/************************************************************************** * * Copyright 2006 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "main/enums.h" #include "main/imports.h" #include "main/macros.h" #include "main/mtypes.h" #include "main/fbobject.h" #include "main/framebuffer.h" #include "main/renderbuffer.h" #include "main/context.h" #include "main/teximage.h" #include "main/image.h" #include "swrast/swrast.h" #include "drivers/common/meta.h" #include "intel_batchbuffer.h" #include "intel_buffers.h" #include "intel_blit.h" #include "intel_fbo.h" #include "intel_mipmap_tree.h" #include "intel_regions.h" #include "intel_screen.h" #include "intel_tex.h" #include "brw_context.h" #define FILE_DEBUG_FLAG DEBUG_FBO /** * Create a new framebuffer object. */ static struct gl_framebuffer * intel_new_framebuffer(struct gl_context * ctx, GLuint name) { /* Only drawable state in intel_framebuffer at this time, just use Mesa's * class */ return _mesa_new_framebuffer(ctx, name); } /** Called by gl_renderbuffer::Delete() */ static void intel_delete_renderbuffer(struct gl_context *ctx, struct gl_renderbuffer *rb) { struct intel_renderbuffer *irb = intel_renderbuffer(rb); ASSERT(irb); intel_miptree_release(&irb->mt); intel_miptree_release(&irb->singlesample_mt); _mesa_delete_renderbuffer(ctx, rb); } /** * \brief Downsample a winsys renderbuffer from mt to singlesample_mt. * * If the miptree needs no downsample, then skip. */ void intel_renderbuffer_downsample(struct brw_context *brw, struct intel_renderbuffer *irb) { if (!irb->need_downsample) return; intel_miptree_updownsample(brw, irb->mt, irb->singlesample_mt); irb->need_downsample = false; } /** * \brief Upsample a winsys renderbuffer from singlesample_mt to mt. * * The upsample is done unconditionally. */ void intel_renderbuffer_upsample(struct brw_context *brw, struct intel_renderbuffer *irb) { assert(!irb->need_downsample); intel_miptree_updownsample(brw, irb->singlesample_mt, irb->mt); } /** * \see dd_function_table::MapRenderbuffer */ static void intel_map_renderbuffer(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint x, GLuint y, GLuint w, GLuint h, GLbitfield mode, GLubyte **out_map, GLint *out_stride) { struct brw_context *brw = brw_context(ctx); struct swrast_renderbuffer *srb = (struct swrast_renderbuffer *)rb; struct intel_renderbuffer *irb = intel_renderbuffer(rb); struct intel_mipmap_tree *mt; void *map; int stride; if (srb->Buffer) { /* this is a malloc'd renderbuffer (accum buffer), not an irb */ GLint bpp = _mesa_get_format_bytes(rb->Format); GLint rowStride = srb->RowStride; *out_map = (GLubyte *) srb->Buffer + y * rowStride + x * bpp; *out_stride = rowStride; return; } intel_prepare_render(brw); /* The MapRenderbuffer API should always return a single-sampled mapping. * The case we are asked to map multisampled RBs is in glReadPixels() (or * swrast paths like glCopyTexImage()) from a window-system MSAA buffer, * and GL expects an automatic resolve to happen. * * If it's a color miptree, there is a ->singlesample_mt which wraps the * actual window system renderbuffer (which we may resolve to at any time), * while the miptree itself is our driver-private allocation. If it's a * depth or stencil miptree, we have a private MSAA buffer and no shared * singlesample buffer, and since we don't expect anybody to ever actually * resolve it, we just make a temporary singlesample buffer now when we * have to. */ if (rb->NumSamples > 1) { if (!irb->singlesample_mt) { irb->singlesample_mt = intel_miptree_create_for_renderbuffer(brw, irb->mt->format, rb->Width, rb->Height, 0 /*num_samples*/); if (!irb->singlesample_mt) goto fail; irb->singlesample_mt_is_tmp = true; irb->need_downsample = true; } intel_renderbuffer_downsample(brw, irb); mt = irb->singlesample_mt; irb->need_map_upsample = mode & GL_MAP_WRITE_BIT; } else { mt = irb->mt; } /* For a window-system renderbuffer, we need to flip the mapping we receive * upside-down. So we need to ask for a rectangle on flipped vertically, and * we then return a pointer to the bottom of it with a negative stride. */ if (rb->Name == 0) { y = rb->Height - y - h; } intel_miptree_map(brw, mt, irb->mt_level, irb->mt_layer, x, y, w, h, mode, &map, &stride); if (rb->Name == 0) { map += (h - 1) * stride; stride = -stride; } DBG("%s: rb %d (%s) mt mapped: (%d, %d) (%dx%d) -> %p/%d\n", __FUNCTION__, rb->Name, _mesa_get_format_name(rb->Format), x, y, w, h, map, stride); *out_map = map; *out_stride = stride; return; fail: *out_map = NULL; *out_stride = 0; } /** * \see dd_function_table::UnmapRenderbuffer */ static void intel_unmap_renderbuffer(struct gl_context *ctx, struct gl_renderbuffer *rb) { struct brw_context *brw = brw_context(ctx); struct swrast_renderbuffer *srb = (struct swrast_renderbuffer *)rb; struct intel_renderbuffer *irb = intel_renderbuffer(rb); struct intel_mipmap_tree *mt; DBG("%s: rb %d (%s)\n", __FUNCTION__, rb->Name, _mesa_get_format_name(rb->Format)); if (srb->Buffer) { /* this is a malloc'd renderbuffer (accum buffer) */ /* nothing to do */ return; } if (rb->NumSamples > 1) { mt = irb->singlesample_mt; } else { mt = irb->mt; } intel_miptree_unmap(brw, mt, irb->mt_level, irb->mt_layer); if (irb->need_map_upsample) { intel_renderbuffer_upsample(brw, irb); irb->need_map_upsample = false; } if (irb->singlesample_mt_is_tmp) intel_miptree_release(&irb->singlesample_mt); } /** * Round up the requested multisample count to the next supported sample size. */ unsigned intel_quantize_num_samples(struct intel_screen *intel, unsigned num_samples) { const int *msaa_modes = intel_supported_msaa_modes(intel); int quantized_samples = 0; for (int i = 0; msaa_modes[i] != -1; ++i) { if (msaa_modes[i] >= num_samples) quantized_samples = msaa_modes[i]; else break; } return quantized_samples; } /** * Called via glRenderbufferStorageEXT() to set the format and allocate * storage for a user-created renderbuffer. */ static GLboolean intel_alloc_renderbuffer_storage(struct gl_context * ctx, struct gl_renderbuffer *rb, GLenum internalFormat, GLuint width, GLuint height) { struct brw_context *brw = brw_context(ctx); struct intel_screen *screen = brw->intelScreen; struct intel_renderbuffer *irb = intel_renderbuffer(rb); rb->NumSamples = intel_quantize_num_samples(screen, rb->NumSamples); switch (internalFormat) { default: /* Use the same format-choice logic as for textures. * Renderbuffers aren't any different from textures for us, * except they're less useful because you can't texture with * them. */ rb->Format = ctx->Driver.ChooseTextureFormat(ctx, GL_TEXTURE_2D, internalFormat, GL_NONE, GL_NONE); break; case GL_STENCIL_INDEX: case GL_STENCIL_INDEX1_EXT: case GL_STENCIL_INDEX4_EXT: case GL_STENCIL_INDEX8_EXT: case GL_STENCIL_INDEX16_EXT: /* These aren't actual texture formats, so force them here. */ if (brw->has_separate_stencil) { rb->Format = MESA_FORMAT_S_UINT8; } else { assert(!brw->must_use_separate_stencil); rb->Format = MESA_FORMAT_Z24_UNORM_S8_UINT; } break; } rb->Width = width; rb->Height = height; rb->_BaseFormat = _mesa_base_fbo_format(ctx, internalFormat); intel_miptree_release(&irb->mt); DBG("%s: %s: %s (%dx%d)\n", __FUNCTION__, _mesa_lookup_enum_by_nr(internalFormat), _mesa_get_format_name(rb->Format), width, height); if (width == 0 || height == 0) return true; irb->mt = intel_miptree_create_for_renderbuffer(brw, rb->Format, width, height, rb->NumSamples); if (!irb->mt) return false; return true; } static void intel_image_target_renderbuffer_storage(struct gl_context *ctx, struct gl_renderbuffer *rb, void *image_handle) { struct brw_context *brw = brw_context(ctx); struct intel_renderbuffer *irb; __DRIscreen *screen; __DRIimage *image; screen = brw->intelScreen->driScrnPriv; image = screen->dri2.image->lookupEGLImage(screen, image_handle, screen->loaderPrivate); if (image == NULL) return; if (image->planar_format && image->planar_format->nplanes > 1) { _mesa_error(ctx, GL_INVALID_OPERATION, "glEGLImageTargetRenderbufferStorage(planar buffers are not " "supported as render targets."); return; } /* Buffers originating from outside are for read-only. */ if (image->dma_buf_imported) { _mesa_error(ctx, GL_INVALID_OPERATION, "glEGLImageTargetRenderbufferStorage(dma buffers are read-only)"); return; } /* __DRIimage is opaque to the core so it has to be checked here */ switch (image->format) { case MESA_FORMAT_R8G8B8A8_UNORM: _mesa_error(ctx, GL_INVALID_OPERATION, "glEGLImageTargetRenderbufferStorage(unsupported image format"); return; break; default: break; } irb = intel_renderbuffer(rb); intel_miptree_release(&irb->mt); irb->mt = intel_miptree_create_for_bo(brw, image->region->bo, image->format, image->offset, image->region->width, image->region->height, image->region->pitch, image->region->tiling); if (!irb->mt) return; rb->InternalFormat = image->internal_format; rb->Width = image->region->width; rb->Height = image->region->height; rb->Format = image->format; rb->_BaseFormat = _mesa_base_fbo_format(ctx, image->internal_format); rb->NeedsFinishRenderTexture = true; } /** * Called by _mesa_resize_framebuffer() for each hardware renderbuffer when a * window system framebuffer is resized. * * Any actual buffer reallocations for hardware renderbuffers (which would * have triggered _mesa_resize_framebuffer()) were done by * intel_process_dri2_buffer(). */ static GLboolean intel_alloc_window_storage(struct gl_context * ctx, struct gl_renderbuffer *rb, GLenum internalFormat, GLuint width, GLuint height) { ASSERT(rb->Name == 0); rb->Width = width; rb->Height = height; rb->InternalFormat = internalFormat; return true; } /** Dummy function for gl_renderbuffer::AllocStorage() */ static GLboolean intel_nop_alloc_storage(struct gl_context * ctx, struct gl_renderbuffer *rb, GLenum internalFormat, GLuint width, GLuint height) { _mesa_problem(ctx, "intel_op_alloc_storage should never be called."); return false; } /** * Create a new intel_renderbuffer which corresponds to an on-screen window, * not a user-created renderbuffer. * * \param num_samples must be quantized. */ struct intel_renderbuffer * intel_create_renderbuffer(mesa_format format, unsigned num_samples) { struct intel_renderbuffer *irb; struct gl_renderbuffer *rb; GET_CURRENT_CONTEXT(ctx); irb = CALLOC_STRUCT(intel_renderbuffer); if (!irb) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "creating renderbuffer"); return NULL; } rb = &irb->Base.Base; _mesa_init_renderbuffer(rb, 0); rb->ClassID = INTEL_RB_CLASS; rb->_BaseFormat = _mesa_get_format_base_format(format); rb->Format = format; rb->InternalFormat = rb->_BaseFormat; rb->NumSamples = num_samples; /* intel-specific methods */ rb->Delete = intel_delete_renderbuffer; rb->AllocStorage = intel_alloc_window_storage; return irb; } /** * Private window-system buffers (as opposed to ones shared with the display * server created with intel_create_renderbuffer()) are most similar in their * handling to user-created renderbuffers, but they have a resize handler that * may be called at intel_update_renderbuffers() time. * * \param num_samples must be quantized. */ struct intel_renderbuffer * intel_create_private_renderbuffer(mesa_format format, unsigned num_samples) { struct intel_renderbuffer *irb; irb = intel_create_renderbuffer(format, num_samples); irb->Base.Base.AllocStorage = intel_alloc_renderbuffer_storage; return irb; } /** * Create a new renderbuffer object. * Typically called via glBindRenderbufferEXT(). */ static struct gl_renderbuffer * intel_new_renderbuffer(struct gl_context * ctx, GLuint name) { struct intel_renderbuffer *irb; struct gl_renderbuffer *rb; irb = CALLOC_STRUCT(intel_renderbuffer); if (!irb) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "creating renderbuffer"); return NULL; } rb = &irb->Base.Base; _mesa_init_renderbuffer(rb, name); rb->ClassID = INTEL_RB_CLASS; /* intel-specific methods */ rb->Delete = intel_delete_renderbuffer; rb->AllocStorage = intel_alloc_renderbuffer_storage; /* span routines set in alloc_storage function */ return rb; } static bool intel_renderbuffer_update_wrapper(struct brw_context *brw, struct intel_renderbuffer *irb, struct gl_texture_image *image, uint32_t layer) { struct gl_renderbuffer *rb = &irb->Base.Base; struct intel_texture_image *intel_image = intel_texture_image(image); struct intel_mipmap_tree *mt = intel_image->mt; int level = image->Level; rb->AllocStorage = intel_nop_alloc_storage; intel_miptree_check_level_layer(mt, level, layer); irb->mt_level = level; switch (mt->msaa_layout) { case INTEL_MSAA_LAYOUT_UMS: case INTEL_MSAA_LAYOUT_CMS: irb->mt_layer = layer * mt->num_samples; break; default: irb->mt_layer = layer; } intel_miptree_reference(&irb->mt, mt); intel_renderbuffer_set_draw_offset(irb); if (mt->hiz_mt == NULL && brw_is_hiz_depth_format(brw, rb->Format)) { intel_miptree_alloc_hiz(brw, mt); if (!mt->hiz_mt) return false; } return true; } void intel_renderbuffer_set_draw_offset(struct intel_renderbuffer *irb) { unsigned int dst_x, dst_y; /* compute offset of the particular 2D image within the texture region */ intel_miptree_get_image_offset(irb->mt, irb->mt_level, irb->mt_layer, &dst_x, &dst_y); irb->draw_x = dst_x; irb->draw_y = dst_y; } /** * Called by glFramebufferTexture[123]DEXT() (and other places) to * prepare for rendering into texture memory. This might be called * many times to choose different texture levels, cube faces, etc * before intel_finish_render_texture() is ever called. */ static void intel_render_texture(struct gl_context * ctx, struct gl_framebuffer *fb, struct gl_renderbuffer_attachment *att) { struct brw_context *brw = brw_context(ctx); struct gl_renderbuffer *rb = att->Renderbuffer; struct intel_renderbuffer *irb = intel_renderbuffer(rb); struct gl_texture_image *image = rb->TexImage; struct intel_texture_image *intel_image = intel_texture_image(image); struct intel_mipmap_tree *mt = intel_image->mt; int layer; (void) fb; if (att->CubeMapFace > 0) { assert(att->Zoffset == 0); layer = att->CubeMapFace; } else { layer = att->Zoffset; } if (!intel_image->mt) { /* Fallback on drawing to a texture that doesn't have a miptree * (has a border, width/height 0, etc.) */ _swrast_render_texture(ctx, fb, att); return; } intel_miptree_check_level_layer(mt, att->TextureLevel, layer); if (!intel_renderbuffer_update_wrapper(brw, irb, image, layer)) { _swrast_render_texture(ctx, fb, att); return; } DBG("Begin render %s texture tex=%u w=%d h=%d d=%d refcount=%d\n", _mesa_get_format_name(image->TexFormat), att->Texture->Name, image->Width, image->Height, image->Depth, rb->RefCount); } /** * Called by Mesa when rendering to a texture is done. */ static void intel_finish_render_texture(struct gl_context * ctx, struct gl_renderbuffer *rb) { struct brw_context *brw = brw_context(ctx); DBG("Finish render %s texture\n", _mesa_get_format_name(rb->Format)); /* Since we've (probably) rendered to the texture and will (likely) use * it in the texture domain later on in this batchbuffer, flush the * batch. Once again, we wish for a domain tracker in libdrm to cover * usage inside of a batchbuffer like GEM does in the kernel. */ intel_batchbuffer_emit_mi_flush(brw); } #define fbo_incomplete(fb, ...) do { \ static GLuint msg_id = 0; \ if (unlikely(ctx->Const.ContextFlags & GL_CONTEXT_FLAG_DEBUG_BIT)) { \ _mesa_gl_debug(ctx, &msg_id, \ MESA_DEBUG_TYPE_OTHER, \ MESA_DEBUG_SEVERITY_MEDIUM, \ __VA_ARGS__); \ } \ DBG(__VA_ARGS__); \ fb->_Status = GL_FRAMEBUFFER_UNSUPPORTED; \ } while (0) /** * Do additional "completeness" testing of a framebuffer object. */ static void intel_validate_framebuffer(struct gl_context *ctx, struct gl_framebuffer *fb) { struct brw_context *brw = brw_context(ctx); struct intel_renderbuffer *depthRb = intel_get_renderbuffer(fb, BUFFER_DEPTH); struct intel_renderbuffer *stencilRb = intel_get_renderbuffer(fb, BUFFER_STENCIL); struct intel_mipmap_tree *depth_mt = NULL, *stencil_mt = NULL; int i; DBG("%s() on fb %p (%s)\n", __FUNCTION__, fb, (fb == ctx->DrawBuffer ? "drawbuffer" : (fb == ctx->ReadBuffer ? "readbuffer" : "other buffer"))); if (depthRb) depth_mt = depthRb->mt; if (stencilRb) { stencil_mt = stencilRb->mt; if (stencil_mt->stencil_mt) stencil_mt = stencil_mt->stencil_mt; } if (depth_mt && stencil_mt) { if (brw->gen >= 7) { /* For gen >= 7, we are using the lod/minimum-array-element fields * and supportting layered rendering. This means that we must restrict * the depth & stencil attachments to match in various more retrictive * ways. (width, height, depth, LOD and layer) */ if (depth_mt->physical_width0 != stencil_mt->physical_width0 || depth_mt->physical_height0 != stencil_mt->physical_height0 || depth_mt->physical_depth0 != stencil_mt->physical_depth0 || depthRb->mt_level != stencilRb->mt_level || depthRb->mt_layer != stencilRb->mt_layer) { fbo_incomplete(fb, "FBO incomplete: depth and stencil must match in" "width, height, depth, LOD and layer\n"); } } if (depth_mt == stencil_mt) { /* For true packed depth/stencil (not faked on prefers-separate-stencil * hardware) we need to be sure they're the same level/layer, since * we'll be emitting a single packet describing the packed setup. */ if (depthRb->mt_level != stencilRb->mt_level || depthRb->mt_layer != stencilRb->mt_layer) { fbo_incomplete(fb, "FBO incomplete: depth image level/layer %d/%d != " "stencil image %d/%d\n", depthRb->mt_level, depthRb->mt_layer, stencilRb->mt_level, stencilRb->mt_layer); } } else { if (!brw->has_separate_stencil) { fbo_incomplete(fb, "FBO incomplete: separate stencil " "unsupported\n"); } if (stencil_mt->format != MESA_FORMAT_S_UINT8) { fbo_incomplete(fb, "FBO incomplete: separate stencil is %s " "instead of S8\n", _mesa_get_format_name(stencil_mt->format)); } if (brw->gen < 7 && !intel_renderbuffer_has_hiz(depthRb)) { /* Before Gen7, separate depth and stencil buffers can be used * only if HiZ is enabled. From the Sandybridge PRM, Volume 2, * Part 1, Bit 3DSTATE_DEPTH_BUFFER.SeparateStencilBufferEnable: * [DevSNB]: This field must be set to the same value (enabled * or disabled) as Hierarchical Depth Buffer Enable. */ fbo_incomplete(fb, "FBO incomplete: separate stencil " "without HiZ\n"); } } } for (i = 0; i < Elements(fb->Attachment); i++) { struct gl_renderbuffer *rb; struct intel_renderbuffer *irb; if (fb->Attachment[i].Type == GL_NONE) continue; /* A supported attachment will have a Renderbuffer set either * from being a Renderbuffer or being a texture that got the * intel_wrap_texture() treatment. */ rb = fb->Attachment[i].Renderbuffer; if (rb == NULL) { fbo_incomplete(fb, "FBO incomplete: attachment without " "renderbuffer\n"); continue; } if (fb->Attachment[i].Type == GL_TEXTURE) { if (rb->TexImage->Border) { fbo_incomplete(fb, "FBO incomplete: texture with border\n"); continue; } } irb = intel_renderbuffer(rb); if (irb == NULL) { fbo_incomplete(fb, "FBO incomplete: software rendering " "renderbuffer\n"); continue; } if (!brw_render_target_supported(brw, rb)) { fbo_incomplete(fb, "FBO incomplete: Unsupported HW " "texture/renderbuffer format attached: %s\n", _mesa_get_format_name(intel_rb_format(irb))); } } } /** * Try to do a glBlitFramebuffer using glCopyTexSubImage2D * We can do this when the dst renderbuffer is actually a texture and * there is no scaling, mirroring or scissoring. * * \return new buffer mask indicating the buffers left to blit using the * normal path. */ static GLbitfield intel_blit_framebuffer_with_blitter(struct gl_context *ctx, GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter) { struct brw_context *brw = brw_context(ctx); /* Sync up the state of window system buffers. We need to do this before * we go looking for the buffers. */ intel_prepare_render(brw); if (mask & GL_COLOR_BUFFER_BIT) { GLint i; const struct gl_framebuffer *drawFb = ctx->DrawBuffer; const struct gl_framebuffer *readFb = ctx->ReadBuffer; struct gl_renderbuffer *src_rb = readFb->_ColorReadBuffer; struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb); if (!src_irb) { perf_debug("glBlitFramebuffer(): missing src renderbuffer. " "Falling back to software rendering.\n"); return mask; } /* If the source and destination are the same size with no mirroring, * the rectangles are within the size of the texture and there is no * scissor, then we can probably use the blit engine. */ if (!(srcX0 - srcX1 == dstX0 - dstX1 && srcY0 - srcY1 == dstY0 - dstY1 && srcX1 >= srcX0 && srcY1 >= srcY0 && srcX0 >= 0 && srcX1 <= readFb->Width && srcY0 >= 0 && srcY1 <= readFb->Height && dstX0 >= 0 && dstX1 <= drawFb->Width && dstY0 >= 0 && dstY1 <= drawFb->Height && !(ctx->Scissor.EnableFlags))) { perf_debug("glBlitFramebuffer(): non-1:1 blit. " "Falling back to software rendering.\n"); return mask; } /* Blit to all active draw buffers. We don't do any pre-checking, * because we assume that copying to MRTs is rare, and failure midway * through copying is even more rare. Even if it was to occur, it's * safe to let meta start the copy over from scratch, because * glBlitFramebuffer completely overwrites the destination pixels, and * results are undefined if any destination pixels have a dependency on * source pixels. */ for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) { struct gl_renderbuffer *dst_rb = ctx->DrawBuffer->_ColorDrawBuffers[i]; struct intel_renderbuffer *dst_irb = intel_renderbuffer(dst_rb); if (!dst_irb) { perf_debug("glBlitFramebuffer(): missing dst renderbuffer. " "Falling back to software rendering.\n"); return mask; } if (!intel_miptree_blit(brw, src_irb->mt, src_irb->mt_level, src_irb->mt_layer, srcX0, srcY0, src_rb->Name == 0, dst_irb->mt, dst_irb->mt_level, dst_irb->mt_layer, dstX0, dstY0, dst_rb->Name == 0, dstX1 - dstX0, dstY1 - dstY0, GL_COPY)) { perf_debug("glBlitFramebuffer(): unknown blit failure. " "Falling back to software rendering.\n"); return mask; } } mask &= ~GL_COLOR_BUFFER_BIT; } return mask; } static void intel_blit_framebuffer(struct gl_context *ctx, GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter) { mask = brw_blorp_framebuffer(brw_context(ctx), srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, mask, filter); if (mask == 0x0) return; /* Try using the BLT engine. */ mask = intel_blit_framebuffer_with_blitter(ctx, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, mask, filter); if (mask == 0x0) return; _mesa_meta_BlitFramebuffer(ctx, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, mask, filter); } /** * Does the renderbuffer have hiz enabled? */ bool intel_renderbuffer_has_hiz(struct intel_renderbuffer *irb) { return intel_miptree_slice_has_hiz(irb->mt, irb->mt_level, irb->mt_layer); } bool intel_renderbuffer_resolve_hiz(struct brw_context *brw, struct intel_renderbuffer *irb) { if (irb->mt) return intel_miptree_slice_resolve_hiz(brw, irb->mt, irb->mt_level, irb->mt_layer); return false; } void intel_renderbuffer_att_set_needs_depth_resolve(struct gl_renderbuffer_attachment *att) { struct intel_renderbuffer *irb = intel_renderbuffer(att->Renderbuffer); if (irb->mt) { if (att->Layered) { intel_miptree_set_all_slices_need_depth_resolve(irb->mt, irb->mt_level); } else { intel_miptree_slice_set_needs_depth_resolve(irb->mt, irb->mt_level, irb->mt_layer); } } } bool intel_renderbuffer_resolve_depth(struct brw_context *brw, struct intel_renderbuffer *irb) { if (irb->mt) return intel_miptree_slice_resolve_depth(brw, irb->mt, irb->mt_level, irb->mt_layer); return false; } void intel_renderbuffer_move_to_temp(struct brw_context *brw, struct intel_renderbuffer *irb, bool invalidate) { struct gl_renderbuffer *rb =&irb->Base.Base; struct intel_texture_image *intel_image = intel_texture_image(rb->TexImage); struct intel_mipmap_tree *new_mt; int width, height, depth; intel_miptree_get_dimensions_for_image(rb->TexImage, &width, &height, &depth); new_mt = intel_miptree_create(brw, rb->TexImage->TexObject->Target, intel_image->base.Base.TexFormat, intel_image->base.Base.Level, intel_image->base.Base.Level, width, height, depth, true, irb->mt->num_samples, INTEL_MIPTREE_TILING_ANY); if (brw_is_hiz_depth_format(brw, new_mt->format)) { intel_miptree_alloc_hiz(brw, new_mt); } intel_miptree_copy_teximage(brw, intel_image, new_mt, invalidate); intel_miptree_reference(&irb->mt, intel_image->mt); intel_renderbuffer_set_draw_offset(irb); intel_miptree_release(&new_mt); } /** * Do one-time context initializations related to GL_EXT_framebuffer_object. * Hook in device driver functions. */ void intel_fbo_init(struct brw_context *brw) { struct dd_function_table *dd = &brw->ctx.Driver; dd->NewFramebuffer = intel_new_framebuffer; dd->NewRenderbuffer = intel_new_renderbuffer; dd->MapRenderbuffer = intel_map_renderbuffer; dd->UnmapRenderbuffer = intel_unmap_renderbuffer; dd->RenderTexture = intel_render_texture; dd->FinishRenderTexture = intel_finish_render_texture; dd->ValidateFramebuffer = intel_validate_framebuffer; dd->BlitFramebuffer = intel_blit_framebuffer; dd->EGLImageTargetRenderbufferStorage = intel_image_target_renderbuffer_storage; }