/************************************************************************** Copyright (C) 2007 Dave Airlie All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation on the rights to use, copy, modify, merge, publish, distribute, sub license, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice (including the next paragraph) shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **************************************************************************/ /* * Authors: * Dave Airlie */ /* derived from r200 swtcl path */ #include "glheader.h" #include "mtypes.h" #include "colormac.h" #include "enums.h" #include "image.h" #include "imports.h" #include "macros.h" #include "swrast/s_context.h" #include "swrast/s_fog.h" #include "swrast_setup/swrast_setup.h" #include "math/m_translate.h" #include "tnl/tnl.h" #include "tnl/t_context.h" #include "tnl/t_pipeline.h" #include "r300_context.h" #include "r300_swtcl.h" #include "r300_state.h" #include "r300_ioctl.h" #include "r300_emit.h" #include "r300_mem.h" #define R300_NEWPRIM( rmesa ) \ do { \ if ( rmesa->dma.flush ) \ rmesa->dma.flush( rmesa ); \ } while (0) static void flush_last_swtcl_prim( r300ContextPtr rmesa ); void r300EmitVertexAOS(r300ContextPtr rmesa, GLuint vertex_size, GLuint offset); void r300EmitVbufPrim(r300ContextPtr rmesa, GLuint primitive, GLuint vertex_nr); #define EMIT_ATTR( ATTR, STYLE ) \ do { \ rmesa->swtcl.vertex_attrs[rmesa->swtcl.vertex_attr_count].attrib = (ATTR); \ rmesa->swtcl.vertex_attrs[rmesa->swtcl.vertex_attr_count].format = (STYLE); \ rmesa->swtcl.vertex_attr_count++; \ } while (0) #define EMIT_PAD( N ) \ do { \ rmesa->swtcl.vertex_attrs[rmesa->swtcl.vertex_attr_count].attrib = 0; \ rmesa->swtcl.vertex_attrs[rmesa->swtcl.vertex_attr_count].format = EMIT_PAD; \ rmesa->swtcl.vertex_attrs[rmesa->swtcl.vertex_attr_count].offset = (N); \ rmesa->swtcl.vertex_attr_count++; \ } while (0) static GLuint r300VAPInputRoute0(uint32_t * dst, GLvector4f ** attribptr, int *inputs, GLint * tab, GLuint nr) { GLuint i, dw; /* type, inputs, stop bit, size */ for (i = 0; i + 1 < nr; i += 2) { dw = (inputs[tab[i]] << 8) | 0x3; dw |= ((inputs[tab[i + 1]] << 8) | 0x3) << 16; if (i + 2 == nr) { dw |= (R300_VAP_INPUT_ROUTE_END << 16); } dst[i >> 1] = dw; } if (nr & 1) { dw = (inputs[tab[nr - 1]] << 8) | 0x3; dw |= R300_VAP_INPUT_ROUTE_END; dst[nr >> 1] = dw; } return (nr + 1) >> 1; } static GLuint r300VAPInputRoute1Swizzle(int swizzle[4]) { return (swizzle[0] << R300_INPUT_ROUTE_X_SHIFT) | (swizzle[1] << R300_INPUT_ROUTE_Y_SHIFT) | (swizzle[2] << R300_INPUT_ROUTE_Z_SHIFT) | (swizzle[3] << R300_INPUT_ROUTE_W_SHIFT); } static GLuint r300VAPInputRoute1(uint32_t * dst, int swizzle[][4], GLuint nr) { GLuint i; for (i = 0; i + 1 < nr; i += 2) { dst[i >> 1] = r300VAPInputRoute1Swizzle(swizzle[i]) | R300_INPUT_ROUTE_ENABLE; dst[i >> 1] |= (r300VAPInputRoute1Swizzle(swizzle[i + 1]) | R300_INPUT_ROUTE_ENABLE) << 16; } if (nr & 1) { dst[nr >> 1] = r300VAPInputRoute1Swizzle(swizzle[nr - 1]) | R300_INPUT_ROUTE_ENABLE; } return (nr + 1) >> 1; } static GLuint r300VAPInputCntl0(GLcontext * ctx, GLuint InputsRead) { /* No idea what this value means. I have seen other values written to * this register... */ return 0x5555; } static GLuint r300VAPInputCntl1(GLcontext * ctx, GLuint InputsRead) { r300ContextPtr rmesa = R300_CONTEXT(ctx); GLuint i, vic_1 = 0; if (InputsRead & (1 << VERT_ATTRIB_POS)) vic_1 |= R300_INPUT_CNTL_POS; if (InputsRead & (1 << VERT_ATTRIB_NORMAL)) vic_1 |= R300_INPUT_CNTL_NORMAL; if (InputsRead & (1 << VERT_ATTRIB_COLOR0)) vic_1 |= R300_INPUT_CNTL_COLOR; rmesa->state.texture.tc_count = 0; for (i = 0; i < ctx->Const.MaxTextureUnits; i++) if (InputsRead & (1 << (VERT_ATTRIB_TEX0 + i))) { rmesa->state.texture.tc_count++; vic_1 |= R300_INPUT_CNTL_TC0 << i; } return vic_1; } static GLuint r300VAPOutputCntl0(GLcontext * ctx, GLuint OutputsWritten) { GLuint ret = 0; if (OutputsWritten & (1 << VERT_RESULT_HPOS)) ret |= R300_VAP_OUTPUT_VTX_FMT_0__POS_PRESENT; if (OutputsWritten & (1 << VERT_RESULT_COL0)) ret |= R300_VAP_OUTPUT_VTX_FMT_0__COLOR_PRESENT; if (OutputsWritten & (1 << VERT_RESULT_COL1)) ret |= R300_VAP_OUTPUT_VTX_FMT_0__COLOR_1_PRESENT; #if 0 if (OutputsWritten & (1 << VERT_RESULT_BFC0)) ret |= R300_VAP_OUTPUT_VTX_FMT_0__COLOR_2_PRESENT; if (OutputsWritten & (1 << VERT_RESULT_BFC1)) ret |= R300_VAP_OUTPUT_VTX_FMT_0__COLOR_3_PRESENT; if (OutputsWritten & (1 << VERT_RESULT_FOGC)) ; #endif if (OutputsWritten & (1 << VERT_RESULT_PSIZ)) ret |= R300_VAP_OUTPUT_VTX_FMT_0__PT_SIZE_PRESENT; return ret; } static GLuint r300VAPOutputCntl1(GLcontext * ctx, GLuint OutputsWritten) { GLuint i, ret = 0; for (i = 0; i < ctx->Const.MaxTextureUnits; i++) { if (OutputsWritten & (1 << (VERT_RESULT_TEX0 + i))) { ret |= (4 << (3 * i)); } } return ret; } static void r300SetVertexFormat( GLcontext *ctx ) { r300ContextPtr rmesa = R300_CONTEXT( ctx ); TNLcontext *tnl = TNL_CONTEXT(ctx); struct vertex_buffer *VB = &tnl->vb; DECLARE_RENDERINPUTS(index_bitset); GLuint InputsRead = 0, OutputsWritten = 0; int vap_fmt_0 = 0; int vap_vte_cntl = 0; int offset = 0; int vte = 0; GLuint inputs[VERT_ATTRIB_MAX]; GLint tab[VERT_ATTRIB_MAX]; int swizzle[VERT_ATTRIB_MAX][4]; GLuint i, nr; DECLARE_RENDERINPUTS(render_inputs_bitset); RENDERINPUTS_COPY(render_inputs_bitset, tnl->render_inputs_bitset); RENDERINPUTS_COPY( index_bitset, tnl->render_inputs_bitset ); RENDERINPUTS_COPY(rmesa->state.render_inputs_bitset, render_inputs_bitset); /* Important: */ if ( VB->NdcPtr != NULL ) { VB->AttribPtr[VERT_ATTRIB_POS] = VB->NdcPtr; } else { VB->AttribPtr[VERT_ATTRIB_POS] = VB->ClipPtr; } assert( VB->AttribPtr[VERT_ATTRIB_POS] != NULL ); rmesa->swtcl.vertex_attr_count = 0; /* EMIT_ATTR's must be in order as they tell t_vertex.c how to * build up a hardware vertex. */ EMIT_ATTR( _TNL_ATTRIB_POS, EMIT_4F ); vap_vte_cntl |= R300_VTX_W0_FMT; InputsRead |= 1 << VERT_ATTRIB_POS; OutputsWritten |= 1 << VERT_RESULT_HPOS; offset = 4; if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_POINTSIZE )) { EMIT_ATTR( _TNL_ATTRIB_POINTSIZE, EMIT_1F ); vap_fmt_0 |= R300_VAP_OUTPUT_VTX_FMT_0__PT_SIZE_PRESENT; offset += 1; } rmesa->swtcl.coloroffset = offset; #if MESA_LITTLE_ENDIAN EMIT_ATTR( _TNL_ATTRIB_COLOR0, EMIT_4F ); #else EMIT_ATTR( _TNL_ATTRIB_COLOR0, EMIT_4F ); #endif InputsRead |= 1 << VERT_ATTRIB_COLOR0; OutputsWritten |= 1 << VERT_RESULT_COL0; offset += 4; rmesa->swtcl.specoffset = 0; if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_COLOR1 ) || RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_FOG )) { #if MESA_LITTLE_ENDIAN if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_COLOR1 )) { rmesa->swtcl.specoffset = offset; EMIT_ATTR( _TNL_ATTRIB_COLOR1, EMIT_3F ); InputsRead |= 1 << VERT_ATTRIB_COLOR1; OutputsWritten |= 1 << VERT_RESULT_COL1; } else { EMIT_PAD( 3 ); } if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_FOG )) { EMIT_ATTR( _TNL_ATTRIB_FOG, EMIT_1UB_1F ); InputsRead |= 1 << VERT_ATTRIB_COLOR1; OutputsWritten |= 1 << VERT_RESULT_COL1; } else { EMIT_PAD( 1 ); } #else if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_FOG )) { EMIT_ATTR( _TNL_ATTRIB_FOG, EMIT_1UB_1F ); InputsRead |= 1 << VERT_ATTRIB_COLOR1; OutputsWritten |= 1 << VERT_RESULT_COL1; } else { EMIT_PAD( 1 ); } if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_COLOR1 )) { rmesa->swtcl.specoffset = offset; EMIT_ATTR( _TNL_ATTRIB_COLOR1, EMIT_3UB_3F_BGR ); InputsRead |= 1 << VERT_ATTRIB_COLOR1; OutputsWritten |= 1 << VERT_RESULT_COL1; } else { EMIT_PAD( 3 ); } #endif } if (RENDERINPUTS_TEST_RANGE( index_bitset, _TNL_FIRST_TEX, _TNL_LAST_TEX )) { int i; for (i = 0; i < ctx->Const.MaxTextureUnits; i++) { if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_TEX(i) )) { GLuint sz = VB->TexCoordPtr[i]->size; InputsRead |= 1 << (VERT_ATTRIB_TEX0 + i); OutputsWritten |= 1 << (VERT_RESULT_TEX0 + i); EMIT_ATTR( _TNL_ATTRIB_TEX0+i, EMIT_4F ); } } } #if 0 if ( (rmesa->hw.ctx.cmd[CTX_PP_FOG_COLOR] & R200_FOG_USE_MASK) != R200_FOG_USE_SPEC_ALPHA ) { R200_STATECHANGE( rmesa, ctx ); rmesa->hw.ctx.cmd[CTX_PP_FOG_COLOR] &= ~R200_FOG_USE_MASK; rmesa->hw.ctx.cmd[CTX_PP_FOG_COLOR] |= R200_FOG_USE_SPEC_ALPHA; } #endif for (i = 0, nr = 0; i < VERT_ATTRIB_MAX; i++) { if (InputsRead & (1 << i)) { inputs[i] = nr++; } else { inputs[i] = -1; } } /* Fixed, apply to vir0 only */ if (InputsRead & VERT_ATTRIB_POS) inputs[VERT_ATTRIB_POS] = 0; if (InputsRead & (1 << VERT_ATTRIB_COLOR0)) inputs[VERT_ATTRIB_COLOR0] = 2; if (InputsRead & (1 << VERT_ATTRIB_COLOR1)) inputs[VERT_ATTRIB_COLOR1] = 3; for (i = VERT_ATTRIB_TEX0; i <= VERT_ATTRIB_TEX7; i++) if (InputsRead & (1 << i)) inputs[i] = 6 + (i - VERT_ATTRIB_TEX0); for (i = 0, nr = 0; i < VERT_ATTRIB_MAX; i++) { if (InputsRead & (1 << i)) { tab[nr++] = i; } } for (i = 0; i < nr; i++) { int ci, fix, found = 0; swizzle[i][0] = SWIZZLE_ZERO; swizzle[i][1] = SWIZZLE_ZERO; swizzle[i][2] = SWIZZLE_ZERO; swizzle[i][3] = SWIZZLE_ONE; for (ci = 0; ci < VB->AttribPtr[tab[i]]->size; ci++) { swizzle[i][ci] = ci; } } R300_STATECHANGE(rmesa, vir[0]); ((drm_r300_cmd_header_t *) rmesa->hw.vir[0].cmd)->packet0.count = r300VAPInputRoute0(&rmesa->hw.vir[0].cmd[R300_VIR_CNTL_0], VB->AttribPtr, inputs, tab, nr); R300_STATECHANGE(rmesa, vir[1]); ((drm_r300_cmd_header_t *) rmesa->hw.vir[1].cmd)->packet0.count = r300VAPInputRoute1(&rmesa->hw.vir[1].cmd[R300_VIR_CNTL_0], swizzle, nr); R300_STATECHANGE(rmesa, vic); rmesa->hw.vic.cmd[R300_VIC_CNTL_0] = r300VAPInputCntl0(ctx, InputsRead); rmesa->hw.vic.cmd[R300_VIC_CNTL_1] = r300VAPInputCntl1(ctx, InputsRead); R300_STATECHANGE(rmesa, vof); rmesa->hw.vof.cmd[R300_VOF_CNTL_0] = r300VAPOutputCntl0(ctx, OutputsWritten); rmesa->hw.vof.cmd[R300_VOF_CNTL_1] = r300VAPOutputCntl1(ctx, OutputsWritten); if (!RENDERINPUTS_EQUAL( rmesa->tnl_index_bitset, index_bitset)) { rmesa->swtcl.vertex_size = _tnl_install_attrs( ctx, rmesa->swtcl.vertex_attrs, rmesa->swtcl.vertex_attr_count, NULL, 0 ); rmesa->swtcl.vertex_size /= 4; RENDERINPUTS_COPY( rmesa->tnl_index_bitset, index_bitset ); vte = rmesa->hw.vte.cmd[1]; R300_STATECHANGE(rmesa, vte); rmesa->hw.vte.cmd[1] = vte; rmesa->hw.vte.cmd[2] = rmesa->swtcl.vertex_size; } } /* Flush vertices in the current dma region. */ static void flush_last_swtcl_prim( r300ContextPtr rmesa ) { if (RADEON_DEBUG & DEBUG_IOCTL) fprintf(stderr, "%s\n", __FUNCTION__); rmesa->dma.flush = NULL; if (rmesa->dma.current.buf) { struct r300_dma_region *current = &rmesa->dma.current; GLuint current_offset = GET_START(current); assert (current->start + rmesa->swtcl.numverts * rmesa->swtcl.vertex_size * 4 == current->ptr); if (rmesa->dma.current.start != rmesa->dma.current.ptr) { r300EmitVertexAOS( rmesa, rmesa->swtcl.vertex_size, current_offset); r300EmitVbufPrim( rmesa, rmesa->swtcl.hw_primitive, rmesa->swtcl.numverts); } rmesa->swtcl.numverts = 0; current->start = current->ptr; } } /* Alloc space in the current dma region. */ static void * r300AllocDmaLowVerts( r300ContextPtr rmesa, int nverts, int vsize ) { GLuint bytes = vsize * nverts; if ( rmesa->dma.current.ptr + bytes > rmesa->dma.current.end ) r300RefillCurrentDmaRegion( rmesa, bytes); if (!rmesa->dma.flush) { rmesa->radeon.glCtx->Driver.NeedFlush |= FLUSH_STORED_VERTICES; rmesa->dma.flush = flush_last_swtcl_prim; } ASSERT( vsize == rmesa->swtcl.vertex_size * 4 ); ASSERT( rmesa->dma.flush == flush_last_swtcl_prim ); ASSERT( rmesa->dma.current.start + rmesa->swtcl.numverts * rmesa->swtcl.vertex_size * 4 == rmesa->dma.current.ptr ); { GLubyte *head = (GLubyte *) (rmesa->dma.current.address + rmesa->dma.current.ptr); rmesa->dma.current.ptr += bytes; rmesa->swtcl.numverts += nverts; return head; } } static GLuint reduced_prim[] = { GL_POINTS, GL_LINES, GL_LINES, GL_LINES, GL_TRIANGLES, GL_TRIANGLES, GL_TRIANGLES, GL_TRIANGLES, GL_TRIANGLES, GL_TRIANGLES, }; static void r300RasterPrimitive( GLcontext *ctx, GLuint prim ); static void r300RenderPrimitive( GLcontext *ctx, GLenum prim ); //static void r300ResetLineStipple( GLcontext *ctx ); /*********************************************************************** * Emit primitives as inline vertices * ***********************************************************************/ #define HAVE_POINTS 1 #define HAVE_LINES 1 #define HAVE_LINE_STRIPS 1 #define HAVE_TRIANGLES 1 #define HAVE_TRI_STRIPS 1 #define HAVE_TRI_STRIP_1 0 #define HAVE_TRI_FANS 1 #define HAVE_QUADS 0 #define HAVE_QUAD_STRIPS 1 #define HAVE_POLYGONS 1 #define HAVE_ELTS 1 #undef LOCAL_VARS #undef ALLOC_VERTS #define CTX_ARG r300ContextPtr rmesa #define GET_VERTEX_DWORDS() rmesa->swtcl.vertex_size #define ALLOC_VERTS( n, size ) r300AllocDmaLowVerts( rmesa, n, size * 4 ) #define LOCAL_VARS \ r300ContextPtr rmesa = R300_CONTEXT(ctx); \ const char *r300verts = (char *)rmesa->swtcl.verts; #define VERT(x) (r300Vertex *)(r300verts + ((x) * vertsize * sizeof(int))) #define VERTEX r300Vertex #define DO_DEBUG_VERTS (1 && (RADEON_DEBUG & DEBUG_VERTS)) #define PRINT_VERTEX(x) #undef TAG #define TAG(x) r300_##x #include "tnl_dd/t_dd_triemit.h" /*********************************************************************** * Macros for t_dd_tritmp.h to draw basic primitives * ***********************************************************************/ #define QUAD( a, b, c, d ) r300_quad( rmesa, a, b, c, d ) #define TRI( a, b, c ) r300_triangle( rmesa, a, b, c ) #define LINE( a, b ) r300_line( rmesa, a, b ) #define POINT( a ) r300_point( rmesa, a ) /*********************************************************************** * Build render functions from dd templates * ***********************************************************************/ #define R300_TWOSIDE_BIT 0x01 #define R300_UNFILLED_BIT 0x02 #define R300_MAX_TRIFUNC 0x04 static struct { tnl_points_func points; tnl_line_func line; tnl_triangle_func triangle; tnl_quad_func quad; } rast_tab[R300_MAX_TRIFUNC]; #define DO_FALLBACK 0 #define DO_UNFILLED (IND & R300_UNFILLED_BIT) #define DO_TWOSIDE (IND & R300_TWOSIDE_BIT) #define DO_FLAT 0 #define DO_OFFSET 0 #define DO_TRI 1 #define DO_QUAD 1 #define DO_LINE 1 #define DO_POINTS 1 #define DO_FULL_QUAD 1 #define HAVE_RGBA 1 #define HAVE_SPEC 1 #define HAVE_BACK_COLORS 0 #define HAVE_HW_FLATSHADE 1 #define TAB rast_tab #define DEPTH_SCALE 1.0 #define UNFILLED_TRI unfilled_tri #define UNFILLED_QUAD unfilled_quad #define VERT_X(_v) _v->v.x #define VERT_Y(_v) _v->v.y #define VERT_Z(_v) _v->v.z #define AREA_IS_CCW( a ) (a < 0) #define GET_VERTEX(e) (rmesa->swtcl.verts + (e*rmesa->swtcl.vertex_size*sizeof(int))) /* Only used to pull back colors into vertices (ie, we know color is * floating point). */ #define R300_COLOR( dst, src ) \ do { \ UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]); \ UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]); \ UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]); \ UNCLAMPED_FLOAT_TO_UBYTE((dst)[3], (src)[3]); \ } while (0) #define VERT_SET_RGBA( v, c ) if (coloroffset) R300_COLOR( v->ub4[coloroffset], c ) #define VERT_COPY_RGBA( v0, v1 ) if (coloroffset) v0->ui[coloroffset] = v1->ui[coloroffset] #define VERT_SAVE_RGBA( idx ) if (coloroffset) color[idx] = v[idx]->ui[coloroffset] #define VERT_RESTORE_RGBA( idx ) if (coloroffset) v[idx]->ui[coloroffset] = color[idx] #define R300_SPEC( dst, src ) \ do { \ UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]); \ UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]); \ UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]); \ } while (0) #define VERT_SET_SPEC( v, c ) if (specoffset) R300_SPEC( v->ub4[specoffset], c ) #define VERT_COPY_SPEC( v0, v1 ) if (specoffset) COPY_3V(v0->ub4[specoffset], v1->ub4[specoffset]) #define VERT_SAVE_SPEC( idx ) if (specoffset) spec[idx] = v[idx]->ui[specoffset] #define VERT_RESTORE_SPEC( idx ) if (specoffset) v[idx]->ui[specoffset] = spec[idx] #undef LOCAL_VARS #undef TAG #undef INIT #define LOCAL_VARS(n) \ r300ContextPtr rmesa = R300_CONTEXT(ctx); \ GLuint color[n], spec[n]; \ GLuint coloroffset = rmesa->swtcl.coloroffset; \ GLuint specoffset = rmesa->swtcl.specoffset; \ (void) color; (void) spec; (void) coloroffset; (void) specoffset; /*********************************************************************** * Helpers for rendering unfilled primitives * ***********************************************************************/ #define RASTERIZE(x) r300RasterPrimitive( ctx, reduced_prim[x] ) #define RENDER_PRIMITIVE rmesa->swtcl.render_primitive #undef TAG #define TAG(x) x #include "tnl_dd/t_dd_unfilled.h" #undef IND /*********************************************************************** * Generate GL render functions * ***********************************************************************/ #define IND (0) #define TAG(x) x #include "tnl_dd/t_dd_tritmp.h" #define IND (R300_TWOSIDE_BIT) #define TAG(x) x##_twoside #include "tnl_dd/t_dd_tritmp.h" #define IND (R300_UNFILLED_BIT) #define TAG(x) x##_unfilled #include "tnl_dd/t_dd_tritmp.h" #define IND (R300_TWOSIDE_BIT|R300_UNFILLED_BIT) #define TAG(x) x##_twoside_unfilled #include "tnl_dd/t_dd_tritmp.h" static void init_rast_tab( void ) { init(); init_twoside(); init_unfilled(); init_twoside_unfilled(); } /**********************************************************************/ /* Render unclipped begin/end objects */ /**********************************************************************/ #define RENDER_POINTS( start, count ) \ for ( ; start < count ; start++) \ r300_point( rmesa, VERT(start) ) #define RENDER_LINE( v0, v1 ) \ r300_line( rmesa, VERT(v0), VERT(v1) ) #define RENDER_TRI( v0, v1, v2 ) \ r300_triangle( rmesa, VERT(v0), VERT(v1), VERT(v2) ) #define RENDER_QUAD( v0, v1, v2, v3 ) \ r300_quad( rmesa, VERT(v0), VERT(v1), VERT(v2), VERT(v3) ) #define INIT(x) do { \ r300RenderPrimitive( ctx, reduced_prim[x] ); \ } while (0) #undef LOCAL_VARS #define LOCAL_VARS \ r300ContextPtr rmesa = R300_CONTEXT(ctx); \ const GLuint vertsize = rmesa->swtcl.vertex_size; \ const char *r300verts = (char *)rmesa->swtcl.verts; \ const GLuint * const elt = TNL_CONTEXT(ctx)->vb.Elts; \ const GLboolean stipple = ctx->Line.StippleFlag; \ (void) elt; (void) stipple; #define RESET_STIPPLE //if ( stipple ) r200ResetLineStipple( ctx ); #define RESET_OCCLUSION #define PRESERVE_VB_DEFS #define ELT(x) (x) #define TAG(x) r300_##x##_verts #include "tnl/t_vb_rendertmp.h" #undef ELT #undef TAG #define TAG(x) r300_##x##_elts #define ELT(x) elt[x] #include "tnl/t_vb_rendertmp.h" /**********************************************************************/ /* Choose render functions */ /**********************************************************************/ static void r300ChooseRenderState( GLcontext *ctx ) { TNLcontext *tnl = TNL_CONTEXT(ctx); r300ContextPtr rmesa = R300_CONTEXT(ctx); GLuint index = 0; GLuint flags = ctx->_TriangleCaps; // if (!rmesa->TclFallback || rmesa->Fallback) // return; if (flags & DD_TRI_LIGHT_TWOSIDE) index |= R300_TWOSIDE_BIT; if (flags & DD_TRI_UNFILLED) index |= R300_UNFILLED_BIT; if (index != rmesa->swtcl.RenderIndex) { tnl->Driver.Render.Points = rast_tab[index].points; tnl->Driver.Render.Line = rast_tab[index].line; tnl->Driver.Render.ClippedLine = rast_tab[index].line; tnl->Driver.Render.Triangle = rast_tab[index].triangle; tnl->Driver.Render.Quad = rast_tab[index].quad; if (index == 0) { tnl->Driver.Render.PrimTabVerts = r300_render_tab_verts; tnl->Driver.Render.PrimTabElts = r300_render_tab_elts; tnl->Driver.Render.ClippedPolygon = r300_fast_clipped_poly; } else { tnl->Driver.Render.PrimTabVerts = _tnl_render_tab_verts; tnl->Driver.Render.PrimTabElts = _tnl_render_tab_elts; tnl->Driver.Render.ClippedPolygon = _tnl_RenderClippedPolygon; } rmesa->swtcl.RenderIndex = index; } } static void r300RenderStart(GLcontext *ctx) { r300ContextPtr rmesa = R300_CONTEXT( ctx ); int cmd_reserved = 0; int cmd_written = 0; drm_radeon_cmd_header_t *cmd = NULL; // fprintf(stderr, "%s\n", __FUNCTION__); r300SetVertexFormat(ctx); r300UpdateShaderStates(rmesa); reg_start(R300_RB3D_DSTCACHE_CTLSTAT, 0); e32(R300_RB3D_DSTCACHE_UNKNOWN_0A); reg_start(R300_RB3D_ZCACHE_CTLSTAT, 0); e32(R300_RB3D_ZCACHE_UNKNOWN_03); if (rmesa->dma.flush != 0 && rmesa->dma.flush != flush_last_swtcl_prim) rmesa->dma.flush( rmesa ); } static void r300RenderFinish(GLcontext *ctx) { r300ContextPtr rmesa = R300_CONTEXT( ctx ); int cmd_reserved = 0; int cmd_written = 0; drm_radeon_cmd_header_t *cmd = NULL; reg_start(R300_RB3D_DSTCACHE_CTLSTAT, 0); e32(R300_RB3D_DSTCACHE_UNKNOWN_0A); reg_start(R300_RB3D_ZCACHE_CTLSTAT, 0); e32(R300_RB3D_ZCACHE_UNKNOWN_03); } static void r300RasterPrimitive( GLcontext *ctx, GLuint hwprim ) { r300ContextPtr rmesa = R300_CONTEXT(ctx); if (rmesa->swtcl.hw_primitive != hwprim) { R300_NEWPRIM( rmesa ); rmesa->swtcl.hw_primitive = hwprim; } } static void r300RenderPrimitive(GLcontext *ctx, GLenum prim) { r300ContextPtr rmesa = R300_CONTEXT(ctx); rmesa->swtcl.render_primitive = prim; if (prim < GL_TRIANGLES || !(ctx->_TriangleCaps & DD_TRI_UNFILLED)) r300RasterPrimitive( ctx, prim ); // fprintf(stderr, "%s\n", __FUNCTION__); } static void r300ResetLineStipple(GLcontext *ctx) { } void r300InitSwtcl(GLcontext *ctx) { TNLcontext *tnl = TNL_CONTEXT(ctx); r300ContextPtr rmesa = R300_CONTEXT(ctx); static int firsttime = 1; if (firsttime) { init_rast_tab(); firsttime = 0; } tnl->Driver.Render.Start = r300RenderStart; tnl->Driver.Render.Finish = r300RenderFinish; tnl->Driver.Render.PrimitiveNotify = r300RenderPrimitive; tnl->Driver.Render.ResetLineStipple = r300ResetLineStipple; tnl->Driver.Render.BuildVertices = _tnl_build_vertices; tnl->Driver.Render.CopyPV = _tnl_copy_pv; tnl->Driver.Render.Interp = _tnl_interp; /* FIXME: what are these numbers? */ _tnl_init_vertices( ctx, ctx->Const.MaxArrayLockSize + 12, 48 * sizeof(GLfloat) ); rmesa->swtcl.verts = (GLubyte *)tnl->clipspace.vertex_buf; rmesa->swtcl.RenderIndex = ~0; rmesa->swtcl.render_primitive = GL_TRIANGLES; rmesa->swtcl.hw_primitive = 0; _tnl_invalidate_vertex_state( ctx, ~0 ); _tnl_invalidate_vertices( ctx, ~0 ); RENDERINPUTS_ZERO( rmesa->tnl_index_bitset ); _tnl_need_projected_coords( ctx, GL_FALSE ); r300ChooseRenderState(ctx); } void r300DestroySwtcl(GLcontext *ctx) { } void r300EmitVertexAOS(r300ContextPtr rmesa, GLuint vertex_size, GLuint offset) { int cmd_reserved = 0; int cmd_written = 0; int vte; int route0; drm_radeon_cmd_header_t *cmd = NULL; if (RADEON_DEBUG & DEBUG_VERTS) fprintf(stderr, "%s: vertex_size %d, offset 0x%x \n", __FUNCTION__, vertex_size, offset); /* emit vte */ start_packet3(CP_PACKET3(R300_PACKET3_3D_LOAD_VBPNTR, 2), 2); e32(1); e32(vertex_size | (vertex_size << 8)); e32(offset); } void r300EmitVbufPrim(r300ContextPtr rmesa, GLuint primitive, GLuint vertex_nr) { int cmd_reserved = 0; int cmd_written = 0; int type, num_verts; drm_radeon_cmd_header_t *cmd = NULL; type = r300PrimitiveType(rmesa, primitive); num_verts = r300NumVerts(rmesa, vertex_nr, primitive); r300EmitState(rmesa); start_packet3(CP_PACKET3(R300_PACKET3_3D_DRAW_VBUF_2, 0), 0); e32(R300_VAP_VF_CNTL__PRIM_WALK_VERTEX_LIST | (num_verts << 16) | type); }