/************************************************************************** * * Copyright 2006 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include #include #include "intel_batchbuffer.h" #include "intel_chipset.h" #include "intel_mipmap_tree.h" #include "intel_resolve_map.h" #include "intel_tex.h" #include "intel_blit.h" #include "intel_fbo.h" #include "brw_blorp.h" #include "brw_context.h" #include "main/enums.h" #include "main/fbobject.h" #include "main/formats.h" #include "main/glformats.h" #include "main/texcompress_etc.h" #include "main/teximage.h" #include "main/streaming-load-memcpy.h" #include "x86/common_x86_asm.h" #define FILE_DEBUG_FLAG DEBUG_MIPTREE /** * Determine which MSAA layout should be used by the MSAA surface being * created, based on the chip generation and the surface type. */ static enum intel_msaa_layout compute_msaa_layout(struct brw_context *brw, mesa_format format, GLenum target) { /* Prior to Gen7, all MSAA surfaces used IMS layout. */ if (brw->gen < 7) return INTEL_MSAA_LAYOUT_IMS; /* In Gen7, IMS layout is only used for depth and stencil buffers. */ switch (_mesa_get_format_base_format(format)) { case GL_DEPTH_COMPONENT: case GL_STENCIL_INDEX: case GL_DEPTH_STENCIL: return INTEL_MSAA_LAYOUT_IMS; default: /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"): * * This field must be set to 0 for all SINT MSRTs when all RT channels * are not written * * In practice this means that we have to disable MCS for all signed * integer MSAA buffers. The alternative, to disable MCS only when one * of the render target channels is disabled, is impractical because it * would require converting between CMS and UMS MSAA layouts on the fly, * which is expensive. */ if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) { return INTEL_MSAA_LAYOUT_UMS; } else { return INTEL_MSAA_LAYOUT_CMS; } } } /** * For single-sampled render targets ("non-MSRT"), the MCS buffer is a * scaled-down bitfield representation of the color buffer which is capable of * recording when blocks of the color buffer are equal to the clear value. * This function returns the block size that will be used by the MCS buffer * corresponding to a certain color miptree. * * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)", * beneath the "Fast Color Clear" bullet (p327): * * The following table describes the RT alignment * * Pixels Lines * TiledY RT CL * bpp * 32 8 4 * 64 4 4 * 128 2 4 * TiledX RT CL * bpp * 32 16 2 * 64 8 2 * 128 4 2 * * This alignment has the following uses: * * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS * buffer contains 128 blocks horizontally and 256 blocks vertically. * * - For figuring out alignment restrictions for a fast clear operation. Fast * clear operations must always clear aligned multiples of 16 blocks * horizontally and 32 blocks vertically. * * - For scaling down the coordinates sent through the render pipeline during * a fast clear. X coordinates must be scaled down by 8 times the block * width, and Y coordinates by 16 times the block height. * * - For scaling down the coordinates sent through the render pipeline during * a "Render Target Resolve" operation. X coordinates must be scaled down * by half the block width, and Y coordinates by half the block height. */ void intel_get_non_msrt_mcs_alignment(struct brw_context *brw, struct intel_mipmap_tree *mt, unsigned *width_px, unsigned *height) { switch (mt->tiling) { default: unreachable("Non-MSRT MCS requires X or Y tiling"); /* In release builds, fall through */ case I915_TILING_Y: *width_px = 32 / mt->cpp; *height = 4; break; case I915_TILING_X: *width_px = 64 / mt->cpp; *height = 2; } } /** * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer * can be used. * * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)", * beneath the "Fast Color Clear" bullet (p326): * * - Support is limited to tiled render targets. * - Support is for non-mip-mapped and non-array surface types only. * * And then later, on p327: * * - MCS buffer for non-MSRT is supported only for RT formats 32bpp, * 64bpp, and 128bpp. */ bool intel_is_non_msrt_mcs_buffer_supported(struct brw_context *brw, struct intel_mipmap_tree *mt) { /* MCS support does not exist prior to Gen7 */ if (brw->gen < 7 || brw->gen >= 8) return false; /* MCS is only supported for color buffers */ switch (_mesa_get_format_base_format(mt->format)) { case GL_DEPTH_COMPONENT: case GL_DEPTH_STENCIL: case GL_STENCIL_INDEX: return false; } if (mt->tiling != I915_TILING_X && mt->tiling != I915_TILING_Y) return false; if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16) return false; if (mt->first_level != 0 || mt->last_level != 0) return false; if (mt->physical_depth0 != 1) return false; /* There's no point in using an MCS buffer if the surface isn't in a * renderable format. */ if (!brw->format_supported_as_render_target[mt->format]) return false; return true; } /** * Determine depth format corresponding to a depth+stencil format, * for separate stencil. */ mesa_format intel_depth_format_for_depthstencil_format(mesa_format format) { switch (format) { case MESA_FORMAT_Z24_UNORM_S8_UINT: return MESA_FORMAT_Z24_UNORM_X8_UINT; case MESA_FORMAT_Z32_FLOAT_S8X24_UINT: return MESA_FORMAT_Z_FLOAT32; default: return format; } } /** * @param for_bo Indicates that the caller is * intel_miptree_create_for_bo(). If true, then do not create * \c stencil_mt. */ struct intel_mipmap_tree * intel_miptree_create_layout(struct brw_context *brw, GLenum target, mesa_format format, GLuint first_level, GLuint last_level, GLuint width0, GLuint height0, GLuint depth0, bool for_bo, GLuint num_samples) { struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1); if (!mt) return NULL; DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __FUNCTION__, _mesa_lookup_enum_by_nr(target), _mesa_get_format_name(format), first_level, last_level, depth0, mt); mt->target = target; mt->format = format; mt->first_level = first_level; mt->last_level = last_level; mt->logical_width0 = width0; mt->logical_height0 = height0; mt->logical_depth0 = depth0; mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS; exec_list_make_empty(&mt->hiz_map); /* The cpp is bytes per (1, blockheight)-sized block for compressed * textures. This is why you'll see divides by blockheight all over */ unsigned bw, bh; _mesa_get_format_block_size(format, &bw, &bh); assert(_mesa_get_format_bytes(mt->format) % bw == 0); mt->cpp = _mesa_get_format_bytes(mt->format) / bw; mt->num_samples = num_samples; mt->compressed = _mesa_is_format_compressed(format); mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE; mt->refcount = 1; if (num_samples > 1) { /* Adjust width/height/depth for MSAA */ mt->msaa_layout = compute_msaa_layout(brw, format, mt->target); if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) { /* In the Sandy Bridge PRM, volume 4, part 1, page 31, it says: * * "Any of the other messages (sample*, LOD, load4) used with a * (4x) multisampled surface will in-effect sample a surface with * double the height and width as that indicated in the surface * state. Each pixel position on the original-sized surface is * replaced with a 2x2 of samples with the following arrangement: * * sample 0 sample 2 * sample 1 sample 3" * * Thus, when sampling from a multisampled texture, it behaves as * though the layout in memory for (x,y,sample) is: * * (0,0,0) (0,0,2) (1,0,0) (1,0,2) * (0,0,1) (0,0,3) (1,0,1) (1,0,3) * * (0,1,0) (0,1,2) (1,1,0) (1,1,2) * (0,1,1) (0,1,3) (1,1,1) (1,1,3) * * However, the actual layout of multisampled data in memory is: * * (0,0,0) (1,0,0) (0,0,1) (1,0,1) * (0,1,0) (1,1,0) (0,1,1) (1,1,1) * * (0,0,2) (1,0,2) (0,0,3) (1,0,3) * (0,1,2) (1,1,2) (0,1,3) (1,1,3) * * This pattern repeats for each 2x2 pixel block. * * As a result, when calculating the size of our 4-sample buffer for * an odd width or height, we have to align before scaling up because * sample 3 is in that bottom right 2x2 block. */ switch (num_samples) { case 2: assert(brw->gen >= 8); width0 = ALIGN(width0, 2) * 2; height0 = ALIGN(height0, 2); break; case 4: width0 = ALIGN(width0, 2) * 2; height0 = ALIGN(height0, 2) * 2; break; case 8: width0 = ALIGN(width0, 2) * 4; height0 = ALIGN(height0, 2) * 2; break; default: /* num_samples should already have been quantized to 0, 1, 2, 4, or * 8. */ unreachable("not reached"); } } else { /* Non-interleaved */ depth0 *= num_samples; } } /* array_spacing_lod0 is only used for non-IMS MSAA surfaces. TODO: can we * use it elsewhere? */ switch (mt->msaa_layout) { case INTEL_MSAA_LAYOUT_NONE: case INTEL_MSAA_LAYOUT_IMS: mt->array_spacing_lod0 = false; break; case INTEL_MSAA_LAYOUT_UMS: case INTEL_MSAA_LAYOUT_CMS: mt->array_spacing_lod0 = true; break; } if (target == GL_TEXTURE_CUBE_MAP) { assert(depth0 == 1); depth0 = 6; } mt->physical_width0 = width0; mt->physical_height0 = height0; mt->physical_depth0 = depth0; if (!for_bo && _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL && (brw->must_use_separate_stencil || (brw->has_separate_stencil && brw_is_hiz_depth_format(brw, format)))) { mt->stencil_mt = intel_miptree_create(brw, mt->target, MESA_FORMAT_S_UINT8, mt->first_level, mt->last_level, mt->logical_width0, mt->logical_height0, mt->logical_depth0, true, num_samples, INTEL_MIPTREE_TILING_ANY); if (!mt->stencil_mt) { intel_miptree_release(&mt); return NULL; } /* Fix up the Z miptree format for how we're splitting out separate * stencil. Gen7 expects there to be no stencil bits in its depth buffer. */ mt->format = intel_depth_format_for_depthstencil_format(mt->format); mt->cpp = 4; if (format == mt->format) { _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n", _mesa_get_format_name(mt->format)); } } brw_miptree_layout(brw, mt); return mt; } /** * \brief Helper function for intel_miptree_create(). */ static uint32_t intel_miptree_choose_tiling(struct brw_context *brw, mesa_format format, uint32_t width0, uint32_t num_samples, enum intel_miptree_tiling_mode requested, struct intel_mipmap_tree *mt) { if (format == MESA_FORMAT_S_UINT8) { /* The stencil buffer is W tiled. However, we request from the kernel a * non-tiled buffer because the GTT is incapable of W fencing. */ return I915_TILING_NONE; } /* Some usages may want only one type of tiling, like depth miptrees (Y * tiled), or temporary BOs for uploading data once (linear). */ switch (requested) { case INTEL_MIPTREE_TILING_ANY: break; case INTEL_MIPTREE_TILING_Y: return I915_TILING_Y; case INTEL_MIPTREE_TILING_NONE: return I915_TILING_NONE; } if (num_samples > 1) { /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled * Surface"): * * [DevSNB+]: For multi-sample render targets, this field must be * 1. MSRTs can only be tiled. * * Our usual reason for preferring X tiling (fast blits using the * blitting engine) doesn't apply to MSAA, since we'll generally be * downsampling or upsampling when blitting between the MSAA buffer * and another buffer, and the blitting engine doesn't support that. * So use Y tiling, since it makes better use of the cache. */ return I915_TILING_Y; } GLenum base_format = _mesa_get_format_base_format(format); if (base_format == GL_DEPTH_COMPONENT || base_format == GL_DEPTH_STENCIL_EXT) return I915_TILING_Y; int minimum_pitch = mt->total_width * mt->cpp; /* If the width is much smaller than a tile, don't bother tiling. */ if (minimum_pitch < 64) return I915_TILING_NONE; if (ALIGN(minimum_pitch, 512) >= 32768 || mt->total_width >= 32768 || mt->total_height >= 32768) { perf_debug("%dx%d miptree too large to blit, falling back to untiled", mt->total_width, mt->total_height); return I915_TILING_NONE; } /* Pre-gen6 doesn't have BLORP to handle Y-tiling, so use X-tiling. */ if (brw->gen < 6) return I915_TILING_X; /* From the Sandybridge PRM, Volume 1, Part 2, page 32: * "NOTE: 128BPE Format Color Buffer ( render target ) MUST be either TileX * or Linear." * 128 bits per pixel translates to 16 bytes per pixel. This is necessary * all the way back to 965, but is explicitly permitted on Gen7. */ if (brw->gen != 7 && mt->cpp >= 16) return I915_TILING_X; /* From the Ivy Bridge PRM, Vol4 Part1 2.12.2.1 (SURFACE_STATE for most * messages), on p64, under the heading "Surface Vertical Alignment": * * This field must be set to VALIGN_4 for all tiled Y Render Target * surfaces. * * So if the surface is renderable and uses a vertical alignment of 2, * force it to be X tiled. This is somewhat conservative (it's possible * that the client won't ever render to this surface), but it's difficult * to know that ahead of time. And besides, since we use a vertical * alignment of 4 as often as we can, this shouldn't happen very often. */ if (brw->gen == 7 && mt->align_h == 2 && brw->format_supported_as_render_target[format]) { return I915_TILING_X; } return I915_TILING_Y | I915_TILING_X; } /** * Choose an appropriate uncompressed format for a requested * compressed format, if unsupported. */ mesa_format intel_lower_compressed_format(struct brw_context *brw, mesa_format format) { /* No need to lower ETC formats on these platforms, * they are supported natively. */ if (brw->gen >= 8 || brw->is_baytrail) return format; switch (format) { case MESA_FORMAT_ETC1_RGB8: return MESA_FORMAT_R8G8B8X8_UNORM; case MESA_FORMAT_ETC2_RGB8: return MESA_FORMAT_R8G8B8X8_UNORM; case MESA_FORMAT_ETC2_SRGB8: case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC: case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1: return MESA_FORMAT_B8G8R8A8_SRGB; case MESA_FORMAT_ETC2_RGBA8_EAC: case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1: return MESA_FORMAT_R8G8B8A8_UNORM; case MESA_FORMAT_ETC2_R11_EAC: return MESA_FORMAT_R_UNORM16; case MESA_FORMAT_ETC2_SIGNED_R11_EAC: return MESA_FORMAT_R_SNORM16; case MESA_FORMAT_ETC2_RG11_EAC: return MESA_FORMAT_R16G16_UNORM; case MESA_FORMAT_ETC2_SIGNED_RG11_EAC: return MESA_FORMAT_R16G16_SNORM; default: /* Non ETC1 / ETC2 format */ return format; } } struct intel_mipmap_tree * intel_miptree_create(struct brw_context *brw, GLenum target, mesa_format format, GLuint first_level, GLuint last_level, GLuint width0, GLuint height0, GLuint depth0, bool expect_accelerated_upload, GLuint num_samples, enum intel_miptree_tiling_mode requested_tiling) { struct intel_mipmap_tree *mt; mesa_format tex_format = format; mesa_format etc_format = MESA_FORMAT_NONE; GLuint total_width, total_height; format = intel_lower_compressed_format(brw, format); etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE; mt = intel_miptree_create_layout(brw, target, format, first_level, last_level, width0, height0, depth0, false, num_samples); /* * pitch == 0 || height == 0 indicates the null texture */ if (!mt || !mt->total_width || !mt->total_height) { intel_miptree_release(&mt); return NULL; } total_width = mt->total_width; total_height = mt->total_height; if (format == MESA_FORMAT_S_UINT8) { /* Align to size of W tile, 64x64. */ total_width = ALIGN(total_width, 64); total_height = ALIGN(total_height, 64); } uint32_t tiling = intel_miptree_choose_tiling(brw, format, width0, num_samples, requested_tiling, mt); bool y_or_x = false; if (tiling == (I915_TILING_Y | I915_TILING_X)) { y_or_x = true; mt->tiling = I915_TILING_Y; } else { mt->tiling = tiling; } unsigned long pitch; mt->etc_format = etc_format; mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree", total_width, total_height, mt->cpp, &mt->tiling, &pitch, (expect_accelerated_upload ? BO_ALLOC_FOR_RENDER : 0)); mt->pitch = pitch; /* If the BO is too large to fit in the aperture, we need to use the * BLT engine to support it. The BLT paths can't currently handle Y-tiling, * so we need to fall back to X. */ if (y_or_x && mt->bo->size >= brw->max_gtt_map_object_size) { perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n", mt->total_width, mt->total_height); mt->tiling = I915_TILING_X; drm_intel_bo_unreference(mt->bo); mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree", total_width, total_height, mt->cpp, &mt->tiling, &pitch, (expect_accelerated_upload ? BO_ALLOC_FOR_RENDER : 0)); mt->pitch = pitch; } mt->offset = 0; if (!mt->bo) { intel_miptree_release(&mt); return NULL; } if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) { if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) { intel_miptree_release(&mt); return NULL; } } /* If this miptree is capable of supporting fast color clears, set * fast_clear_state appropriately to ensure that fast clears will occur. * Allocation of the MCS miptree will be deferred until the first fast * clear actually occurs. */ if (intel_is_non_msrt_mcs_buffer_supported(brw, mt)) mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED; return mt; } struct intel_mipmap_tree * intel_miptree_create_for_bo(struct brw_context *brw, drm_intel_bo *bo, mesa_format format, uint32_t offset, uint32_t width, uint32_t height, int pitch) { struct intel_mipmap_tree *mt; uint32_t tiling, swizzle; drm_intel_bo_get_tiling(bo, &tiling, &swizzle); /* Nothing will be able to use this miptree with the BO if the offset isn't * aligned. */ if (tiling != I915_TILING_NONE) assert(offset % 4096 == 0); /* miptrees can't handle negative pitch. If you need flipping of images, * that's outside of the scope of the mt. */ assert(pitch >= 0); mt = intel_miptree_create_layout(brw, GL_TEXTURE_2D, format, 0, 0, width, height, 1, true, 0 /* num_samples */); if (!mt) { free(mt); return mt; } drm_intel_bo_reference(bo); mt->bo = bo; mt->pitch = pitch; mt->offset = offset; mt->tiling = tiling; return mt; } /** * For a singlesample renderbuffer, this simply wraps the given BO with a * miptree. * * For a multisample renderbuffer, this wraps the window system's * (singlesample) BO with a singlesample miptree attached to the * intel_renderbuffer, then creates a multisample miptree attached to irb->mt * that will contain the actual rendering (which is lazily resolved to * irb->singlesample_mt). */ void intel_update_winsys_renderbuffer_miptree(struct brw_context *intel, struct intel_renderbuffer *irb, drm_intel_bo *bo, uint32_t width, uint32_t height, uint32_t pitch) { struct intel_mipmap_tree *singlesample_mt = NULL; struct intel_mipmap_tree *multisample_mt = NULL; struct gl_renderbuffer *rb = &irb->Base.Base; mesa_format format = rb->Format; int num_samples = rb->NumSamples; /* Only the front and back buffers, which are color buffers, are allocated * through the image loader. */ assert(_mesa_get_format_base_format(format) == GL_RGB || _mesa_get_format_base_format(format) == GL_RGBA); singlesample_mt = intel_miptree_create_for_bo(intel, bo, format, 0, width, height, pitch); if (!singlesample_mt) goto fail; /* If this miptree is capable of supporting fast color clears, set * mcs_state appropriately to ensure that fast clears will occur. * Allocation of the MCS miptree will be deferred until the first fast * clear actually occurs. */ if (intel_is_non_msrt_mcs_buffer_supported(intel, singlesample_mt)) singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED; if (num_samples == 0) { intel_miptree_release(&irb->mt); irb->mt = singlesample_mt; assert(!irb->singlesample_mt); } else { intel_miptree_release(&irb->singlesample_mt); irb->singlesample_mt = singlesample_mt; if (!irb->mt || irb->mt->logical_width0 != width || irb->mt->logical_height0 != height) { multisample_mt = intel_miptree_create_for_renderbuffer(intel, format, width, height, num_samples); if (!multisample_mt) goto fail; irb->need_downsample = false; intel_miptree_release(&irb->mt); irb->mt = multisample_mt; } } return; fail: intel_miptree_release(&irb->singlesample_mt); intel_miptree_release(&irb->mt); return; } struct intel_mipmap_tree* intel_miptree_create_for_renderbuffer(struct brw_context *brw, mesa_format format, uint32_t width, uint32_t height, uint32_t num_samples) { struct intel_mipmap_tree *mt; uint32_t depth = 1; bool ok; GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D; mt = intel_miptree_create(brw, target, format, 0, 0, width, height, depth, true, num_samples, INTEL_MIPTREE_TILING_ANY); if (!mt) goto fail; if (brw_is_hiz_depth_format(brw, format)) { ok = intel_miptree_alloc_hiz(brw, mt); if (!ok) goto fail; } return mt; fail: intel_miptree_release(&mt); return NULL; } void intel_miptree_reference(struct intel_mipmap_tree **dst, struct intel_mipmap_tree *src) { if (*dst == src) return; intel_miptree_release(dst); if (src) { src->refcount++; DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount); } *dst = src; } void intel_miptree_release(struct intel_mipmap_tree **mt) { if (!*mt) return; DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1); if (--(*mt)->refcount <= 0) { GLuint i; DBG("%s deleting %p\n", __FUNCTION__, *mt); drm_intel_bo_unreference((*mt)->bo); intel_miptree_release(&(*mt)->stencil_mt); intel_miptree_release(&(*mt)->hiz_mt); intel_miptree_release(&(*mt)->mcs_mt); intel_resolve_map_clear(&(*mt)->hiz_map); for (i = 0; i < MAX_TEXTURE_LEVELS; i++) { free((*mt)->level[i].slice); } free(*mt); } *mt = NULL; } void intel_miptree_get_dimensions_for_image(struct gl_texture_image *image, int *width, int *height, int *depth) { switch (image->TexObject->Target) { case GL_TEXTURE_1D_ARRAY: *width = image->Width; *height = 1; *depth = image->Height; break; default: *width = image->Width; *height = image->Height; *depth = image->Depth; break; } } /** * Can the image be pulled into a unified mipmap tree? This mirrors * the completeness test in a lot of ways. * * Not sure whether I want to pass gl_texture_image here. */ bool intel_miptree_match_image(struct intel_mipmap_tree *mt, struct gl_texture_image *image) { struct intel_texture_image *intelImage = intel_texture_image(image); GLuint level = intelImage->base.Base.Level; int width, height, depth; /* glTexImage* choose the texture object based on the target passed in, and * objects can't change targets over their lifetimes, so this should be * true. */ assert(image->TexObject->Target == mt->target); mesa_format mt_format = mt->format; if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt) mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT; if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt) mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT; if (mt->etc_format != MESA_FORMAT_NONE) mt_format = mt->etc_format; if (image->TexFormat != mt_format) return false; intel_miptree_get_dimensions_for_image(image, &width, &height, &depth); if (mt->target == GL_TEXTURE_CUBE_MAP) depth = 6; int level_depth = mt->level[level].depth; if (mt->num_samples > 1) { switch (mt->msaa_layout) { case INTEL_MSAA_LAYOUT_NONE: case INTEL_MSAA_LAYOUT_IMS: break; case INTEL_MSAA_LAYOUT_UMS: case INTEL_MSAA_LAYOUT_CMS: level_depth /= mt->num_samples; break; } } /* Test image dimensions against the base level image adjusted for * minification. This will also catch images not present in the * tree, changed targets, etc. */ if (width != minify(mt->logical_width0, level - mt->first_level) || height != minify(mt->logical_height0, level - mt->first_level) || depth != level_depth) { return false; } if (image->NumSamples != mt->num_samples) return false; return true; } void intel_miptree_set_level_info(struct intel_mipmap_tree *mt, GLuint level, GLuint x, GLuint y, GLuint d) { mt->level[level].depth = d; mt->level[level].level_x = x; mt->level[level].level_y = y; DBG("%s level %d, depth %d, offset %d,%d\n", __FUNCTION__, level, d, x, y); assert(mt->level[level].slice == NULL); mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice)); mt->level[level].slice[0].x_offset = mt->level[level].level_x; mt->level[level].slice[0].y_offset = mt->level[level].level_y; } void intel_miptree_set_image_offset(struct intel_mipmap_tree *mt, GLuint level, GLuint img, GLuint x, GLuint y) { if (img == 0 && level == 0) assert(x == 0 && y == 0); assert(img < mt->level[level].depth); mt->level[level].slice[img].x_offset = mt->level[level].level_x + x; mt->level[level].slice[img].y_offset = mt->level[level].level_y + y; DBG("%s level %d img %d pos %d,%d\n", __FUNCTION__, level, img, mt->level[level].slice[img].x_offset, mt->level[level].slice[img].y_offset); } void intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt, GLuint level, GLuint slice, GLuint *x, GLuint *y) { assert(slice < mt->level[level].depth); *x = mt->level[level].slice[slice].x_offset; *y = mt->level[level].slice[slice].y_offset; } /** * This function computes masks that may be used to select the bits of the X * and Y coordinates that indicate the offset within a tile. If the BO is * untiled, the masks are set to 0. */ void intel_miptree_get_tile_masks(const struct intel_mipmap_tree *mt, uint32_t *mask_x, uint32_t *mask_y, bool map_stencil_as_y_tiled) { int cpp = mt->cpp; uint32_t tiling = mt->tiling; if (map_stencil_as_y_tiled) tiling = I915_TILING_Y; switch (tiling) { default: unreachable("not reached"); case I915_TILING_NONE: *mask_x = *mask_y = 0; break; case I915_TILING_X: *mask_x = 512 / cpp - 1; *mask_y = 7; break; case I915_TILING_Y: *mask_x = 128 / cpp - 1; *mask_y = 31; break; } } /** * Compute the offset (in bytes) from the start of the BO to the given x * and y coordinate. For tiled BOs, caller must ensure that x and y are * multiples of the tile size. */ uint32_t intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt, uint32_t x, uint32_t y, bool map_stencil_as_y_tiled) { int cpp = mt->cpp; uint32_t pitch = mt->pitch; uint32_t tiling = mt->tiling; if (map_stencil_as_y_tiled) { tiling = I915_TILING_Y; /* When mapping a W-tiled stencil buffer as Y-tiled, each 64-high W-tile * gets transformed into a 32-high Y-tile. Accordingly, the pitch of * the resulting surface is twice the pitch of the original miptree, * since each row in the Y-tiled view corresponds to two rows in the * actual W-tiled surface. So we need to correct the pitch before * computing the offsets. */ pitch *= 2; } switch (tiling) { default: unreachable("not reached"); case I915_TILING_NONE: return y * pitch + x * cpp; case I915_TILING_X: assert((x % (512 / cpp)) == 0); assert((y % 8) == 0); return y * pitch + x / (512 / cpp) * 4096; case I915_TILING_Y: assert((x % (128 / cpp)) == 0); assert((y % 32) == 0); return y * pitch + x / (128 / cpp) * 4096; } } /** * Rendering with tiled buffers requires that the base address of the buffer * be aligned to a page boundary. For renderbuffers, and sometimes with * textures, we may want the surface to point at a texture image level that * isn't at a page boundary. * * This function returns an appropriately-aligned base offset * according to the tiling restrictions, plus any required x/y offset * from there. */ uint32_t intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt, GLuint level, GLuint slice, uint32_t *tile_x, uint32_t *tile_y) { uint32_t x, y; uint32_t mask_x, mask_y; intel_miptree_get_tile_masks(mt, &mask_x, &mask_y, false); intel_miptree_get_image_offset(mt, level, slice, &x, &y); *tile_x = x & mask_x; *tile_y = y & mask_y; return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y, false); } static void intel_miptree_copy_slice_sw(struct brw_context *brw, struct intel_mipmap_tree *dst_mt, struct intel_mipmap_tree *src_mt, int level, int slice, int width, int height) { void *src, *dst; int src_stride, dst_stride; int cpp = dst_mt->cpp; intel_miptree_map(brw, src_mt, level, slice, 0, 0, width, height, GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT, &src, &src_stride); intel_miptree_map(brw, dst_mt, level, slice, 0, 0, width, height, GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT | BRW_MAP_DIRECT_BIT, &dst, &dst_stride); DBG("sw blit %s mt %p %p/%d -> %s mt %p %p/%d (%dx%d)\n", _mesa_get_format_name(src_mt->format), src_mt, src, src_stride, _mesa_get_format_name(dst_mt->format), dst_mt, dst, dst_stride, width, height); int row_size = cpp * width; if (src_stride == row_size && dst_stride == row_size) { memcpy(dst, src, row_size * height); } else { for (int i = 0; i < height; i++) { memcpy(dst, src, row_size); dst += dst_stride; src += src_stride; } } intel_miptree_unmap(brw, dst_mt, level, slice); intel_miptree_unmap(brw, src_mt, level, slice); /* Don't forget to copy the stencil data over, too. We could have skipped * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map * shuffling the two data sources in/out of temporary storage instead of * the direct mapping we get this way. */ if (dst_mt->stencil_mt) { assert(src_mt->stencil_mt); intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt, level, slice, width, height); } } static void intel_miptree_copy_slice(struct brw_context *brw, struct intel_mipmap_tree *dst_mt, struct intel_mipmap_tree *src_mt, int level, int face, int depth) { mesa_format format = src_mt->format; uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level); uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level); int slice; if (face > 0) slice = face; else slice = depth; assert(depth < src_mt->level[level].depth); assert(src_mt->format == dst_mt->format); if (dst_mt->compressed) { height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h; width = ALIGN(width, dst_mt->align_w); } /* If it's a packed depth/stencil buffer with separate stencil, the blit * below won't apply since we can't do the depth's Y tiling or the * stencil's W tiling in the blitter. */ if (src_mt->stencil_mt) { intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice, width, height); return; } uint32_t dst_x, dst_y, src_x, src_y; intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y); intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y); DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n", _mesa_get_format_name(src_mt->format), src_mt, src_x, src_y, src_mt->pitch, _mesa_get_format_name(dst_mt->format), dst_mt, dst_x, dst_y, dst_mt->pitch, width, height); if (!intel_miptree_blit(brw, src_mt, level, slice, 0, 0, false, dst_mt, level, slice, 0, 0, false, width, height, GL_COPY)) { perf_debug("miptree validate blit for %s failed\n", _mesa_get_format_name(format)); intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice, width, height); } } /** * Copies the image's current data to the given miptree, and associates that * miptree with the image. * * If \c invalidate is true, then the actual image data does not need to be * copied, but the image still needs to be associated to the new miptree (this * is set to true if we're about to clear the image). */ void intel_miptree_copy_teximage(struct brw_context *brw, struct intel_texture_image *intelImage, struct intel_mipmap_tree *dst_mt, bool invalidate) { struct intel_mipmap_tree *src_mt = intelImage->mt; struct intel_texture_object *intel_obj = intel_texture_object(intelImage->base.Base.TexObject); int level = intelImage->base.Base.Level; int face = intelImage->base.Base.Face; GLuint depth = intelImage->base.Base.Depth; if (!invalidate) { for (int slice = 0; slice < depth; slice++) { intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice); } } intel_miptree_reference(&intelImage->mt, dst_mt); intel_obj->needs_validate = true; } bool intel_miptree_alloc_mcs(struct brw_context *brw, struct intel_mipmap_tree *mt, GLuint num_samples) { assert(brw->gen >= 7); /* MCS only used on Gen7+ */ assert(mt->mcs_mt == NULL); /* Choose the correct format for the MCS buffer. All that really matters * is that we allocate the right buffer size, since we'll always be * accessing this miptree using MCS-specific hardware mechanisms, which * infer the correct format based on num_samples. */ mesa_format format; switch (num_samples) { case 2: case 4: /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for * each sample). */ format = MESA_FORMAT_R_UNORM8; break; case 8: /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits * for each sample, plus 8 padding bits). */ format = MESA_FORMAT_R_UINT32; break; default: unreachable("Unrecognized sample count in intel_miptree_alloc_mcs"); }; /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address": * * "The MCS surface must be stored as Tile Y." */ mt->mcs_mt = intel_miptree_create(brw, mt->target, format, mt->first_level, mt->last_level, mt->logical_width0, mt->logical_height0, mt->logical_depth0, true, 0 /* num_samples */, INTEL_MIPTREE_TILING_Y); /* From the Ivy Bridge PRM, Vol 2 Part 1 p326: * * When MCS buffer is enabled and bound to MSRT, it is required that it * is cleared prior to any rendering. * * Since we don't use the MCS buffer for any purpose other than rendering, * it makes sense to just clear it immediately upon allocation. * * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff. */ void *data = intel_miptree_map_raw(brw, mt->mcs_mt); memset(data, 0xff, mt->mcs_mt->total_height * mt->mcs_mt->pitch); intel_miptree_unmap_raw(brw, mt->mcs_mt); mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR; return mt->mcs_mt; } bool intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw, struct intel_mipmap_tree *mt) { assert(mt->mcs_mt == NULL); /* The format of the MCS buffer is opaque to the driver; all that matters * is that we get its size and pitch right. We'll pretend that the format * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled * R32 buffer is 32 pixels across, we'll need to scale the width down by * the block width and then a further factor of 4. Since an MCS tile * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high, * we'll need to scale the height down by the block height and then a * further factor of 8. */ const mesa_format format = MESA_FORMAT_R_UINT32; unsigned block_width_px; unsigned block_height; intel_get_non_msrt_mcs_alignment(brw, mt, &block_width_px, &block_height); unsigned width_divisor = block_width_px * 4; unsigned height_divisor = block_height * 8; unsigned mcs_width = ALIGN(mt->logical_width0, width_divisor) / width_divisor; unsigned mcs_height = ALIGN(mt->logical_height0, height_divisor) / height_divisor; assert(mt->logical_depth0 == 1); mt->mcs_mt = intel_miptree_create(brw, mt->target, format, mt->first_level, mt->last_level, mcs_width, mcs_height, mt->logical_depth0, true, 0 /* num_samples */, INTEL_MIPTREE_TILING_Y); return mt->mcs_mt; } /** * Helper for intel_miptree_alloc_hiz() that sets * \c mt->level[level].has_hiz. Return true if and only if * \c has_hiz was set. */ static bool intel_miptree_level_enable_hiz(struct brw_context *brw, struct intel_mipmap_tree *mt, uint32_t level) { assert(mt->hiz_mt); if (brw->gen >= 8 || brw->is_haswell) { uint32_t width = minify(mt->physical_width0, level); uint32_t height = minify(mt->physical_height0, level); /* Disable HiZ for LOD > 0 unless the width is 8 aligned * and the height is 4 aligned. This allows our HiZ support * to fulfill Haswell restrictions for HiZ ops. For LOD == 0, * we can grow the width & height to allow the HiZ op to * force the proper size alignments. */ if (level > 0 && ((width & 7) || (height & 3))) { DBG("mt %p level %d: HiZ DISABLED\n", mt, level); return false; } } DBG("mt %p level %d: HiZ enabled\n", mt, level); mt->level[level].has_hiz = true; return true; } bool intel_miptree_alloc_hiz(struct brw_context *brw, struct intel_mipmap_tree *mt) { assert(mt->hiz_mt == NULL); mt->hiz_mt = intel_miptree_create(brw, mt->target, mt->format, mt->first_level, mt->last_level, mt->logical_width0, mt->logical_height0, mt->logical_depth0, true, mt->num_samples, INTEL_MIPTREE_TILING_ANY); if (!mt->hiz_mt) return false; /* Mark that all slices need a HiZ resolve. */ for (int level = mt->first_level; level <= mt->last_level; ++level) { if (!intel_miptree_level_enable_hiz(brw, mt, level)) continue; for (int layer = 0; layer < mt->level[level].depth; ++layer) { struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map)); exec_node_init(&m->link); m->level = level; m->layer = layer; m->need = GEN6_HIZ_OP_HIZ_RESOLVE; exec_list_push_tail(&mt->hiz_map, &m->link); } } return true; } /** * Does the miptree slice have hiz enabled? */ bool intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level) { intel_miptree_check_level_layer(mt, level, 0); return mt->level[level].has_hiz; } void intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt, uint32_t level, uint32_t layer) { if (!intel_miptree_level_has_hiz(mt, level)) return; intel_resolve_map_set(&mt->hiz_map, level, layer, GEN6_HIZ_OP_HIZ_RESOLVE); } void intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt, uint32_t level, uint32_t layer) { if (!intel_miptree_level_has_hiz(mt, level)) return; intel_resolve_map_set(&mt->hiz_map, level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE); } void intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt, uint32_t level) { uint32_t layer; uint32_t end_layer = mt->level[level].depth; for (layer = 0; layer < end_layer; layer++) { intel_miptree_slice_set_needs_depth_resolve(mt, level, layer); } } static bool intel_miptree_slice_resolve(struct brw_context *brw, struct intel_mipmap_tree *mt, uint32_t level, uint32_t layer, enum gen6_hiz_op need) { intel_miptree_check_level_layer(mt, level, layer); struct intel_resolve_map *item = intel_resolve_map_get(&mt->hiz_map, level, layer); if (!item || item->need != need) return false; intel_hiz_exec(brw, mt, level, layer, need); intel_resolve_map_remove(item); return true; } bool intel_miptree_slice_resolve_hiz(struct brw_context *brw, struct intel_mipmap_tree *mt, uint32_t level, uint32_t layer) { return intel_miptree_slice_resolve(brw, mt, level, layer, GEN6_HIZ_OP_HIZ_RESOLVE); } bool intel_miptree_slice_resolve_depth(struct brw_context *brw, struct intel_mipmap_tree *mt, uint32_t level, uint32_t layer) { return intel_miptree_slice_resolve(brw, mt, level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE); } static bool intel_miptree_all_slices_resolve(struct brw_context *brw, struct intel_mipmap_tree *mt, enum gen6_hiz_op need) { bool did_resolve = false; foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) { if (map->need != need) continue; intel_hiz_exec(brw, mt, map->level, map->layer, need); intel_resolve_map_remove(map); did_resolve = true; } return did_resolve; } bool intel_miptree_all_slices_resolve_hiz(struct brw_context *brw, struct intel_mipmap_tree *mt) { return intel_miptree_all_slices_resolve(brw, mt, GEN6_HIZ_OP_HIZ_RESOLVE); } bool intel_miptree_all_slices_resolve_depth(struct brw_context *brw, struct intel_mipmap_tree *mt) { return intel_miptree_all_slices_resolve(brw, mt, GEN6_HIZ_OP_DEPTH_RESOLVE); } void intel_miptree_resolve_color(struct brw_context *brw, struct intel_mipmap_tree *mt) { switch (mt->fast_clear_state) { case INTEL_FAST_CLEAR_STATE_NO_MCS: case INTEL_FAST_CLEAR_STATE_RESOLVED: /* No resolve needed */ break; case INTEL_FAST_CLEAR_STATE_UNRESOLVED: case INTEL_FAST_CLEAR_STATE_CLEAR: /* Fast color clear resolves only make sense for non-MSAA buffers. */ if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE) brw_blorp_resolve_color(brw, mt); break; } } /** * Make it possible to share the BO backing the given miptree with another * process or another miptree. * * Fast color clears are unsafe with shared buffers, so we need to resolve and * then discard the MCS buffer, if present. We also set the fast_clear_state * to INTEL_FAST_CLEAR_STATE_NO_MCS to ensure that no MCS buffer gets * allocated in the future. */ void intel_miptree_make_shareable(struct brw_context *brw, struct intel_mipmap_tree *mt) { /* MCS buffers are also used for multisample buffers, but we can't resolve * away a multisample MCS buffer because it's an integral part of how the * pixel data is stored. Fortunately this code path should never be * reached for multisample buffers. */ assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE); if (mt->mcs_mt) { intel_miptree_resolve_color(brw, mt); intel_miptree_release(&mt->mcs_mt); mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS; } } /** * \brief Get pointer offset into stencil buffer. * * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we * must decode the tile's layout in software. * * See * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile * Format. * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm * * Even though the returned offset is always positive, the return type is * signed due to * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137 * mesa: Fix return type of _mesa_get_format_bytes() (#37351) */ static intptr_t intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled) { uint32_t tile_size = 4096; uint32_t tile_width = 64; uint32_t tile_height = 64; uint32_t row_size = 64 * stride; uint32_t tile_x = x / tile_width; uint32_t tile_y = y / tile_height; /* The byte's address relative to the tile's base addres. */ uint32_t byte_x = x % tile_width; uint32_t byte_y = y % tile_height; uintptr_t u = tile_y * row_size + tile_x * tile_size + 512 * (byte_x / 8) + 64 * (byte_y / 8) + 32 * ((byte_y / 4) % 2) + 16 * ((byte_x / 4) % 2) + 8 * ((byte_y / 2) % 2) + 4 * ((byte_x / 2) % 2) + 2 * (byte_y % 2) + 1 * (byte_x % 2); if (swizzled) { /* adjust for bit6 swizzling */ if (((byte_x / 8) % 2) == 1) { if (((byte_y / 8) % 2) == 0) { u += 64; } else { u -= 64; } } } return u; } void intel_miptree_updownsample(struct brw_context *brw, struct intel_mipmap_tree *src, struct intel_mipmap_tree *dst) { if (brw->gen < 8) { brw_blorp_blit_miptrees(brw, src, 0 /* level */, 0 /* layer */, dst, 0 /* level */, 0 /* layer */, 0, 0, src->logical_width0, src->logical_height0, 0, 0, dst->logical_width0, dst->logical_height0, GL_NEAREST, false, false /*mirror x, y*/); } else if (src->format == MESA_FORMAT_S_UINT8) { brw_meta_stencil_updownsample(brw, src, dst); } else { brw_meta_updownsample(brw, src, dst); } if (src->stencil_mt) { if (brw->gen >= 8) { brw_meta_stencil_updownsample(brw, src->stencil_mt, dst); return; } brw_blorp_blit_miptrees(brw, src->stencil_mt, 0 /* level */, 0 /* layer */, dst->stencil_mt, 0 /* level */, 0 /* layer */, 0, 0, src->logical_width0, src->logical_height0, 0, 0, dst->logical_width0, dst->logical_height0, GL_NEAREST, false, false /*mirror x, y*/); } } void * intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt) { /* CPU accesses to color buffers don't understand fast color clears, so * resolve any pending fast color clears before we map. */ intel_miptree_resolve_color(brw, mt); drm_intel_bo *bo = mt->bo; if (drm_intel_bo_references(brw->batch.bo, bo)) intel_batchbuffer_flush(brw); if (mt->tiling != I915_TILING_NONE) brw_bo_map_gtt(brw, bo, "miptree"); else brw_bo_map(brw, bo, true, "miptree"); return bo->virtual; } void intel_miptree_unmap_raw(struct brw_context *brw, struct intel_mipmap_tree *mt) { drm_intel_bo_unmap(mt->bo); } static void intel_miptree_map_gtt(struct brw_context *brw, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { unsigned int bw, bh; void *base; unsigned int image_x, image_y; int x = map->x; int y = map->y; /* For compressed formats, the stride is the number of bytes per * row of blocks. intel_miptree_get_image_offset() already does * the divide. */ _mesa_get_format_block_size(mt->format, &bw, &bh); assert(y % bh == 0); y /= bh; base = intel_miptree_map_raw(brw, mt) + mt->offset; if (base == NULL) map->ptr = NULL; else { /* Note that in the case of cube maps, the caller must have passed the * slice number referencing the face. */ intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y); x += image_x; y += image_y; map->stride = mt->pitch; map->ptr = base + y * map->stride + x * mt->cpp; } DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, mt, _mesa_get_format_name(mt->format), x, y, map->ptr, map->stride); } static void intel_miptree_unmap_gtt(struct brw_context *brw, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { intel_miptree_unmap_raw(brw, mt); } static void intel_miptree_map_blit(struct brw_context *brw, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { map->mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format, 0, 0, map->w, map->h, 1, false, 0, INTEL_MIPTREE_TILING_NONE); if (!map->mt) { fprintf(stderr, "Failed to allocate blit temporary\n"); goto fail; } map->stride = map->mt->pitch; if (!intel_miptree_blit(brw, mt, level, slice, map->x, map->y, false, map->mt, 0, 0, 0, 0, false, map->w, map->h, GL_COPY)) { fprintf(stderr, "Failed to blit\n"); goto fail; } map->ptr = intel_miptree_map_raw(brw, map->mt); DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, mt, _mesa_get_format_name(mt->format), level, slice, map->ptr, map->stride); return; fail: intel_miptree_release(&map->mt); map->ptr = NULL; map->stride = 0; } static void intel_miptree_unmap_blit(struct brw_context *brw, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { struct gl_context *ctx = &brw->ctx; intel_miptree_unmap_raw(brw, map->mt); if (map->mode & GL_MAP_WRITE_BIT) { bool ok = intel_miptree_blit(brw, map->mt, 0, 0, 0, 0, false, mt, level, slice, map->x, map->y, false, map->w, map->h, GL_COPY); WARN_ONCE(!ok, "Failed to blit from linear temporary mapping"); } intel_miptree_release(&map->mt); } /** * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA. */ static void intel_miptree_map_movntdqa(struct brw_context *brw, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { assert(map->mode & GL_MAP_READ_BIT); assert(!(map->mode & GL_MAP_WRITE_BIT)); DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, mt, _mesa_get_format_name(mt->format), level, slice, map->ptr, map->stride); /* Map the original image */ uint32_t image_x; uint32_t image_y; intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y); image_x += map->x; image_y += map->y; void *src = intel_miptree_map_raw(brw, mt); if (!src) return; src += image_y * mt->pitch; src += image_x * mt->cpp; /* Due to the pixel offsets for the particular image being mapped, our * src pointer may not be 16-byte aligned. However, if the pitch is * divisible by 16, then the amount by which it's misaligned will remain * consistent from row to row. */ assert((mt->pitch % 16) == 0); const int misalignment = ((uintptr_t) src) & 15; /* Create an untiled temporary buffer for the mapping. */ const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w); map->stride = ALIGN(misalignment + width_bytes, 16); map->buffer = _mesa_align_malloc(map->stride * map->h, 16); /* Offset the destination so it has the same misalignment as src. */ map->ptr = map->buffer + misalignment; assert((((uintptr_t) map->ptr) & 15) == misalignment); for (uint32_t y = 0; y < map->h; y++) { void *dst_ptr = map->ptr + y * map->stride; void *src_ptr = src + y * mt->pitch; _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes); } intel_miptree_unmap_raw(brw, mt); } static void intel_miptree_unmap_movntdqa(struct brw_context *brw, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { _mesa_align_free(map->buffer); map->buffer = NULL; map->ptr = NULL; } static void intel_miptree_map_s8(struct brw_context *brw, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { map->stride = map->w; map->buffer = map->ptr = malloc(map->stride * map->h); if (!map->buffer) return; /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless * invalidate is set, since we'll be writing the whole rectangle from our * temporary buffer back out. */ if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) { uint8_t *untiled_s8_map = map->ptr; uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt); unsigned int image_x, image_y; intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y); for (uint32_t y = 0; y < map->h; y++) { for (uint32_t x = 0; x < map->w; x++) { ptrdiff_t offset = intel_offset_S8(mt->pitch, x + image_x + map->x, y + image_y + map->y, brw->has_swizzling); untiled_s8_map[y * map->w + x] = tiled_s8_map[offset]; } } intel_miptree_unmap_raw(brw, mt); DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, mt, map->x + image_x, map->y + image_y, map->ptr, map->stride); } else { DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, mt, map->ptr, map->stride); } } static void intel_miptree_unmap_s8(struct brw_context *brw, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { if (map->mode & GL_MAP_WRITE_BIT) { unsigned int image_x, image_y; uint8_t *untiled_s8_map = map->ptr; uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt); intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y); for (uint32_t y = 0; y < map->h; y++) { for (uint32_t x = 0; x < map->w; x++) { ptrdiff_t offset = intel_offset_S8(mt->pitch, x + map->x, y + map->y, brw->has_swizzling); tiled_s8_map[offset] = untiled_s8_map[y * map->w + x]; } } intel_miptree_unmap_raw(brw, mt); } free(map->buffer); } static void intel_miptree_map_etc(struct brw_context *brw, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { assert(mt->etc_format != MESA_FORMAT_NONE); if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) { assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM); } assert(map->mode & GL_MAP_WRITE_BIT); assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT); map->stride = _mesa_format_row_stride(mt->etc_format, map->w); map->buffer = malloc(_mesa_format_image_size(mt->etc_format, map->w, map->h, 1)); map->ptr = map->buffer; } static void intel_miptree_unmap_etc(struct brw_context *brw, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { uint32_t image_x; uint32_t image_y; intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y); image_x += map->x; image_y += map->y; uint8_t *dst = intel_miptree_map_raw(brw, mt) + image_y * mt->pitch + image_x * mt->cpp; if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) _mesa_etc1_unpack_rgba8888(dst, mt->pitch, map->ptr, map->stride, map->w, map->h); else _mesa_unpack_etc2_format(dst, mt->pitch, map->ptr, map->stride, map->w, map->h, mt->etc_format); intel_miptree_unmap_raw(brw, mt); free(map->buffer); } /** * Mapping function for packed depth/stencil miptrees backed by real separate * miptrees for depth and stencil. * * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer * separate from the depth buffer. Yet at the GL API level, we have to expose * packed depth/stencil textures and FBO attachments, and Mesa core expects to * be able to map that memory for texture storage and glReadPixels-type * operations. We give Mesa core that access by mallocing a temporary and * copying the data between the actual backing store and the temporary. */ static void intel_miptree_map_depthstencil(struct brw_context *brw, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { struct intel_mipmap_tree *z_mt = mt; struct intel_mipmap_tree *s_mt = mt->stencil_mt; bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32; int packed_bpp = map_z32f_x24s8 ? 8 : 4; map->stride = map->w * packed_bpp; map->buffer = map->ptr = malloc(map->stride * map->h); if (!map->buffer) return; /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless * invalidate is set, since we'll be writing the whole rectangle from our * temporary buffer back out. */ if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) { uint32_t *packed_map = map->ptr; uint8_t *s_map = intel_miptree_map_raw(brw, s_mt); uint32_t *z_map = intel_miptree_map_raw(brw, z_mt); unsigned int s_image_x, s_image_y; unsigned int z_image_x, z_image_y; intel_miptree_get_image_offset(s_mt, level, slice, &s_image_x, &s_image_y); intel_miptree_get_image_offset(z_mt, level, slice, &z_image_x, &z_image_y); for (uint32_t y = 0; y < map->h; y++) { for (uint32_t x = 0; x < map->w; x++) { int map_x = map->x + x, map_y = map->y + y; ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch, map_x + s_image_x, map_y + s_image_y, brw->has_swizzling); ptrdiff_t z_offset = ((map_y + z_image_y) * (z_mt->pitch / 4) + (map_x + z_image_x)); uint8_t s = s_map[s_offset]; uint32_t z = z_map[z_offset]; if (map_z32f_x24s8) { packed_map[(y * map->w + x) * 2 + 0] = z; packed_map[(y * map->w + x) * 2 + 1] = s; } else { packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff); } } } intel_miptree_unmap_raw(brw, s_mt); intel_miptree_unmap_raw(brw, z_mt); DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, z_mt, map->x + z_image_x, map->y + z_image_y, s_mt, map->x + s_image_x, map->y + s_image_y, map->ptr, map->stride); } else { DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, mt, map->ptr, map->stride); } } static void intel_miptree_unmap_depthstencil(struct brw_context *brw, struct intel_mipmap_tree *mt, struct intel_miptree_map *map, unsigned int level, unsigned int slice) { struct intel_mipmap_tree *z_mt = mt; struct intel_mipmap_tree *s_mt = mt->stencil_mt; bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32; if (map->mode & GL_MAP_WRITE_BIT) { uint32_t *packed_map = map->ptr; uint8_t *s_map = intel_miptree_map_raw(brw, s_mt); uint32_t *z_map = intel_miptree_map_raw(brw, z_mt); unsigned int s_image_x, s_image_y; unsigned int z_image_x, z_image_y; intel_miptree_get_image_offset(s_mt, level, slice, &s_image_x, &s_image_y); intel_miptree_get_image_offset(z_mt, level, slice, &z_image_x, &z_image_y); for (uint32_t y = 0; y < map->h; y++) { for (uint32_t x = 0; x < map->w; x++) { ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch, x + s_image_x + map->x, y + s_image_y + map->y, brw->has_swizzling); ptrdiff_t z_offset = ((y + z_image_y) * (z_mt->pitch / 4) + (x + z_image_x)); if (map_z32f_x24s8) { z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0]; s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1]; } else { uint32_t packed = packed_map[y * map->w + x]; s_map[s_offset] = packed >> 24; z_map[z_offset] = packed; } } } intel_miptree_unmap_raw(brw, s_mt); intel_miptree_unmap_raw(brw, z_mt); DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n", __FUNCTION__, map->x, map->y, map->w, map->h, z_mt, _mesa_get_format_name(z_mt->format), map->x + z_image_x, map->y + z_image_y, s_mt, map->x + s_image_x, map->y + s_image_y, map->ptr, map->stride); } free(map->buffer); } /** * Create and attach a map to the miptree at (level, slice). Return the * attached map. */ static struct intel_miptree_map* intel_miptree_attach_map(struct intel_mipmap_tree *mt, unsigned int level, unsigned int slice, unsigned int x, unsigned int y, unsigned int w, unsigned int h, GLbitfield mode) { struct intel_miptree_map *map = calloc(1, sizeof(*map)); if (!map) return NULL; assert(mt->level[level].slice[slice].map == NULL); mt->level[level].slice[slice].map = map; map->mode = mode; map->x = x; map->y = y; map->w = w; map->h = h; return map; } /** * Release the map at (level, slice). */ static void intel_miptree_release_map(struct intel_mipmap_tree *mt, unsigned int level, unsigned int slice) { struct intel_miptree_map **map; map = &mt->level[level].slice[slice].map; free(*map); *map = NULL; } static bool can_blit_slice(struct intel_mipmap_tree *mt, unsigned int level, unsigned int slice) { uint32_t image_x; uint32_t image_y; intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y); if (image_x >= 32768 || image_y >= 32768) return false; if (mt->pitch >= 32768) return false; return true; } void intel_miptree_map(struct brw_context *brw, struct intel_mipmap_tree *mt, unsigned int level, unsigned int slice, unsigned int x, unsigned int y, unsigned int w, unsigned int h, GLbitfield mode, void **out_ptr, int *out_stride) { struct intel_miptree_map *map; assert(mt->num_samples <= 1); map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode); if (!map){ *out_ptr = NULL; *out_stride = 0; return; } intel_miptree_slice_resolve_depth(brw, mt, level, slice); if (map->mode & GL_MAP_WRITE_BIT) { intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice); } if (mt->format == MESA_FORMAT_S_UINT8) { intel_miptree_map_s8(brw, mt, map, level, slice); } else if (mt->etc_format != MESA_FORMAT_NONE && !(mode & BRW_MAP_DIRECT_BIT)) { intel_miptree_map_etc(brw, mt, map, level, slice); } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) { intel_miptree_map_depthstencil(brw, mt, map, level, slice); } /* See intel_miptree_blit() for details on the 32k pitch limit. */ else if (brw->has_llc && !(mode & GL_MAP_WRITE_BIT) && !mt->compressed && (mt->tiling == I915_TILING_X || (brw->gen >= 6 && mt->tiling == I915_TILING_Y)) && can_blit_slice(mt, level, slice)) { intel_miptree_map_blit(brw, mt, map, level, slice); } else if (mt->tiling != I915_TILING_NONE && mt->bo->size >= brw->max_gtt_map_object_size) { assert(can_blit_slice(mt, level, slice)); intel_miptree_map_blit(brw, mt, map, level, slice); } else if (!(mode & GL_MAP_WRITE_BIT) && !mt->compressed && cpu_has_sse4_1) { intel_miptree_map_movntdqa(brw, mt, map, level, slice); } else { intel_miptree_map_gtt(brw, mt, map, level, slice); } *out_ptr = map->ptr; *out_stride = map->stride; if (map->ptr == NULL) intel_miptree_release_map(mt, level, slice); } void intel_miptree_unmap(struct brw_context *brw, struct intel_mipmap_tree *mt, unsigned int level, unsigned int slice) { struct intel_miptree_map *map = mt->level[level].slice[slice].map; assert(mt->num_samples <= 1); if (!map) return; DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__, mt, _mesa_get_format_name(mt->format), level, slice); if (mt->format == MESA_FORMAT_S_UINT8) { intel_miptree_unmap_s8(brw, mt, map, level, slice); } else if (mt->etc_format != MESA_FORMAT_NONE && !(map->mode & BRW_MAP_DIRECT_BIT)) { intel_miptree_unmap_etc(brw, mt, map, level, slice); } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) { intel_miptree_unmap_depthstencil(brw, mt, map, level, slice); } else if (map->mt) { intel_miptree_unmap_blit(brw, mt, map, level, slice); } else if (map->buffer && cpu_has_sse4_1) { intel_miptree_unmap_movntdqa(brw, mt, map, level, slice); } else { intel_miptree_unmap_gtt(brw, mt, map, level, slice); } intel_miptree_release_map(mt, level, slice); }