/************************************************************************** * * Copyright 2003 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "main/bufferobj.h" #include "main/image.h" #include "main/macros.h" #include "main/mtypes.h" #include "main/pbo.h" #include "main/texobj.h" #include "main/texstore.h" #include "main/texcompress.h" #include "main/enums.h" #include "brw_context.h" #include "intel_batchbuffer.h" #include "intel_tex.h" #include "intel_mipmap_tree.h" #include "intel_blit.h" #ifdef __SSSE3__ #include #endif #define FILE_DEBUG_FLAG DEBUG_TEXTURE #define ALIGN_DOWN(a, b) ROUND_DOWN_TO(a, b) #define ALIGN_UP(a, b) ALIGN(a, b) /* Tile dimensions. * Width and span are in bytes, height is in pixels (i.e. unitless). * A "span" is the most number of bytes we can copy from linear to tiled * without needing to calculate a new destination address. */ static const uint32_t xtile_width = 512; static const uint32_t xtile_height = 8; static const uint32_t xtile_span = 64; static const uint32_t ytile_width = 128; static const uint32_t ytile_height = 32; static const uint32_t ytile_span = 16; typedef void *(*mem_copy_fn)(void *dest, const void *src, size_t n); /** * Each row from y0 to y1 is copied in three parts: [x0,x1), [x1,x2), [x2,x3). * These ranges are in bytes, i.e. pixels * bytes-per-pixel. * The first and last ranges must be shorter than a "span" (the longest linear * stretch within a tile) and the middle must equal a whole number of spans. * Ranges may be empty. The region copied must land entirely within one tile. * 'dst' is the start of the tile and 'src' is the corresponding * address to copy from, though copying begins at (x0, y0). * To enable swizzling 'swizzle_bit' must be 1<<6, otherwise zero. * Swizzling flips bit 6 in the copy destination offset, when certain other * bits are set in it. */ typedef void (*tile_copy_fn)(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y1, char *dst, const char *src, uint32_t src_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy); static bool intel_blit_texsubimage(struct gl_context * ctx, struct gl_texture_image *texImage, GLint xoffset, GLint yoffset, GLint width, GLint height, GLenum format, GLenum type, const void *pixels, const struct gl_pixelstore_attrib *packing) { struct brw_context *brw = brw_context(ctx); struct intel_texture_image *intelImage = intel_texture_image(texImage); /* Try to do a blit upload of the subimage if the texture is * currently busy. */ if (!intelImage->mt) return false; /* Prior to Sandybridge, the blitter can't handle Y tiling */ if (brw->gen < 6 && intelImage->mt->tiling == I915_TILING_Y) return false; if (texImage->TexObject->Target != GL_TEXTURE_2D) return false; /* On gen6, it's probably not worth swapping to the blit ring to do * this because of all the overhead involved. */ if (brw->gen >= 6) return false; if (!drm_intel_bo_busy(intelImage->mt->bo)) return false; DBG("BLT subimage %s target %s level %d offset %d,%d %dx%d\n", __FUNCTION__, _mesa_lookup_enum_by_nr(texImage->TexObject->Target), texImage->Level, xoffset, yoffset, width, height); pixels = _mesa_validate_pbo_teximage(ctx, 2, width, height, 1, format, type, pixels, packing, "glTexSubImage"); if (!pixels) return false; struct intel_mipmap_tree *temp_mt = intel_miptree_create(brw, GL_TEXTURE_2D, texImage->TexFormat, 0, 0, width, height, 1, false, 0, INTEL_MIPTREE_TILING_NONE); if (!temp_mt) goto err; GLubyte *dst = intel_miptree_map_raw(brw, temp_mt); if (!dst) goto err; if (!_mesa_texstore(ctx, 2, texImage->_BaseFormat, texImage->TexFormat, temp_mt->pitch, &dst, width, height, 1, format, type, pixels, packing)) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "intelTexSubImage"); } intel_miptree_unmap_raw(brw, temp_mt); bool ret; ret = intel_miptree_blit(brw, temp_mt, 0, 0, 0, 0, false, intelImage->mt, texImage->Level, texImage->Face, xoffset, yoffset, false, width, height, GL_COPY); assert(ret); intel_miptree_release(&temp_mt); _mesa_unmap_teximage_pbo(ctx, packing); return ret; err: _mesa_error(ctx, GL_OUT_OF_MEMORY, "intelTexSubImage"); intel_miptree_release(&temp_mt); _mesa_unmap_teximage_pbo(ctx, packing); return false; } #ifdef __SSSE3__ static const uint8_t rgba8_permutation[16] = { 2,1,0,3, 6,5,4,7, 10,9,8,11, 14,13,12,15 }; /* NOTE: dst must be 16 byte aligned */ #define rgba8_copy_16(dst, src) \ *(__m128i *)(dst) = _mm_shuffle_epi8( \ (__m128i) _mm_loadu_ps((float *)(src)), \ *(__m128i *) rgba8_permutation \ ) #endif /** * Copy RGBA to BGRA - swap R and B. */ static inline void * rgba8_copy(void *dst, const void *src, size_t bytes) { uint8_t *d = dst; uint8_t const *s = src; #ifdef __SSSE3__ /* Fast copying for tile spans. * * As long as the destination texture is 16 aligned, * any 16 or 64 spans we get here should also be 16 aligned. */ if (bytes == 16) { assert(!(((uintptr_t)dst) & 0xf)); rgba8_copy_16(d+ 0, s+ 0); return dst; } if (bytes == 64) { assert(!(((uintptr_t)dst) & 0xf)); rgba8_copy_16(d+ 0, s+ 0); rgba8_copy_16(d+16, s+16); rgba8_copy_16(d+32, s+32); rgba8_copy_16(d+48, s+48); return dst; } #endif while (bytes >= 4) { d[0] = s[2]; d[1] = s[1]; d[2] = s[0]; d[3] = s[3]; d += 4; s += 4; bytes -= 4; } return dst; } /** * Copy texture data from linear to X tile layout. * * \copydoc tile_copy_fn */ static inline void xtile_copy(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y1, char *dst, const char *src, uint32_t src_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy) { /* The copy destination offset for each range copied is the sum of * an X offset 'x0' or 'xo' and a Y offset 'yo.' */ uint32_t xo, yo; src += y0 * src_pitch; for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) { /* Bits 9 and 10 of the copy destination offset control swizzling. * Only 'yo' contributes to those bits in the total offset, * so calculate 'swizzle' just once per row. * Move bits 9 and 10 three and four places respectively down * to bit 6 and xor them. */ uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit; mem_copy(dst + ((x0 + yo) ^ swizzle), src + x0, x1 - x0); for (xo = x1; xo < x2; xo += xtile_span) { mem_copy(dst + ((xo + yo) ^ swizzle), src + xo, xtile_span); } mem_copy(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2); src += src_pitch; } } /** * Copy texture data from linear to Y tile layout. * * \copydoc tile_copy_fn */ static inline void ytile_copy( uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y1, char *dst, const char *src, uint32_t src_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy) { /* Y tiles consist of columns that are 'ytile_span' wide (and the same height * as the tile). Thus the destination offset for (x,y) is the sum of: * (x % column_width) // position within column * (x / column_width) * bytes_per_column // column number * bytes per column * y * column_width * * The copy destination offset for each range copied is the sum of * an X offset 'xo0' or 'xo' and a Y offset 'yo.' */ const uint32_t column_width = ytile_span; const uint32_t bytes_per_column = column_width * ytile_height; uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column; uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column; /* Bit 9 of the destination offset control swizzling. * Only the X offset contributes to bit 9 of the total offset, * so swizzle can be calculated in advance for these X positions. * Move bit 9 three places down to bit 6. */ uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit; uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit; uint32_t x, yo; src += y0 * src_pitch; for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) { uint32_t xo = xo1; uint32_t swizzle = swizzle1; mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0); /* Step by spans/columns. As it happens, the swizzle bit flips * at each step so we don't need to calculate it explicitly. */ for (x = x1; x < x2; x += ytile_span) { mem_copy(dst + ((xo + yo) ^ swizzle), src + x, ytile_span); xo += bytes_per_column; swizzle ^= swizzle_bit; } mem_copy(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2); src += src_pitch; } } #ifdef __GNUC__ #define FLATTEN __attribute__((flatten)) #else #define FLATTEN #endif /** * Copy texture data from linear to X tile layout, faster. * * Same as \ref xtile_copy but faster, because it passes constant parameters * for common cases, allowing the compiler to inline code optimized for those * cases. * * \copydoc tile_copy_fn */ static FLATTEN void xtile_copy_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y1, char *dst, const char *src, uint32_t src_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy) { if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) { if (mem_copy == memcpy) return xtile_copy(0, 0, xtile_width, xtile_width, 0, xtile_height, dst, src, src_pitch, swizzle_bit, memcpy); else if (mem_copy == rgba8_copy) return xtile_copy(0, 0, xtile_width, xtile_width, 0, xtile_height, dst, src, src_pitch, swizzle_bit, rgba8_copy); } else { if (mem_copy == memcpy) return xtile_copy(x0, x1, x2, x3, y0, y1, dst, src, src_pitch, swizzle_bit, memcpy); else if (mem_copy == rgba8_copy) return xtile_copy(x0, x1, x2, x3, y0, y1, dst, src, src_pitch, swizzle_bit, rgba8_copy); } xtile_copy(x0, x1, x2, x3, y0, y1, dst, src, src_pitch, swizzle_bit, mem_copy); } /** * Copy texture data from linear to Y tile layout, faster. * * Same as \ref ytile_copy but faster, because it passes constant parameters * for common cases, allowing the compiler to inline code optimized for those * cases. * * \copydoc tile_copy_fn */ static FLATTEN void ytile_copy_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y1, char *dst, const char *src, uint32_t src_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy) { if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) { if (mem_copy == memcpy) return ytile_copy(0, 0, ytile_width, ytile_width, 0, ytile_height, dst, src, src_pitch, swizzle_bit, memcpy); else if (mem_copy == rgba8_copy) return ytile_copy(0, 0, ytile_width, ytile_width, 0, ytile_height, dst, src, src_pitch, swizzle_bit, rgba8_copy); } else { if (mem_copy == memcpy) return ytile_copy(x0, x1, x2, x3, y0, y1, dst, src, src_pitch, swizzle_bit, memcpy); else if (mem_copy == rgba8_copy) return ytile_copy(x0, x1, x2, x3, y0, y1, dst, src, src_pitch, swizzle_bit, rgba8_copy); } ytile_copy(x0, x1, x2, x3, y0, y1, dst, src, src_pitch, swizzle_bit, mem_copy); } /** * Copy from linear to tiled texture. * * Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into * pieces that do not cross tile boundaries and copy each piece with a tile * copy function (\ref tile_copy_fn). * The X range is in bytes, i.e. pixels * bytes-per-pixel. * The Y range is in pixels (i.e. unitless). * 'dst' is the start of the texture and 'src' is the corresponding * address to copy from, though copying begins at (xt1, yt1). */ static void linear_to_tiled(uint32_t xt1, uint32_t xt2, uint32_t yt1, uint32_t yt2, char *dst, const char *src, uint32_t dst_pitch, uint32_t src_pitch, bool has_swizzling, uint32_t tiling, mem_copy_fn mem_copy) { tile_copy_fn tile_copy; uint32_t xt0, xt3; uint32_t yt0, yt3; uint32_t xt, yt; uint32_t tw, th, span; uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0; if (tiling == I915_TILING_X) { tw = xtile_width; th = xtile_height; span = xtile_span; tile_copy = xtile_copy_faster; } else if (tiling == I915_TILING_Y) { tw = ytile_width; th = ytile_height; span = ytile_span; tile_copy = ytile_copy_faster; } else { unreachable("unsupported tiling"); } /* Round out to tile boundaries. */ xt0 = ALIGN_DOWN(xt1, tw); xt3 = ALIGN_UP (xt2, tw); yt0 = ALIGN_DOWN(yt1, th); yt3 = ALIGN_UP (yt2, th); /* Loop over all tiles to which we have something to copy. * 'xt' and 'yt' are the origin of the destination tile, whether copying * copying a full or partial tile. * tile_copy() copies one tile or partial tile. * Looping x inside y is the faster memory access pattern. */ for (yt = yt0; yt < yt3; yt += th) { for (xt = xt0; xt < xt3; xt += tw) { /* The area to update is [x0,x3) x [y0,y1). * May not want the whole tile, hence the min and max. */ uint32_t x0 = MAX2(xt1, xt); uint32_t y0 = MAX2(yt1, yt); uint32_t x3 = MIN2(xt2, xt + tw); uint32_t y1 = MIN2(yt2, yt + th); /* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that * the middle interval is the longest span-aligned part. * The sub-ranges could be empty. */ uint32_t x1, x2; x1 = ALIGN_UP(x0, span); if (x1 > x3) x1 = x2 = x3; else x2 = ALIGN_DOWN(x3, span); assert(x0 <= x1 && x1 <= x2 && x2 <= x3); assert(x1 - x0 < span && x3 - x2 < span); assert(x3 - x0 <= tw); assert((x2 - x1) % span == 0); /* Translate by (xt,yt) for single-tile copier. */ tile_copy(x0-xt, x1-xt, x2-xt, x3-xt, y0-yt, y1-yt, dst + xt * th + yt * dst_pitch, src + xt + yt * src_pitch, src_pitch, swizzle_bit, mem_copy); } } } /** * \brief A fast path for glTexImage and glTexSubImage. * * \param for_glTexImage Was this called from glTexImage or glTexSubImage? * * This fast path is taken when the texture format is BGRA, RGBA, * A or L and when the texture memory is X- or Y-tiled. It uploads * the texture data by mapping the texture memory without a GTT fence, thus * acquiring a tiled view of the memory, and then copying sucessive * spans within each tile. * * This is a performance win over the conventional texture upload path because * it avoids the performance penalty of writing through the write-combine * buffer. In the conventional texture upload path, * texstore.c:store_texsubimage(), the texture memory is mapped through a GTT * fence, thus acquiring a linear view of the memory, then each row in the * image is memcpy'd. In this fast path, we replace each row's copy with * a sequence of copies over each linear span in tile. * * One use case is Google Chrome's paint rectangles. Chrome (as * of version 21) renders each page as a tiling of 256x256 GL_BGRA textures. * Each page's content is initially uploaded with glTexImage2D and damaged * regions are updated with glTexSubImage2D. On some workloads, the * performance gain of this fastpath on Sandybridge is over 5x. */ bool intel_texsubimage_tiled_memcpy(struct gl_context * ctx, GLuint dims, struct gl_texture_image *texImage, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const GLvoid *pixels, const struct gl_pixelstore_attrib *packing, bool for_glTexImage) { struct brw_context *brw = brw_context(ctx); struct intel_texture_image *image = intel_texture_image(texImage); int src_pitch; /* The miptree's buffer. */ drm_intel_bo *bo; int error = 0; uint32_t cpp; mem_copy_fn mem_copy = NULL; /* This fastpath is restricted to specific texture types: * a 2D BGRA, RGBA, L8 or A8 texture. It could be generalized to support * more types. * * FINISHME: The restrictions below on packing alignment and packing row * length are likely unneeded now because we calculate the source stride * with _mesa_image_row_stride. However, before removing the restrictions * we need tests. */ if (!brw->has_llc || type != GL_UNSIGNED_BYTE || texImage->TexObject->Target != GL_TEXTURE_2D || pixels == NULL || _mesa_is_bufferobj(packing->BufferObj) || packing->Alignment > 4 || packing->SkipPixels > 0 || packing->SkipRows > 0 || (packing->RowLength != 0 && packing->RowLength != width) || packing->SwapBytes || packing->LsbFirst || packing->Invert) return false; if ((texImage->TexFormat == MESA_FORMAT_L_UNORM8 && format == GL_LUMINANCE) || (texImage->TexFormat == MESA_FORMAT_A_UNORM8 && format == GL_ALPHA)) { cpp = 1; mem_copy = memcpy; } else if ((texImage->TexFormat == MESA_FORMAT_B8G8R8A8_UNORM) || (texImage->TexFormat == MESA_FORMAT_B8G8R8X8_UNORM)) { cpp = 4; if (format == GL_BGRA) { mem_copy = memcpy; } else if (format == GL_RGBA) { mem_copy = rgba8_copy; } } if (!mem_copy) return false; /* If this is a nontrivial texture view, let another path handle it instead. */ if (texImage->TexObject->MinLayer) return false; if (for_glTexImage) ctx->Driver.AllocTextureImageBuffer(ctx, texImage); if (!image->mt || (image->mt->tiling != I915_TILING_X && image->mt->tiling != I915_TILING_Y)) { /* The algorithm is written only for X- or Y-tiled memory. */ return false; } /* Since we are going to write raw data to the miptree, we need to resolve * any pending fast color clears before we start. */ intel_miptree_resolve_color(brw, image->mt); bo = image->mt->bo; if (drm_intel_bo_references(brw->batch.bo, bo)) { perf_debug("Flushing before mapping a referenced bo.\n"); intel_batchbuffer_flush(brw); } error = brw_bo_map(brw, bo, true /* write enable */, "miptree"); if (error || bo->virtual == NULL) { DBG("%s: failed to map bo\n", __FUNCTION__); return false; } src_pitch = _mesa_image_row_stride(packing, width, format, type); /* We postponed printing this message until having committed to executing * the function. */ DBG("%s: level=%d offset=(%d,%d) (w,h)=(%d,%d) format=0x%x type=0x%x " "mesa_format=0x%x tiling=%d " "packing=(alignment=%d row_length=%d skip_pixels=%d skip_rows=%d) " "for_glTexImage=%d\n", __FUNCTION__, texImage->Level, xoffset, yoffset, width, height, format, type, texImage->TexFormat, image->mt->tiling, packing->Alignment, packing->RowLength, packing->SkipPixels, packing->SkipRows, for_glTexImage); int level = texImage->Level + texImage->TexObject->MinLevel; /* Adjust x and y offset based on miplevel */ xoffset += image->mt->level[level].level_x; yoffset += image->mt->level[level].level_y; linear_to_tiled( xoffset * cpp, (xoffset + width) * cpp, yoffset, yoffset + height, bo->virtual, pixels - yoffset * src_pitch - xoffset * cpp, image->mt->pitch, src_pitch, brw->has_swizzling, image->mt->tiling, mem_copy ); drm_intel_bo_unmap(bo); return true; } static void intelTexSubImage(struct gl_context * ctx, GLuint dims, struct gl_texture_image *texImage, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const GLvoid * pixels, const struct gl_pixelstore_attrib *packing) { bool ok; ok = intel_texsubimage_tiled_memcpy(ctx, dims, texImage, xoffset, yoffset, zoffset, width, height, depth, format, type, pixels, packing, false /*for_glTexImage*/); if (ok) return; /* The intel_blit_texsubimage() function only handles 2D images */ if (dims != 2 || !intel_blit_texsubimage(ctx, texImage, xoffset, yoffset, width, height, format, type, pixels, packing)) { _mesa_store_texsubimage(ctx, dims, texImage, xoffset, yoffset, zoffset, width, height, depth, format, type, pixels, packing); } } void intelInitTextureSubImageFuncs(struct dd_function_table *functions) { functions->TexSubImage = intelTexSubImage; }