/* * Copyright (C) 2009 Maciej Cencora. * Copyright (C) 2008 Nicolai Haehnle. * * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include "radeon_mipmap_tree.h" #include #include #include "main/simple_list.h" #include "main/teximage.h" #include "main/texobj.h" #include "main/enums.h" #include "radeon_texture.h" #include "radeon_tile.h" static unsigned get_aligned_compressed_row_stride( gl_format format, unsigned width, unsigned minStride) { const unsigned blockBytes = _mesa_get_format_bytes(format); unsigned blockWidth, blockHeight; unsigned stride; _mesa_get_format_block_size(format, &blockWidth, &blockHeight); /* Count number of blocks required to store the given width. * And then multiple it with bytes required to store a block. */ stride = (width + blockWidth - 1) / blockWidth * blockBytes; /* Round the given minimum stride to the next full blocksize. * (minStride + blockBytes - 1) / blockBytes * blockBytes */ if ( stride < minStride ) stride = (minStride + blockBytes - 1) / blockBytes * blockBytes; radeon_print(RADEON_TEXTURE, RADEON_TRACE, "%s width %u, minStride %u, block(bytes %u, width %u):" "stride %u\n", __func__, width, minStride, blockBytes, blockWidth, stride); return stride; } unsigned get_texture_image_size( gl_format format, unsigned rowStride, unsigned height, unsigned depth, unsigned tiling) { if (_mesa_is_format_compressed(format)) { unsigned blockWidth, blockHeight; _mesa_get_format_block_size(format, &blockWidth, &blockHeight); return rowStride * ((height + blockHeight - 1) / blockHeight) * depth; } else if (tiling) { /* Need to align height to tile height */ unsigned tileWidth, tileHeight; get_tile_size(format, &tileWidth, &tileHeight); tileHeight--; height = (height + tileHeight) & ~tileHeight; } return rowStride * height * depth; } unsigned get_texture_image_row_stride(radeonContextPtr rmesa, gl_format format, unsigned width, unsigned tiling, GLuint target) { if (_mesa_is_format_compressed(format)) { return get_aligned_compressed_row_stride(format, width, rmesa->texture_compressed_row_align); } else { unsigned row_align; if (!_mesa_is_pow_two(width) || target == GL_TEXTURE_RECTANGLE) { row_align = rmesa->texture_rect_row_align - 1; } else if (tiling) { unsigned tileWidth, tileHeight; get_tile_size(format, &tileWidth, &tileHeight); row_align = tileWidth * _mesa_get_format_bytes(format) - 1; } else { row_align = rmesa->texture_row_align - 1; } return (_mesa_format_row_stride(format, width) + row_align) & ~row_align; } } /** * Compute sizes and fill in offset and blit information for the given * image (determined by \p face and \p level). * * \param curOffset points to the offset at which the image is to be stored * and is updated by this function according to the size of the image. */ static void compute_tex_image_offset(radeonContextPtr rmesa, radeon_mipmap_tree *mt, GLuint face, GLuint level, GLuint* curOffset) { radeon_mipmap_level *lvl = &mt->levels[level]; GLuint height; height = _mesa_next_pow_two_32(lvl->height); lvl->rowstride = get_texture_image_row_stride(rmesa, mt->mesaFormat, lvl->width, mt->tilebits, mt->target); lvl->size = get_texture_image_size(mt->mesaFormat, lvl->rowstride, height, lvl->depth, mt->tilebits); assert(lvl->size > 0); lvl->faces[face].offset = *curOffset; *curOffset += lvl->size; radeon_print(RADEON_TEXTURE, RADEON_TRACE, "%s(%p) level %d, face %d: rs:%d %dx%d at %d\n", __func__, rmesa, level, face, lvl->rowstride, lvl->width, height, lvl->faces[face].offset); } static void calculate_miptree_layout(radeonContextPtr rmesa, radeon_mipmap_tree *mt) { GLuint curOffset, i, face, level; assert(mt->numLevels <= rmesa->glCtx.Const.MaxTextureLevels); curOffset = 0; for(face = 0; face < mt->faces; face++) { for(i = 0, level = mt->baseLevel; i < mt->numLevels; i++, level++) { mt->levels[level].valid = 1; mt->levels[level].width = minify(mt->width0, i); mt->levels[level].height = minify(mt->height0, i); mt->levels[level].depth = minify(mt->depth0, i); compute_tex_image_offset(rmesa, mt, face, level, &curOffset); } } /* Note the required size in memory */ mt->totalsize = (curOffset + RADEON_OFFSET_MASK) & ~RADEON_OFFSET_MASK; radeon_print(RADEON_TEXTURE, RADEON_TRACE, "%s(%p, %p) total size %d\n", __func__, rmesa, mt, mt->totalsize); } /** * Create a new mipmap tree, calculate its layout and allocate memory. */ radeon_mipmap_tree* radeon_miptree_create(radeonContextPtr rmesa, GLenum target, gl_format mesaFormat, GLuint baseLevel, GLuint numLevels, GLuint width0, GLuint height0, GLuint depth0, GLuint tilebits) { radeon_mipmap_tree *mt = CALLOC_STRUCT(_radeon_mipmap_tree); radeon_print(RADEON_TEXTURE, RADEON_NORMAL, "%s(%p) new tree is %p.\n", __func__, rmesa, mt); mt->mesaFormat = mesaFormat; mt->refcount = 1; mt->target = target; mt->faces = _mesa_num_tex_faces(target); mt->baseLevel = baseLevel; mt->numLevels = numLevels; mt->width0 = width0; mt->height0 = height0; mt->depth0 = depth0; mt->tilebits = tilebits; calculate_miptree_layout(rmesa, mt); mt->bo = radeon_bo_open(rmesa->radeonScreen->bom, 0, mt->totalsize, 1024, RADEON_GEM_DOMAIN_VRAM, 0); return mt; } void radeon_miptree_reference(radeon_mipmap_tree *mt, radeon_mipmap_tree **ptr) { assert(!*ptr); mt->refcount++; assert(mt->refcount > 0); *ptr = mt; } void radeon_miptree_unreference(radeon_mipmap_tree **ptr) { radeon_mipmap_tree *mt = *ptr; if (!mt) return; assert(mt->refcount > 0); mt->refcount--; if (!mt->refcount) { radeon_bo_unref(mt->bo); free(mt); } *ptr = 0; } /** * Calculate min and max LOD for the given texture object. * @param[in] tObj texture object whose LOD values to calculate * @param[out] pminLod minimal LOD * @param[out] pmaxLod maximal LOD */ static void calculate_min_max_lod(struct gl_sampler_object *samp, struct gl_texture_object *tObj, unsigned *pminLod, unsigned *pmaxLod) { int minLod, maxLod; /* Yes, this looks overly complicated, but it's all needed. */ switch (tObj->Target) { case GL_TEXTURE_1D: case GL_TEXTURE_2D: case GL_TEXTURE_3D: case GL_TEXTURE_CUBE_MAP: if (samp->MinFilter == GL_NEAREST || samp->MinFilter == GL_LINEAR) { /* GL_NEAREST and GL_LINEAR only care about GL_TEXTURE_BASE_LEVEL. */ minLod = maxLod = tObj->BaseLevel; } else { minLod = tObj->BaseLevel + (GLint)(samp->MinLod); minLod = MAX2(minLod, tObj->BaseLevel); minLod = MIN2(minLod, tObj->MaxLevel); maxLod = tObj->BaseLevel + (GLint)(samp->MaxLod + 0.5); maxLod = MIN2(maxLod, tObj->MaxLevel); maxLod = MIN2(maxLod, tObj->Image[0][minLod]->MaxNumLevels - 1 + minLod); maxLod = MAX2(maxLod, minLod); /* need at least one level */ } break; case GL_TEXTURE_RECTANGLE_NV: case GL_TEXTURE_4D_SGIS: minLod = maxLod = 0; break; default: return; } radeon_print(RADEON_TEXTURE, RADEON_TRACE, "%s(%p) target %s, min %d, max %d.\n", __func__, tObj, _mesa_lookup_enum_by_nr(tObj->Target), minLod, maxLod); /* save these values */ *pminLod = minLod; *pmaxLod = maxLod; } /** * Checks whether the given miptree can hold the given texture image at the * given face and level. */ GLboolean radeon_miptree_matches_image(radeon_mipmap_tree *mt, struct gl_texture_image *texImage) { radeon_mipmap_level *lvl; GLuint level = texImage->Level; if (texImage->TexFormat != mt->mesaFormat) return GL_FALSE; lvl = &mt->levels[level]; if (!lvl->valid || lvl->width != texImage->Width || lvl->height != texImage->Height || lvl->depth != texImage->Depth) return GL_FALSE; return GL_TRUE; } /** * Checks whether the given miptree has the right format to store the given texture object. */ static GLboolean radeon_miptree_matches_texture(radeon_mipmap_tree *mt, struct gl_texture_object *texObj) { struct gl_texture_image *firstImage; unsigned numLevels; radeon_mipmap_level *mtBaseLevel; if (texObj->BaseLevel < mt->baseLevel) return GL_FALSE; mtBaseLevel = &mt->levels[texObj->BaseLevel - mt->baseLevel]; firstImage = texObj->Image[0][texObj->BaseLevel]; numLevels = MIN2(texObj->_MaxLevel - texObj->BaseLevel + 1, firstImage->MaxNumLevels); if (radeon_is_debug_enabled(RADEON_TEXTURE,RADEON_TRACE)) { fprintf(stderr, "Checking if miptree %p matches texObj %p\n", mt, texObj); fprintf(stderr, "target %d vs %d\n", mt->target, texObj->Target); fprintf(stderr, "format %d vs %d\n", mt->mesaFormat, firstImage->TexFormat); fprintf(stderr, "numLevels %d vs %d\n", mt->numLevels, numLevels); fprintf(stderr, "width0 %d vs %d\n", mtBaseLevel->width, firstImage->Width); fprintf(stderr, "height0 %d vs %d\n", mtBaseLevel->height, firstImage->Height); fprintf(stderr, "depth0 %d vs %d\n", mtBaseLevel->depth, firstImage->Depth); if (mt->target == texObj->Target && mt->mesaFormat == firstImage->TexFormat && mt->numLevels >= numLevels && mtBaseLevel->width == firstImage->Width && mtBaseLevel->height == firstImage->Height && mtBaseLevel->depth == firstImage->Depth) { fprintf(stderr, "MATCHED\n"); } else { fprintf(stderr, "NOT MATCHED\n"); } } return (mt->target == texObj->Target && mt->mesaFormat == firstImage->TexFormat && mt->numLevels >= numLevels && mtBaseLevel->width == firstImage->Width && mtBaseLevel->height == firstImage->Height && mtBaseLevel->depth == firstImage->Depth); } /** * Try to allocate a mipmap tree for the given texture object. * @param[in] rmesa radeon context * @param[in] t radeon texture object */ void radeon_try_alloc_miptree(radeonContextPtr rmesa, radeonTexObj *t) { struct gl_texture_object *texObj = &t->base; struct gl_texture_image *texImg = texObj->Image[0][texObj->BaseLevel]; GLuint numLevels; assert(!t->mt); if (!texImg) { radeon_warning("%s(%p) No image in given texture object(%p).\n", __func__, rmesa, t); return; } numLevels = MIN2(texObj->MaxLevel - texObj->BaseLevel + 1, texImg->MaxNumLevels); t->mt = radeon_miptree_create(rmesa, t->base.Target, texImg->TexFormat, texObj->BaseLevel, numLevels, texImg->Width, texImg->Height, texImg->Depth, t->tile_bits); } GLuint radeon_miptree_image_offset(radeon_mipmap_tree *mt, GLuint face, GLuint level) { if (mt->target == GL_TEXTURE_CUBE_MAP_ARB) return (mt->levels[level].faces[face].offset); else return mt->levels[level].faces[0].offset; } /** * Ensure that the given image is stored in the given miptree from now on. */ static void migrate_image_to_miptree(radeon_mipmap_tree *mt, radeon_texture_image *image, int face, int level) { radeon_mipmap_level *dstlvl = &mt->levels[level]; unsigned char *dest; assert(image->mt != mt); assert(dstlvl->valid); assert(dstlvl->width == image->base.Base.Width); assert(dstlvl->height == image->base.Base.Height); assert(dstlvl->depth == image->base.Base.Depth); radeon_print(RADEON_TEXTURE, RADEON_VERBOSE, "%s miptree %p, image %p, face %d, level %d.\n", __func__, mt, image, face, level); radeon_bo_map(mt->bo, GL_TRUE); dest = mt->bo->ptr + dstlvl->faces[face].offset; if (image->mt) { /* Format etc. should match, so we really just need a memcpy(). * In fact, that memcpy() could be done by the hardware in many * cases, provided that we have a proper memory manager. */ assert(mt->mesaFormat == image->base.Base.TexFormat); radeon_mipmap_level *srclvl = &image->mt->levels[image->base.Base.Level]; assert(image->base.Base.Level == level); assert(srclvl->size == dstlvl->size); assert(srclvl->rowstride == dstlvl->rowstride); radeon_bo_map(image->mt->bo, GL_FALSE); memcpy(dest, image->mt->bo->ptr + srclvl->faces[face].offset, dstlvl->size); radeon_bo_unmap(image->mt->bo); radeon_miptree_unreference(&image->mt); } radeon_bo_unmap(mt->bo); radeon_miptree_reference(mt, &image->mt); } /** * Filter matching miptrees, and select one with the most of data. * @param[in] texObj radeon texture object * @param[in] firstLevel first texture level to check * @param[in] lastLevel last texture level to check */ static radeon_mipmap_tree * get_biggest_matching_miptree(radeonTexObj *texObj, unsigned firstLevel, unsigned lastLevel) { const unsigned numLevels = lastLevel - firstLevel + 1; unsigned *mtSizes = calloc(numLevels, sizeof(unsigned)); radeon_mipmap_tree **mts = calloc(numLevels, sizeof(radeon_mipmap_tree *)); unsigned mtCount = 0; unsigned maxMtIndex = 0; radeon_mipmap_tree *tmp; unsigned int level; int i; for (level = firstLevel; level <= lastLevel; ++level) { radeon_texture_image *img = get_radeon_texture_image(texObj->base.Image[0][level]); unsigned found = 0; // TODO: why this hack?? if (!img) break; if (!img->mt) continue; for (i = 0; i < mtCount; ++i) { if (mts[i] == img->mt) { found = 1; mtSizes[i] += img->mt->levels[img->base.Base.Level].size; break; } } if (!found && radeon_miptree_matches_texture(img->mt, &texObj->base)) { mtSizes[mtCount] = img->mt->levels[img->base.Base.Level].size; mts[mtCount] = img->mt; mtCount++; } } if (mtCount == 0) { free(mtSizes); free(mts); return NULL; } for (i = 1; i < mtCount; ++i) { if (mtSizes[i] > mtSizes[maxMtIndex]) { maxMtIndex = i; } } tmp = mts[maxMtIndex]; free(mtSizes); free(mts); return tmp; } /** * Validate texture mipmap tree. * If individual images are stored in different mipmap trees * use the mipmap tree that has the most of the correct data. */ int radeon_validate_texture_miptree(struct gl_context * ctx, struct gl_sampler_object *samp, struct gl_texture_object *texObj) { radeonContextPtr rmesa = RADEON_CONTEXT(ctx); radeonTexObj *t = radeon_tex_obj(texObj); radeon_mipmap_tree *dst_miptree; if (samp == &texObj->Sampler && (t->validated || t->image_override)) { return GL_TRUE; } calculate_min_max_lod(samp, &t->base, &t->minLod, &t->maxLod); radeon_print(RADEON_TEXTURE, RADEON_NORMAL, "%s: Validating texture %p now, minLod = %d, maxLod = %d\n", __FUNCTION__, texObj ,t->minLod, t->maxLod); dst_miptree = get_biggest_matching_miptree(t, t->base.BaseLevel, t->base._MaxLevel); radeon_miptree_unreference(&t->mt); if (!dst_miptree) { radeon_try_alloc_miptree(rmesa, t); radeon_print(RADEON_TEXTURE, RADEON_NORMAL, "%s: No matching miptree found, allocated new one %p\n", __FUNCTION__, t->mt); } else { radeon_miptree_reference(dst_miptree, &t->mt); radeon_print(RADEON_TEXTURE, RADEON_NORMAL, "%s: Using miptree %p\n", __FUNCTION__, t->mt); } const unsigned faces = _mesa_num_tex_faces(texObj->Target); unsigned face, level; radeon_texture_image *img; /* Validate only the levels that will actually be used during rendering */ for (face = 0; face < faces; ++face) { for (level = t->minLod; level <= t->maxLod; ++level) { img = get_radeon_texture_image(texObj->Image[face][level]); radeon_print(RADEON_TEXTURE, RADEON_TRACE, "Checking image level %d, face %d, mt %p ... ", level, face, img->mt); if (img->mt != t->mt && !img->used_as_render_target) { radeon_print(RADEON_TEXTURE, RADEON_TRACE, "MIGRATING\n"); struct radeon_bo *src_bo = (img->mt) ? img->mt->bo : img->bo; if (src_bo && radeon_bo_is_referenced_by_cs(src_bo, rmesa->cmdbuf.cs)) { radeon_firevertices(rmesa); } migrate_image_to_miptree(t->mt, img, face, level); } else radeon_print(RADEON_TEXTURE, RADEON_TRACE, "OK\n"); } } t->validated = GL_TRUE; return GL_TRUE; } uint32_t get_base_teximage_offset(radeonTexObj *texObj) { if (!texObj->mt) { return 0; } else { return radeon_miptree_image_offset(texObj->mt, 0, texObj->minLod); } }