/* $Id: accum.c,v 1.1.1.1 1999/08/19 00:55:41 jtg Exp $ */ /* * Mesa 3-D graphics library * Version: 3.1 * * Copyright (C) 1999 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifdef PC_HEADER #include "all.h" #else #include #include #include #include #include "accum.h" #include "context.h" #include "macros.h" #include "masking.h" #include "span.h" #include "types.h" #ifdef XFree86Server #include "GL/xf86glx.h" #endif #endif /* * Accumulation buffer notes * * Normally, accumulation buffer values are GLshorts with values in * [-32767, 32767] which represent floating point colors in [-1, 1], * as suggested by the OpenGL specification. * * We optimize for the common case used for full-scene antialiasing: * // start with accum buffer cleared to zero * glAccum(GL_LOAD, w); // or GL_ACCUM the first image * glAccum(GL_ACCUM, w); * ... * glAccum(GL_ACCUM, w); * glAccum(GL_RETURN, 1.0); * That is, we start with an empty accumulation buffer and accumulate * n images, each with weight w = 1/n. * In this scenario, we can simply store unscaled integer values in * the accum buffer instead of scaled integers. We'll also keep track * of the w value so when we do GL_RETURN we simply divide the accumulated * values by n (=1/w). * This lets us avoid _many_ int->float->int conversions. */ void gl_alloc_accum_buffer( GLcontext *ctx ) { GLint n; if (ctx->Buffer->Accum) { free( ctx->Buffer->Accum ); ctx->Buffer->Accum = NULL; } /* allocate accumulation buffer if not already present */ n = ctx->Buffer->Width * ctx->Buffer->Height * 4 * sizeof(GLaccum); ctx->Buffer->Accum = (GLaccum *) malloc( n ); if (!ctx->Buffer->Accum) { /* unable to setup accumulation buffer */ gl_error( ctx, GL_OUT_OF_MEMORY, "glAccum" ); } ctx->IntegerAccumMode = GL_TRUE; ctx->IntegerAccumScaler = 0.0; } void gl_ClearAccum( GLcontext *ctx, GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha ) { ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glAccum"); ctx->Accum.ClearColor[0] = CLAMP( red, -1.0, 1.0 ); ctx->Accum.ClearColor[1] = CLAMP( green, -1.0, 1.0 ); ctx->Accum.ClearColor[2] = CLAMP( blue, -1.0, 1.0 ); ctx->Accum.ClearColor[3] = CLAMP( alpha, -1.0, 1.0 ); } /* * This is called when we fall out of optimized/unscaled accum buffer mode. * That is, we convert each unscaled accum buffer value into a scaled value * representing the range[-1, 1]. */ static void rescale_accum( GLcontext *ctx ) { const GLuint n = ctx->Buffer->Width * ctx->Buffer->Height * 4; const GLfloat s = ctx->IntegerAccumScaler * (32767.0 / 255.0); GLaccum *accum = ctx->Buffer->Accum; GLuint i; assert(ctx->IntegerAccumMode); assert(sizeof(GLchan) == 1); /* if not true, 255.0 above must be fixed */ assert(accum); for (i = 0; i < n; i++) { accum[i] = (GLaccum) (accum[i] * s); } ctx->IntegerAccumMode = GL_FALSE; } void gl_Accum( GLcontext *ctx, GLenum op, GLfloat value ) { GLuint xpos, ypos, width, height, width4; GLfloat acc_scale; GLubyte rgba[MAX_WIDTH][4]; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glAccum"); if (ctx->Visual->AccumBits==0 || !ctx->Buffer->Accum) { /* No accumulation buffer! */ gl_warning(ctx, "Calling glAccum() without an accumulation buffer"); return; } if (sizeof(GLaccum)==1) { acc_scale = 127.0; } else if (sizeof(GLaccum)==2) { acc_scale = 32767.0; } else { /* sizeof(GLaccum) > 2 (Cray) */ acc_scale = (float) SHRT_MAX; } if (ctx->NewState) gl_update_state( ctx ); /* Determine region to operate upon. */ if (ctx->Scissor.Enabled) { xpos = ctx->Scissor.X; ypos = ctx->Scissor.Y; width = ctx->Scissor.Width; height = ctx->Scissor.Height; } else { /* whole window */ xpos = 0; ypos = 0; width = ctx->Buffer->Width; height = ctx->Buffer->Height; } width4 = 4 * width; switch (op) { case GL_ADD: { const GLaccum intVal = (GLaccum) (value * acc_scale); GLuint j; /* May have to leave optimized accum buffer mode */ if (ctx->IntegerAccumMode) rescale_accum(ctx); for (j = 0; j < height; j++) { GLaccum * acc = ctx->Buffer->Accum + ypos * width4 + 4 * xpos; GLuint i; for (i = 0; i < width4; i++) { acc[i] += intVal; } ypos++; } } break; case GL_MULT: { GLuint j; /* May have to leave optimized accum buffer mode */ if (ctx->IntegerAccumMode) rescale_accum(ctx); for (j = 0; j < height; j++) { GLaccum *acc = ctx->Buffer->Accum + ypos * width4 + 4 * xpos; GLuint i; for (i = 0; i < width4; i++) { acc[i] = (GLaccum) ( (GLfloat) acc[i] * value ); } ypos++; } } break; case GL_ACCUM: (void) (*ctx->Driver.SetBuffer)( ctx, ctx->Pixel.DriverReadBuffer ); /* May have to leave optimized accum buffer mode */ if (ctx->IntegerAccumScaler == 0.0 && value > 0.0 && value <= 1.0) ctx->IntegerAccumScaler = value; if (ctx->IntegerAccumMode && value != ctx->IntegerAccumScaler) rescale_accum(ctx); if (ctx->IntegerAccumMode) { /* simply add integer color values into accum buffer */ GLuint j; GLaccum *acc = ctx->Buffer->Accum + ypos * width4 + xpos * 4; assert(ctx->IntegerAccumScaler > 0.0); assert(ctx->IntegerAccumScaler <= 1.0); for (j = 0; j < height; j++) { GLuint i, i4; gl_read_rgba_span(ctx, width, xpos, ypos, rgba); for (i = i4 = 0; i < width; i++, i4+=4) { acc[i4+0] += rgba[i][RCOMP]; acc[i4+1] += rgba[i][GCOMP]; acc[i4+2] += rgba[i][BCOMP]; acc[i4+3] += rgba[i][ACOMP]; } acc += width4; ypos++; } } else { /* scaled integer accum buffer */ const GLfloat rscale = value * acc_scale / 255.0; const GLfloat gscale = value * acc_scale / 255.0; const GLfloat bscale = value * acc_scale / 255.0; const GLfloat ascale = value * acc_scale / 255.0; GLuint j; for (j=0;jBuffer->Accum + ypos * width4 + xpos * 4; GLuint i; gl_read_rgba_span(ctx, width, xpos, ypos, rgba); for (i=0;iDriver.SetBuffer)( ctx, ctx->Color.DriverDrawBuffer ); break; case GL_LOAD: (void) (*ctx->Driver.SetBuffer)( ctx, ctx->Pixel.DriverReadBuffer ); /* This is a change to go into optimized accum buffer mode */ if (value > 0.0 && value <= 1.0) { ctx->IntegerAccumMode = GL_TRUE; ctx->IntegerAccumScaler = value; } else { ctx->IntegerAccumMode = GL_FALSE; ctx->IntegerAccumScaler = 0.0; } if (ctx->IntegerAccumMode) { /* just copy values into accum buffer */ GLuint j; GLaccum *acc = ctx->Buffer->Accum + ypos * width4 + xpos * 4; assert(ctx->IntegerAccumScaler > 0.0); assert(ctx->IntegerAccumScaler <= 1.0); for (j = 0; j < height; j++) { GLuint i, i4; gl_read_rgba_span(ctx, width, xpos, ypos, rgba); for (i = i4 = 0; i < width; i++, i4 += 4) { acc[i4+0] = rgba[i][RCOMP]; acc[i4+1] = rgba[i][GCOMP]; acc[i4+2] = rgba[i][BCOMP]; acc[i4+3] = rgba[i][ACOMP]; } acc += width4; ypos++; } } else { /* scaled integer accum buffer */ const GLfloat rscale = value * acc_scale / 255.0; const GLfloat gscale = value * acc_scale / 255.0; const GLfloat bscale = value * acc_scale / 255.0; const GLfloat ascale = value * acc_scale / 255.0; GLuint i, j; for (j = 0; j < height; j++) { GLaccum *acc = ctx->Buffer->Accum + ypos * width4 + xpos * 4; gl_read_rgba_span(ctx, width, xpos, ypos, rgba); for (i=0;iDriver.SetBuffer)( ctx, ctx->Color.DriverDrawBuffer ); break; case GL_RETURN: /* May have to leave optimized accum buffer mode */ if (ctx->IntegerAccumMode && value != 1.0) rescale_accum(ctx); if (ctx->IntegerAccumMode) { /* build lookup table to avoid integer divides */ GLint divisor = (GLint) ((1.0F / ctx->IntegerAccumScaler) + 0.5F); static GLubyte divTable[32768]; static GLint prevDivisor = 0.0; GLuint j; if (divisor != prevDivisor) { assert(divisor * 256 <= 32768); for (j = 0; j < divisor * 256; j++) divTable[j] = j / divisor; prevDivisor = divisor; } assert(ctx->IntegerAccumScaler > 0.0); assert(ctx->IntegerAccumScaler <= 1.0); for (j = 0; j < height; j++) { const GLaccum *acc = ctx->Buffer->Accum + ypos * width4 + xpos*4; GLuint i, i4; for (i = i4 = 0; i < width; i++, i4 += 4) { ASSERT(acc[i4+0] < divisor * 256); ASSERT(acc[i4+1] < divisor * 256); ASSERT(acc[i4+2] < divisor * 256); ASSERT(acc[i4+3] < divisor * 256); rgba[i][RCOMP] = divTable[acc[i4+0]]; rgba[i][GCOMP] = divTable[acc[i4+1]]; rgba[i][BCOMP] = divTable[acc[i4+2]]; rgba[i][ACOMP] = divTable[acc[i4+3]]; } if (ctx->Color.SWmasking) { gl_mask_rgba_span( ctx, width, xpos, ypos, rgba ); } (*ctx->Driver.WriteRGBASpan)( ctx, width, xpos, ypos, (const GLubyte (*)[4])rgba, NULL ); ypos++; } } else { const GLfloat rscale = value / acc_scale * 255.0F; const GLfloat gscale = value / acc_scale * 255.0F; const GLfloat bscale = value / acc_scale * 255.0F; const GLfloat ascale = value / acc_scale * 255.0F; GLuint i, j; for (j=0;jBuffer->Accum + ypos * width4 + xpos*4; for (i=0;iColor.SWmasking) { gl_mask_rgba_span( ctx, width, xpos, ypos, rgba ); } (*ctx->Driver.WriteRGBASpan)( ctx, width, xpos, ypos, (const GLubyte (*)[4])rgba, NULL ); ypos++; } } break; default: gl_error( ctx, GL_INVALID_ENUM, "glAccum" ); } } /* * Clear the accumulation Buffer. */ void gl_clear_accum_buffer( GLcontext *ctx ) { GLuint buffersize; GLfloat acc_scale; if (ctx->Visual->AccumBits==0) { /* No accumulation buffer! */ return; } if (sizeof(GLaccum)==1) { acc_scale = 127.0; } else if (sizeof(GLaccum)==2) { acc_scale = 32767.0; } else { /* sizeof(GLaccum) > 2 (Cray) */ acc_scale = (float) SHRT_MAX; } /* number of pixels */ buffersize = ctx->Buffer->Width * ctx->Buffer->Height; if (!ctx->Buffer->Accum) { /* try to alloc accumulation buffer */ ctx->Buffer->Accum = (GLaccum *) malloc( buffersize * 4 * sizeof(GLaccum) ); } if (ctx->Buffer->Accum) { if (ctx->Scissor.Enabled) { /* Limit clear to scissor box */ GLaccum r, g, b, a; GLint i, j; GLint width, height; GLaccum *row; r = (GLaccum) (ctx->Accum.ClearColor[0] * acc_scale); g = (GLaccum) (ctx->Accum.ClearColor[1] * acc_scale); b = (GLaccum) (ctx->Accum.ClearColor[2] * acc_scale); a = (GLaccum) (ctx->Accum.ClearColor[3] * acc_scale); /* size of region to clear */ width = 4 * (ctx->Buffer->Xmax - ctx->Buffer->Xmin + 1); height = ctx->Buffer->Ymax - ctx->Buffer->Ymin + 1; /* ptr to first element to clear */ row = ctx->Buffer->Accum + 4 * (ctx->Buffer->Ymin * ctx->Buffer->Width + ctx->Buffer->Xmin); for (j=0;jBuffer->Width; } } else { /* clear whole buffer */ if (ctx->Accum.ClearColor[0]==0.0 && ctx->Accum.ClearColor[1]==0.0 && ctx->Accum.ClearColor[2]==0.0 && ctx->Accum.ClearColor[3]==0.0) { /* Black */ MEMSET( ctx->Buffer->Accum, 0, buffersize * 4 * sizeof(GLaccum) ); } else { /* Not black */ GLaccum *acc, r, g, b, a; GLuint i; acc = ctx->Buffer->Accum; r = (GLaccum) (ctx->Accum.ClearColor[0] * acc_scale); g = (GLaccum) (ctx->Accum.ClearColor[1] * acc_scale); b = (GLaccum) (ctx->Accum.ClearColor[2] * acc_scale); a = (GLaccum) (ctx->Accum.ClearColor[3] * acc_scale); for (i=0;iAccum.ClearColor[0] == 0.0 && ctx->Accum.ClearColor[1] == 0.0 && ctx->Accum.ClearColor[2] == 0.0 && ctx->Accum.ClearColor[3] == 0.0) { ctx->IntegerAccumMode = GL_TRUE; ctx->IntegerAccumScaler = 0.0; /* denotes empty accum buffer */ } else { ctx->IntegerAccumMode = GL_FALSE; } } }