) { ctx->Color.Blend[buf].EquationRGB = modeRGB; ctx->Color.Blend[buf].EquationA = modeA; } ctx->Color._BlendEquationPerBuffer = GL_FALSE; ctx->Color._AdvancedBlendMode = BLEND_NONE; if (ctx->Driver.BlendEquationSeparate) ctx->Driver.BlendEquationSeparate(ctx, modeRGB, modeA); } void GLAPIENTRY _mesa_BlendEquationSeparate_no_error(GLenum modeRGB, GLenum modeA) { GET_CURRENT_CONTEXT(ctx); blend_equation_separate(ctx, modeRGB, modeA, true); } void GLAPIENTRY _mesa_BlendEquationSeparate(GLenum modeRGB, GLenum modeA) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glBlendEquationSeparateEXT(%s %s)\n", _mesa_enum_to_string(modeRGB), _mesa_enum_to_string(modeA)); blend_equation_separate(ctx, modeRGB, modeA, false); } static ALWAYS_INLINE void blend_equation_separatei(struct gl_context *ctx, GLuint buf, GLenum modeRGB, GLenum modeA, bool no_error) { if (ctx->Color.Blend[buf].EquationRGB == modeRGB && ctx->Color.Blend[buf].EquationA == modeA) return; /* no change */ if (!no_error) { /* Only allow simple blending equations. * The GL_KHR_blend_equation_advanced spec says: * * "NOTE: These enums are not accepted by the or * parameters of BlendEquationSeparate or BlendEquationSeparatei." */ if (!legal_simple_blend_equation(ctx, modeRGB)) { _mesa_error(ctx, GL_INVALID_ENUM, "glBlendEquationSeparatei(modeRGB)"); return; } if (!legal_simple_blend_equation(ctx, modeA)) { _mesa_error(ctx, GL_INVALID_ENUM, "glBlendEquationSeparatei(modeA)"); return; } } _mesa_flush_vertices_for_blend_state(ctx); ctx->Color.Blend[buf].EquationRGB = modeRGB; ctx->Color.Blend[buf].EquationA = modeA; ctx->Color._BlendEquationPerBuffer = GL_TRUE; ctx->Color._AdvancedBlendMode = BLEND_NONE; } void GLAPIENTRY _mesa_BlendEquationSeparateiARB_no_error(GLuint buf, GLenum modeRGB, GLenum modeA) { GET_CURRENT_CONTEXT(ctx); blend_equation_separatei(ctx, buf, modeRGB, modeA, true); } /** * Set separate blend equations for one color buffer/target. */ void GLAPIENTRY _mesa_BlendEquationSeparateiARB(GLuint buf, GLenum modeRGB, GLenum modeA) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glBlendEquationSeparatei(%u, %s %s)\n", buf, _mesa_enum_to_string(modeRGB), _mesa_enum_to_string(modeA)); if (buf >= ctx->Const.MaxDrawBuffers) { _mesa_error(ctx, GL_INVALID_VALUE, "glBlendEquationSeparatei(buffer=%u)", buf); return; } blend_equation_separatei(ctx, buf, modeRGB, modeA, false); } /** * Set the blending color. * * \param red red color component. * \param green green color component. * \param blue blue color component. * \param alpha alpha color component. * * \sa glBlendColor(). * * Clamps the parameters and updates gl_colorbuffer_attrib::BlendColor. On a * change, flushes the vertices and notifies the driver via * dd_function_table::BlendColor callback. */ void GLAPIENTRY _mesa_BlendColor( GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha ) { GLfloat tmp[4]; GET_CURRENT_CONTEXT(ctx); tmp[0] = red; tmp[1] = green; tmp[2] = blue; tmp[3] = alpha; if (TEST_EQ_4V(tmp, ctx->Color.BlendColorUnclamped)) return; FLUSH_VERTICES(ctx, ctx->DriverFlags.NewBlendColor ? 0 : _NEW_COLOR); ctx->NewDriverState |= ctx->DriverFlags.NewBlendColor; COPY_4FV( ctx->Color.BlendColorUnclamped, tmp ); ctx->Color.BlendColor[0] = CLAMP(tmp[0], 0.0F, 1.0F); ctx->Color.BlendColor[1] = CLAMP(tmp[1], 0.0F, 1.0F); ctx->Color.BlendColor[2] = CLAMP(tmp[2], 0.0F, 1.0F); ctx->Color.BlendColor[3] = CLAMP(tmp[3], 0.0F, 1.0F); if (ctx->Driver.BlendColor) ctx->Driver.BlendColor(ctx, ctx->Color.BlendColor); } /** * Specify the alpha test function. * * \param func alpha comparison function. * \param ref reference value. * * Verifies the parameters and updates gl_colorbuffer_attrib. * On a change, flushes the vertices and notifies the driver via * dd_function_table::AlphaFunc callback. */ void GLAPIENTRY _mesa_AlphaFunc( GLenum func, GLclampf ref ) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glAlphaFunc(%s, %f)\n", _mesa_enum_to_string(func), ref); if (ctx->Color.AlphaFunc == func && ctx->Color.AlphaRefUnclamped == ref) return; /* no change */ switch (func) { case GL_NEVER: case GL_LESS: case GL_EQUAL: case GL_LEQUAL: case GL_GREATER: case GL_NOTEQUAL: case GL_GEQUAL: case GL_ALWAYS: FLUSH_VERTICES(ctx, ctx->DriverFlags.NewAlphaTest ? 0 : _NEW_COLOR); ctx->NewDriverState |= ctx->DriverFlags.NewAlphaTest; ctx->Color.AlphaFunc = func; ctx->Color.AlphaRefUnclamped = ref; ctx->Color.AlphaRef = CLAMP(ref, 0.0F, 1.0F); if (ctx->Driver.AlphaFunc) ctx->Driver.AlphaFunc(ctx, func, ctx->Color.AlphaRef); return; default: _mesa_error( ctx, GL_INVALID_ENUM, "glAlphaFunc(func)" ); return; } } static const enum gl_logicop_mode color_logicop_mapping[16] = { COLOR_LOGICOP_CLEAR, COLOR_LOGICOP_AND, COLOR_LOGICOP_AND_REVERSE, COLOR_LOGICOP_COPY, COLOR_LOGICOP_AND_INVERTED, COLOR_LOGICOP_NOOP, COLOR_LOGICOP_XOR, COLOR_LOGICOP_OR, COLOR_LOGICOP_NOR, COLOR_LOGICOP_EQUIV, COLOR_LOGICOP_INVERT, COLOR_LOGICOP_OR_REVERSE, COLOR_LOGICOP_COPY_INVERTED, COLOR_LOGICOP_OR_INVERTED, COLOR_LOGICOP_NAND, COLOR_LOGICOP_SET }; static ALWAYS_INLINE void logic_op(struct gl_context *ctx, GLenum opcode, bool no_error) { if (ctx->Color.LogicOp == opcode) return; if (!no_error) { switch (opcode) { case GL_CLEAR: case GL_SET: case GL_COPY: case GL_COPY_INVERTED: case GL_NOOP: case GL_INVERT: case GL_AND: case GL_NAND: case GL_OR: case GL_NOR: case GL_XOR: case GL_EQUIV: case GL_AND_REVERSE: case GL_AND_INVERTED: case GL_OR_REVERSE: case GL_OR_INVERTED: break; default: _mesa_error( ctx, GL_INVALID_ENUM, "glLogicOp" ); return; } } FLUSH_VERTICES(ctx, ctx->DriverFlags.NewLogicOp ? 0 : _NEW_COLOR); ctx->NewDriverState |= ctx->DriverFlags.NewLogicOp; ctx->Color.LogicOp = opcode; ctx->Color._LogicOp = color_logicop_mapping[opcode & 0x0f]; _mesa_update_allow_draw_out_of_order(ctx); if (ctx->Driver.LogicOpcode) ctx->Driver.LogicOpcode(ctx, ctx->Color._LogicOp); } /** * Specify a logic pixel operation for color index rendering. * * \param opcode operation. * * Verifies that \p opcode is a valid enum and updates * gl_colorbuffer_attrib::LogicOp. * On a change, flushes the vertices and notifies the driver via the * dd_function_table::LogicOpcode callback. */ void GLAPIENTRY _mesa_LogicOp( GLenum opcode ) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glLogicOp(%s)\n", _mesa_enum_to_string(opcode)); logic_op(ctx, opcode, false); } void GLAPIENTRY _mesa_LogicOp_no_error(GLenum opcode) { GET_CURRENT_CONTEXT(ctx); logic_op(ctx, opcode, true); } void GLAPIENTRY _mesa_IndexMask( GLuint mask ) { GET_CURRENT_CONTEXT(ctx); if (ctx->Color.IndexMask == mask) return; FLUSH_VERTICES(ctx, ctx->DriverFlags.NewColorMask ? 0 : _NEW_COLOR); ctx->NewDriverState |= ctx->DriverFlags.NewColorMask; ctx->Color.IndexMask = mask; } /** * Enable or disable writing of frame buffer color components. * * \param red whether to mask writing of the red color component. * \param green whether to mask writing of the green color component. * \param blue whether to mask writing of the blue color component. * \param alpha whether to mask writing of the alpha color component. * * \sa glColorMask(). * * Sets the appropriate value of gl_colorbuffer_attrib::ColorMask. On a * change, flushes the vertices and notifies the driver via the * dd_function_table::ColorMask callback. */ void GLAPIENTRY _mesa_ColorMask( GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha ) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glColorMask(%d, %d, %d, %d)\n", red, green, blue, alpha); GLbitfield mask = (!!red) | ((!!green) << 1) | ((!!blue) << 2) | ((!!alpha) << 3); mask = _mesa_replicate_colormask(mask, ctx->Const.MaxDrawBuffers); if (ctx->Color.ColorMask == mask) return; FLUSH_VERTICES(ctx, ctx->DriverFlags.NewColorMask ? 0 : _NEW_COLOR); ctx->NewDriverState |= ctx->DriverFlags.NewColorMask; ctx->Color.ColorMask = mask; _mesa_update_allow_draw_out_of_order(ctx); if (ctx->Driver.ColorMask) ctx->Driver.ColorMask( ctx, red, green, blue, alpha ); } /** * For GL_EXT_draw_buffers2 and GL3 */ void GLAPIENTRY _mesa_ColorMaski(GLuint buf, GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glColorMaski %u %d %d %d %d\n", buf, red, green, blue, alpha); if (buf >= ctx->Const.MaxDrawBuffers) { _mesa_error(ctx, GL_INVALID_VALUE, "glColorMaski(buf=%u)", buf); return; } GLbitfield mask = (!!red) | ((!!green) << 1) | ((!!blue) << 2) | ((!!alpha) << 3); if (GET_COLORMASK(ctx->Color.ColorMask, buf) == mask) return; FLUSH_VERTICES(ctx, ctx->DriverFlags.NewColorMask ? 0 : _NEW_COLOR); ctx->NewDriverState |= ctx->DriverFlags.NewColorMask; ctx->Color.ColorMask &= ~(0xf << (4 * buf)); ctx->Color.ColorMask |= mask << (4 * buf); _mesa_update_allow_draw_out_of_order(ctx); } void GLAPIENTRY _mesa_ClampColor(GLenum target, GLenum clamp) { GET_CURRENT_CONTEXT(ctx); /* Check for both the extension and the GL version, since the Intel driver * does not advertise the extension in core profiles. */ if (ctx->Version <= 30 && !ctx->Extensions.ARB_color_buffer_float) { _mesa_error(ctx, GL_INVALID_OPERATION, "glClampColor()"); return; } if (clamp != GL_TRUE && clamp != GL_FALSE && clamp != GL_FIXED_ONLY_ARB) { _mesa_error(ctx, GL_INVALID_ENUM, "glClampColorARB(clamp)"); return; } switch (target) { case GL_CLAMP_VERTEX_COLOR_ARB: if (ctx->API == API_OPENGL_CORE) goto invalid_enum; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.ClampVertexColor = clamp; _mesa_update_clamp_vertex_color(ctx, ctx->DrawBuffer); break; case GL_CLAMP_FRAGMENT_COLOR_ARB: if (ctx->API == API_OPENGL_CORE) goto invalid_enum; if (ctx->Color.ClampFragmentColor != clamp) { ctx->Color.ClampFragmentColor = clamp; _mesa_update_clamp_fragment_color(ctx, ctx->DrawBuffer); } break; case GL_CLAMP_READ_COLOR_ARB: ctx->Color.ClampReadColor = clamp; break; default: goto invalid_enum; } return; invalid_enum: _mesa_error(ctx, GL_INVALID_ENUM, "glClampColor(%s)", _mesa_enum_to_string(target)); } static GLboolean get_clamp_color(const struct gl_framebuffer *fb, GLenum clamp) { if (clamp == GL_TRUE || clamp == GL_FALSE) return clamp; assert(clamp == GL_FIXED_ONLY); if (!fb) return GL_TRUE; return fb->_AllColorBuffersFixedPoint; } GLboolean _mesa_get_clamp_fragment_color(const struct gl_context *ctx, const struct gl_framebuffer *drawFb) { return get_clamp_color(drawFb, ctx->Color.ClampFragmentColor); } GLboolean _mesa_get_clamp_vertex_color(const struct gl_context *ctx, const struct gl_framebuffer *drawFb) { return get_clamp_color(drawFb, ctx->Light.ClampVertexColor); } GLboolean _mesa_get_clamp_read_color(const struct gl_context *ctx, const struct gl_framebuffer *readFb) { return get_clamp_color(readFb, ctx->Color.ClampReadColor); } /** * Update the ctx->Color._ClampFragmentColor field */ void _mesa_update_clamp_fragment_color(struct gl_context *ctx, const struct gl_framebuffer *drawFb) { GLboolean clamp; /* Don't clamp if: * - there is no colorbuffer * - all colorbuffers are unsigned normalized, so clamping has no effect * - there is an integer colorbuffer */ if (!drawFb || !drawFb->_HasSNormOrFloatColorBuffer || drawFb->_IntegerBuffers) clamp = GL_FALSE; else clamp = _mesa_get_clamp_fragment_color(ctx, drawFb); if (ctx->Color._ClampFragmentColor == clamp) return; ctx->NewState |= _NEW_FRAG_CLAMP; /* for state constants */ ctx->NewDriverState |= ctx->DriverFlags.NewFragClamp; ctx->Color._ClampFragmentColor = clamp; } /** * Update the ctx->Color._ClampVertexColor field */ void _mesa_update_clamp_vertex_color(struct gl_context *ctx, const struct gl_framebuffer *drawFb) { ctx->Light._ClampVertexColor = _mesa_get_clamp_vertex_color(ctx, drawFb); } /** * Returns an appropriate mesa_format for color rendering based on the * GL_FRAMEBUFFER_SRGB state. * * Some drivers implement GL_FRAMEBUFFER_SRGB using a flag on the blend state * (which GL_FRAMEBUFFER_SRGB maps to reasonably), but some have to do so by * overriding the format of the surface. This is a helper for doing the * surface format override variant. */ mesa_format _mesa_get_render_format(const struct gl_context *ctx, mesa_format format) { if (ctx->Color.sRGBEnabled) return format; else return _mesa_get_srgb_format_linear(format); } /**********************************************************************/ /** \name Initialization */ /*@{*/ /** * Initialization of the context's Color attribute group. * * \param ctx GL context. * * Initializes the related fields in the context color attribute group, * __struct gl_contextRec::Color. */ void _mesa_init_color( struct gl_context * ctx ) { GLuint i; /* Color buffer group */ ctx->Color.IndexMask = ~0u; ctx->Color.ColorMask = 0xffffffff; ctx->Color.ClearIndex = 0; ASSIGN_4V( ctx->Color.ClearColor.f, 0, 0, 0, 0 ); ctx->Color.AlphaEnabled = GL_FALSE; ctx->Color.AlphaFunc = GL_ALWAYS; ctx->Color.AlphaRef = 0; ctx->Color.BlendEnabled = 0x0; for (i = 0; i < ARRAY_SIZE(ctx->Color.Blend); i++) { ctx->Color.Blend[i].SrcRGB = GL_ONE; ctx->Color.Blend[i].DstRGB = GL_ZERO; ctx->Color.Blend[i].SrcA = GL_ONE; ctx->Color.Blend[i].DstA = GL_ZERO; ctx->Color.Blend[i].EquationRGB = GL_FUNC_ADD; ctx->Color.Blend[i].EquationA = GL_FUNC_ADD; } ASSIGN_4V( ctx->Color.BlendColor, 0.0, 0.0, 0.0, 0.0 ); ASSIGN_4V( ctx->Color.BlendColorUnclamped, 0.0, 0.0, 0.0, 0.0 ); ctx->Color.IndexLogicOpEnabled = GL_FALSE; ctx->Color.ColorLogicOpEnabled = GL_FALSE; ctx->Color.LogicOp = GL_COPY; ctx->Color._LogicOp = COLOR_LOGICOP_COPY; ctx->Color.DitherFlag = GL_TRUE; /* GL_FRONT is not possible on GLES. Instead GL_BACK will render to either * the front or the back buffer depending on the config */ if (ctx->Visual.doubleBufferMode || _mesa_is_gles(ctx)) { ctx->Color.DrawBuffer[0] = GL_BACK; } else { ctx->Color.DrawBuffer[0] = GL_FRONT; } ctx->Color.ClampFragmentColor = ctx->API == API_OPENGL_COMPAT ? GL_FIXED_ONLY_ARB : GL_FALSE; ctx->Color._ClampFragmentColor = GL_FALSE; ctx->Color.ClampReadColor = GL_FIXED_ONLY_ARB; /* GLES 1/2/3 behaves as though GL_FRAMEBUFFER_SRGB is always enabled * if EGL_KHR_gl_colorspace has been used to request sRGB. */ ctx->Color.sRGBEnabled = _mesa_is_gles(ctx); ctx->Color.BlendCoherent = true; } /*@}*/