/* * Copyright 2003 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "main/mtypes.h" #include "main/blit.h" #include "main/context.h" #include "main/enums.h" #include "main/fbobject.h" #include "brw_context.h" #include "brw_defines.h" #include "intel_blit.h" #include "intel_buffers.h" #include "intel_fbo.h" #include "intel_batchbuffer.h" #include "intel_mipmap_tree.h" #define FILE_DEBUG_FLAG DEBUG_BLIT static void intel_miptree_set_alpha_to_one(struct brw_context *brw, struct intel_mipmap_tree *mt, int x, int y, int width, int height); static GLuint translate_raster_op(GLenum logicop) { switch(logicop) { case GL_CLEAR: return 0x00; case GL_AND: return 0x88; case GL_AND_REVERSE: return 0x44; case GL_COPY: return 0xCC; case GL_AND_INVERTED: return 0x22; case GL_NOOP: return 0xAA; case GL_XOR: return 0x66; case GL_OR: return 0xEE; case GL_NOR: return 0x11; case GL_EQUIV: return 0x99; case GL_INVERT: return 0x55; case GL_OR_REVERSE: return 0xDD; case GL_COPY_INVERTED: return 0x33; case GL_OR_INVERTED: return 0xBB; case GL_NAND: return 0x77; case GL_SET: return 0xFF; default: return 0; } } static uint32_t br13_for_cpp(int cpp) { switch (cpp) { case 16: return BR13_32323232; case 8: return BR13_16161616; case 4: return BR13_8888; case 2: return BR13_565; case 1: return BR13_8; default: unreachable("not reached"); } } /** * Emits the packet for switching the blitter from X to Y tiled or back. * * This has to be called in a single BEGIN_BATCH_BLT_TILED() / * ADVANCE_BATCH_TILED(). This is because BCS_SWCTRL is saved and restored as * part of the power context, not a render context, and if the batchbuffer was * to get flushed between setting and blitting, or blitting and restoring, our * tiling state would leak into other unsuspecting applications (like the X * server). */ static uint32_t * set_blitter_tiling(struct brw_context *brw, bool dst_y_tiled, bool src_y_tiled, uint32_t *__map) { assert(brw->gen >= 6); /* Idle the blitter before we update how tiling is interpreted. */ OUT_BATCH(MI_FLUSH_DW); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(0); OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2)); OUT_BATCH(BCS_SWCTRL); OUT_BATCH((BCS_SWCTRL_DST_Y | BCS_SWCTRL_SRC_Y) << 16 | (dst_y_tiled ? BCS_SWCTRL_DST_Y : 0) | (src_y_tiled ? BCS_SWCTRL_SRC_Y : 0)); return __map; } #define SET_BLITTER_TILING(...) __map = set_blitter_tiling(__VA_ARGS__, __map) #define BEGIN_BATCH_BLT_TILED(n, dst_y_tiled, src_y_tiled) \ BEGIN_BATCH_BLT(n + ((dst_y_tiled || src_y_tiled) ? 14 : 0)); \ if (dst_y_tiled || src_y_tiled) \ SET_BLITTER_TILING(brw, dst_y_tiled, src_y_tiled) #define ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled) \ if (dst_y_tiled || src_y_tiled) \ SET_BLITTER_TILING(brw, false, false); \ ADVANCE_BATCH() static int blt_pitch(struct intel_mipmap_tree *mt) { int pitch = mt->pitch; if (mt->tiling) pitch /= 4; return pitch; } bool intel_miptree_blit_compatible_formats(mesa_format src, mesa_format dst) { /* The BLT doesn't handle sRGB conversion */ assert(src == _mesa_get_srgb_format_linear(src)); assert(dst == _mesa_get_srgb_format_linear(dst)); /* No swizzle or format conversions possible, except... */ if (src == dst) return true; /* ...we can either discard the alpha channel when going from A->X, * or we can fill the alpha channel with 0xff when going from X->A */ if (src == MESA_FORMAT_B8G8R8A8_UNORM || src == MESA_FORMAT_B8G8R8X8_UNORM) return (dst == MESA_FORMAT_B8G8R8A8_UNORM || dst == MESA_FORMAT_B8G8R8X8_UNORM); if (src == MESA_FORMAT_R8G8B8A8_UNORM || src == MESA_FORMAT_R8G8B8X8_UNORM) return (dst == MESA_FORMAT_R8G8B8A8_UNORM || dst == MESA_FORMAT_R8G8B8X8_UNORM); return false; } static void get_blit_intratile_offset_el(const struct brw_context *brw, struct intel_mipmap_tree *mt, uint32_t total_x_offset_el, uint32_t total_y_offset_el, uint32_t *base_address_offset, uint32_t *x_offset_el, uint32_t *y_offset_el) { enum isl_tiling tiling = intel_miptree_get_isl_tiling(mt); isl_tiling_get_intratile_offset_el(&brw->isl_dev, tiling, mt->cpp, mt->pitch, total_x_offset_el, total_y_offset_el, base_address_offset, x_offset_el, y_offset_el); if (tiling == ISL_TILING_LINEAR) { /* From the Broadwell PRM docs for XY_SRC_COPY_BLT::SourceBaseAddress: * * "Base address of the destination surface: X=0, Y=0. Lower 32bits * of the 48bit addressing. When Src Tiling is enabled (Bit_15 * enabled), this address must be 4KB-aligned. When Tiling is not * enabled, this address should be CL (64byte) aligned." * * The offsets we get from ISL in the tiled case are already aligned. * In the linear case, we need to do some of our own aligning. */ assert(mt->pitch % 64 == 0); uint32_t delta = *base_address_offset & 63; assert(delta % mt->cpp == 0); *base_address_offset -= delta; *x_offset_el += delta / mt->cpp; } else { assert(*base_address_offset % 4096 == 0); } } static bool emit_miptree_blit(struct brw_context *brw, struct intel_mipmap_tree *src_mt, uint32_t src_x, uint32_t src_y, struct intel_mipmap_tree *dst_mt, uint32_t dst_x, uint32_t dst_y, uint32_t width, uint32_t height, bool reverse, GLenum logicop) { /* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics * Data Size Limitations): * * The BLT engine is capable of transferring very large quantities of * graphics data. Any graphics data read from and written to the * destination is permitted to represent a number of pixels that * occupies up to 65,536 scan lines and up to 32,768 bytes per scan line * at the destination. The maximum number of pixels that may be * represented per scan line’s worth of graphics data depends on the * color depth. * * The blitter's pitch is a signed 16-bit integer, but measured in bytes * for linear surfaces and DWords for tiled surfaces. So the maximum * pitch is 32k linear and 128k tiled. */ if (blt_pitch(src_mt) >= 32768 || blt_pitch(dst_mt) >= 32768) { perf_debug("Falling back due to >= 32k/128k pitch\n"); return false; } /* We need to split the blit into chunks that each fit within the blitter's * restrictions. We can't use a chunk size of 32768 because we need to * ensure that src_tile_x + chunk_size fits. We choose 16384 because it's * a nice round power of two, big enough that performance won't suffer, and * small enough to guarantee everything fits. */ const uint32_t max_chunk_size = 16384; for (uint32_t chunk_x = 0; chunk_x < width; chunk_x += max_chunk_size) { for (uint32_t chunk_y = 0; chunk_y < height; chunk_y += max_chunk_size) { const uint32_t chunk_w = MIN2(max_chunk_size, width - chunk_x); const uint32_t chunk_h = MIN2(max_chunk_size, height - chunk_y); uint32_t src_offset, src_tile_x, src_tile_y; get_blit_intratile_offset_el(brw, src_mt, src_x + chunk_x, src_y + chunk_y, &src_offset, &src_tile_x, &src_tile_y); uint32_t dst_offset, dst_tile_x, dst_tile_y; get_blit_intratile_offset_el(brw, dst_mt, dst_x + chunk_x, dst_y + chunk_y, &dst_offset, &dst_tile_x, &dst_tile_y); if (!intelEmitCopyBlit(brw, src_mt->cpp, reverse ? -src_mt->pitch : src_mt->pitch, src_mt->bo, src_mt->offset + src_offset, src_mt->tiling, dst_mt->pitch, dst_mt->bo, dst_mt->offset + dst_offset, dst_mt->tiling, src_tile_x, src_tile_y, dst_tile_x, dst_tile_y, chunk_w, chunk_h, logicop)) { /* If this is ever going to fail, it will fail on the first chunk */ assert(chunk_x == 0 && chunk_y == 0); return false; } } } return true; } /** * Implements a rectangular block transfer (blit) of pixels between two * miptrees. * * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous, * but limited, pitches and sizes allowed. * * The src/dst coordinates are relative to the given level/slice of the * miptree. * * If @src_flip or @dst_flip is set, then the rectangle within that miptree * will be inverted (including scanline order) when copying. This is common * in GL when copying between window system and user-created * renderbuffers/textures. */ bool intel_miptree_blit(struct brw_context *brw, struct intel_mipmap_tree *src_mt, int src_level, int src_slice, uint32_t src_x, uint32_t src_y, bool src_flip, struct intel_mipmap_tree *dst_mt, int dst_level, int dst_slice, uint32_t dst_x, uint32_t dst_y, bool dst_flip, uint32_t width, uint32_t height, GLenum logicop) { /* The blitter doesn't understand multisampling at all. */ if (src_mt->num_samples > 0 || dst_mt->num_samples > 0) return false; /* No sRGB decode or encode is done by the hardware blitter, which is * consistent with what we want in many callers (glCopyTexSubImage(), * texture validation, etc.). */ mesa_format src_format = _mesa_get_srgb_format_linear(src_mt->format); mesa_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format); /* The blitter doesn't support doing any format conversions. We do also * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A * channel to 1.0 at the end. */ if (!intel_miptree_blit_compatible_formats(src_format, dst_format)) { perf_debug("%s: Can't use hardware blitter from %s to %s, " "falling back.\n", __func__, _mesa_get_format_name(src_format), _mesa_get_format_name(dst_format)); return false; } /* The blitter has no idea about HiZ or fast color clears, so we need to * resolve the miptrees before we do anything. */ intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_slice); intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_slice); intel_miptree_resolve_color(brw, src_mt, src_level, src_slice, 1, 0); intel_miptree_resolve_color(brw, dst_mt, dst_level, dst_slice, 1, 0); if (src_flip) src_y = minify(src_mt->physical_height0, src_level - src_mt->first_level) - src_y - height; if (dst_flip) dst_y = minify(dst_mt->physical_height0, dst_level - dst_mt->first_level) - dst_y - height; uint32_t src_image_x, src_image_y, dst_image_x, dst_image_y; intel_miptree_get_image_offset(src_mt, src_level, src_slice, &src_image_x, &src_image_y); intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice, &dst_image_x, &dst_image_y); src_x += src_image_x; src_y += src_image_y; dst_x += dst_image_x; dst_y += dst_image_y; if (!emit_miptree_blit(brw, src_mt, src_x, src_y, dst_mt, dst_x, dst_y, width, height, src_flip != dst_flip, logicop)) { return false; } /* XXX This could be done in a single pass using XY_FULL_MONO_PATTERN_BLT */ if (_mesa_get_format_bits(src_format, GL_ALPHA_BITS) == 0 && _mesa_get_format_bits(dst_format, GL_ALPHA_BITS) > 0) { intel_miptree_set_alpha_to_one(brw, dst_mt, dst_x, dst_y, width, height); } return true; } bool intel_miptree_copy(struct brw_context *brw, struct intel_mipmap_tree *src_mt, int src_level, int src_slice, uint32_t src_x, uint32_t src_y, struct intel_mipmap_tree *dst_mt, int dst_level, int dst_slice, uint32_t dst_x, uint32_t dst_y, uint32_t src_width, uint32_t src_height) { /* The blitter doesn't understand multisampling at all. */ if (src_mt->num_samples > 0 || dst_mt->num_samples > 0) return false; if (src_mt->format == MESA_FORMAT_S_UINT8) return false; /* The blitter has no idea about HiZ or fast color clears, so we need to * resolve the miptrees before we do anything. */ intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_slice); intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_slice); intel_miptree_resolve_color(brw, src_mt, src_level, src_slice, 1, 0); intel_miptree_resolve_color(brw, dst_mt, dst_level, dst_slice, 1, 0); uint32_t src_image_x, src_image_y; intel_miptree_get_image_offset(src_mt, src_level, src_slice, &src_image_x, &src_image_y); if (_mesa_is_format_compressed(src_mt->format)) { GLuint bw, bh; _mesa_get_format_block_size(src_mt->format, &bw, &bh); /* Compressed textures need not have dimensions that are a multiple of * the block size. Rectangles in compressed textures do need to be a * multiple of the block size. The one exception is that the right and * bottom edges may be at the right or bottom edge of the miplevel even * if it's not aligned. */ assert(src_x % bw == 0); assert(src_y % bh == 0); assert(src_width % bw == 0 || src_x + src_width == minify(src_mt->logical_width0, src_level)); assert(src_height % bh == 0 || src_y + src_height == minify(src_mt->logical_height0, src_level)); src_x /= (int)bw; src_y /= (int)bh; src_width /= (int)bw; src_height /= (int)bh; } src_x += src_image_x; src_y += src_image_y; uint32_t dst_image_x, dst_image_y; intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice, &dst_image_x, &dst_image_y); if (_mesa_is_format_compressed(dst_mt->format)) { GLuint bw, bh; _mesa_get_format_block_size(dst_mt->format, &bw, &bh); assert(dst_x % bw == 0); assert(dst_y % bh == 0); dst_x /= (int)bw; dst_y /= (int)bh; } dst_x += dst_image_x; dst_y += dst_image_y; return emit_miptree_blit(brw, src_mt, src_x, src_y, dst_mt, dst_x, dst_y, src_width, src_height, false, GL_COPY); } static bool alignment_valid(struct brw_context *brw, unsigned offset, uint32_t tiling) { /* Tiled buffers must be page-aligned (4K). */ if (tiling != I915_TILING_NONE) return (offset & 4095) == 0; /* On Gen8+, linear buffers must be cacheline-aligned. */ if (brw->gen >= 8) return (offset & 63) == 0; return true; } static uint32_t xy_blit_cmd(uint32_t src_tiling, uint32_t dst_tiling, uint32_t cpp) { uint32_t CMD = 0; assert(cpp <= 4); switch (cpp) { case 1: case 2: CMD = XY_SRC_COPY_BLT_CMD; break; case 4: CMD = XY_SRC_COPY_BLT_CMD | XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB; break; default: unreachable("not reached"); } if (dst_tiling != I915_TILING_NONE) CMD |= XY_DST_TILED; if (src_tiling != I915_TILING_NONE) CMD |= XY_SRC_TILED; return CMD; } /* Copy BitBlt */ bool intelEmitCopyBlit(struct brw_context *brw, GLuint cpp, int32_t src_pitch, struct brw_bo *src_buffer, GLuint src_offset, uint32_t src_tiling, int32_t dst_pitch, struct brw_bo *dst_buffer, GLuint dst_offset, uint32_t dst_tiling, GLshort src_x, GLshort src_y, GLshort dst_x, GLshort dst_y, GLshort w, GLshort h, GLenum logic_op) { GLuint CMD, BR13; int dst_y2 = dst_y + h; int dst_x2 = dst_x + w; bool dst_y_tiled = dst_tiling == I915_TILING_Y; bool src_y_tiled = src_tiling == I915_TILING_Y; uint32_t src_tile_w, src_tile_h; uint32_t dst_tile_w, dst_tile_h; if ((dst_y_tiled || src_y_tiled) && brw->gen < 6) return false; const unsigned bo_sizes = dst_buffer->size + src_buffer->size; /* do space check before going any further */ if (!brw_batch_has_aperture_space(brw, bo_sizes)) intel_batchbuffer_flush(brw); if (!brw_batch_has_aperture_space(brw, bo_sizes)) return false; unsigned length = brw->gen >= 8 ? 10 : 8; intel_batchbuffer_require_space(brw, length * 4, BLT_RING); DBG("%s src:buf(%p)/%d+%d %d,%d dst:buf(%p)/%d+%d %d,%d sz:%dx%d\n", __func__, src_buffer, src_pitch, src_offset, src_x, src_y, dst_buffer, dst_pitch, dst_offset, dst_x, dst_y, w, h); intel_get_tile_dims(src_tiling, cpp, &src_tile_w, &src_tile_h); intel_get_tile_dims(dst_tiling, cpp, &dst_tile_w, &dst_tile_h); /* For Tiled surfaces, the pitch has to be a multiple of the Tile width * (X direction width of the Tile). This is ensured while allocating the * buffer object. */ assert(src_tiling == I915_TILING_NONE || (src_pitch % src_tile_w) == 0); assert(dst_tiling == I915_TILING_NONE || (dst_pitch % dst_tile_w) == 0); /* For big formats (such as floating point), do the copy using 16 or * 32bpp and multiply the coordinates. */ if (cpp > 4) { if (cpp % 4 == 2) { dst_x *= cpp / 2; dst_x2 *= cpp / 2; src_x *= cpp / 2; cpp = 2; } else { assert(cpp % 4 == 0); dst_x *= cpp / 4; dst_x2 *= cpp / 4; src_x *= cpp / 4; cpp = 4; } } if (!alignment_valid(brw, dst_offset, dst_tiling)) return false; if (!alignment_valid(brw, src_offset, src_tiling)) return false; /* Blit pitch must be dword-aligned. Otherwise, the hardware appears to drop * the low bits. Offsets must be naturally aligned. */ if (src_pitch % 4 != 0 || src_offset % cpp != 0 || dst_pitch % 4 != 0 || dst_offset % cpp != 0) return false; assert(cpp <= 4); BR13 = br13_for_cpp(cpp) | translate_raster_op(logic_op) << 16; CMD = xy_blit_cmd(src_tiling, dst_tiling, cpp); /* For tiled source and destination, pitch value should be specified * as a number of Dwords. */ if (dst_tiling != I915_TILING_NONE) dst_pitch /= 4; if (src_tiling != I915_TILING_NONE) src_pitch /= 4; if (dst_y2 <= dst_y || dst_x2 <= dst_x) return true; assert(dst_x < dst_x2); assert(dst_y < dst_y2); BEGIN_BATCH_BLT_TILED(length, dst_y_tiled, src_y_tiled); OUT_BATCH(CMD | (length - 2)); OUT_BATCH(BR13 | (uint16_t)dst_pitch); OUT_BATCH(SET_FIELD(dst_y, BLT_Y) | SET_FIELD(dst_x, BLT_X)); OUT_BATCH(SET_FIELD(dst_y2, BLT_Y) | SET_FIELD(dst_x2, BLT_X)); if (brw->gen >= 8) { OUT_RELOC64(dst_buffer, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, dst_offset); } else { OUT_RELOC(dst_buffer, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, dst_offset); } OUT_BATCH(SET_FIELD(src_y, BLT_Y) | SET_FIELD(src_x, BLT_X)); OUT_BATCH((uint16_t)src_pitch); if (brw->gen >= 8) { OUT_RELOC64(src_buffer, I915_GEM_DOMAIN_RENDER, 0, src_offset); } else { OUT_RELOC(src_buffer, I915_GEM_DOMAIN_RENDER, 0, src_offset); } ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled); brw_emit_mi_flush(brw); return true; } bool intelEmitImmediateColorExpandBlit(struct brw_context *brw, GLuint cpp, GLubyte *src_bits, GLuint src_size, GLuint fg_color, GLshort dst_pitch, struct brw_bo *dst_buffer, GLuint dst_offset, uint32_t dst_tiling, GLshort x, GLshort y, GLshort w, GLshort h, GLenum logic_op) { int dwords = ALIGN(src_size, 8) / 4; uint32_t opcode, br13, blit_cmd; if (dst_tiling != I915_TILING_NONE) { if (dst_offset & 4095) return false; if (dst_tiling == I915_TILING_Y) return false; } assert((logic_op >= GL_CLEAR) && (logic_op <= (GL_CLEAR + 0x0f))); assert(dst_pitch > 0); if (w < 0 || h < 0) return true; DBG("%s dst:buf(%p)/%d+%d %d,%d sz:%dx%d, %d bytes %d dwords\n", __func__, dst_buffer, dst_pitch, dst_offset, x, y, w, h, src_size, dwords); unsigned xy_setup_blt_length = brw->gen >= 8 ? 10 : 8; intel_batchbuffer_require_space(brw, (xy_setup_blt_length * 4) + (3 * 4) + dwords * 4, BLT_RING); opcode = XY_SETUP_BLT_CMD; if (cpp == 4) opcode |= XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB; if (dst_tiling != I915_TILING_NONE) { opcode |= XY_DST_TILED; dst_pitch /= 4; } br13 = dst_pitch | (translate_raster_op(logic_op) << 16) | (1 << 29); br13 |= br13_for_cpp(cpp); blit_cmd = XY_TEXT_IMMEDIATE_BLIT_CMD | XY_TEXT_BYTE_PACKED; /* packing? */ if (dst_tiling != I915_TILING_NONE) blit_cmd |= XY_DST_TILED; BEGIN_BATCH_BLT(xy_setup_blt_length + 3); OUT_BATCH(opcode | (xy_setup_blt_length - 2)); OUT_BATCH(br13); OUT_BATCH((0 << 16) | 0); /* clip x1, y1 */ OUT_BATCH((100 << 16) | 100); /* clip x2, y2 */ if (brw->gen >= 8) { OUT_RELOC64(dst_buffer, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, dst_offset); } else { OUT_RELOC(dst_buffer, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, dst_offset); } OUT_BATCH(0); /* bg */ OUT_BATCH(fg_color); /* fg */ OUT_BATCH(0); /* pattern base addr */ if (brw->gen >= 8) OUT_BATCH(0); OUT_BATCH(blit_cmd | ((3 - 2) + dwords)); OUT_BATCH(SET_FIELD(y, BLT_Y) | SET_FIELD(x, BLT_X)); OUT_BATCH(SET_FIELD(y + h, BLT_Y) | SET_FIELD(x + w, BLT_X)); ADVANCE_BATCH(); intel_batchbuffer_data(brw, src_bits, dwords * 4, BLT_RING); brw_emit_mi_flush(brw); return true; } /* We don't have a memmove-type blit like some other hardware, so we'll do a * rectangular blit covering a large space, then emit 1-scanline blit at the * end to cover the last if we need. */ void intel_emit_linear_blit(struct brw_context *brw, struct brw_bo *dst_bo, unsigned int dst_offset, struct brw_bo *src_bo, unsigned int src_offset, unsigned int size) { struct gl_context *ctx = &brw->ctx; GLuint pitch, height; int16_t src_x, dst_x; bool ok; do { /* The pitch given to the GPU must be DWORD aligned, and * we want width to match pitch. Max width is (1 << 15 - 1), * rounding that down to the nearest DWORD is 1 << 15 - 4 */ pitch = ROUND_DOWN_TO(MIN2(size, (1 << 15) - 64), 4); height = (size < pitch || pitch == 0) ? 1 : size / pitch; src_x = src_offset % 64; dst_x = dst_offset % 64; pitch = ALIGN(MIN2(size, (1 << 15) - 64), 4); assert(src_x + pitch < 1 << 15); assert(dst_x + pitch < 1 << 15); ok = intelEmitCopyBlit(brw, 1, pitch, src_bo, src_offset - src_x, I915_TILING_NONE, pitch, dst_bo, dst_offset - dst_x, I915_TILING_NONE, src_x, 0, /* src x/y */ dst_x, 0, /* dst x/y */ MIN2(size, pitch), height, /* w, h */ GL_COPY); if (!ok) { _mesa_problem(ctx, "Failed to linear blit %dx%d\n", MIN2(size, pitch), height); return; } pitch *= height; if (size <= pitch) return; src_offset += pitch; dst_offset += pitch; size -= pitch; } while (1); } /** * Used to initialize the alpha value of an ARGB8888 miptree after copying * into it from an XRGB8888 source. * * This is very common with glCopyTexImage2D(). Note that the coordinates are * relative to the start of the miptree, not relative to a slice within the * miptree. */ static void intel_miptree_set_alpha_to_one(struct brw_context *brw, struct intel_mipmap_tree *mt, int x, int y, int width, int height) { uint32_t BR13, CMD; int pitch, cpp; pitch = mt->pitch; cpp = mt->cpp; DBG("%s dst:buf(%p)/%d %d,%d sz:%dx%d\n", __func__, mt->bo, pitch, x, y, width, height); BR13 = br13_for_cpp(cpp) | 0xf0 << 16; CMD = XY_COLOR_BLT_CMD; CMD |= XY_BLT_WRITE_ALPHA; if (mt->tiling != I915_TILING_NONE) { CMD |= XY_DST_TILED; pitch /= 4; } BR13 |= pitch; /* do space check before going any further */ if (!brw_batch_has_aperture_space(brw, mt->bo->size)) intel_batchbuffer_flush(brw); unsigned length = brw->gen >= 8 ? 7 : 6; bool dst_y_tiled = mt->tiling == I915_TILING_Y; /* We need to split the blit into chunks that each fit within the blitter's * restrictions. We can't use a chunk size of 32768 because we need to * ensure that src_tile_x + chunk_size fits. We choose 16384 because it's * a nice round power of two, big enough that performance won't suffer, and * small enough to guarantee everything fits. */ const uint32_t max_chunk_size = 16384; for (uint32_t chunk_x = 0; chunk_x < width; chunk_x += max_chunk_size) { for (uint32_t chunk_y = 0; chunk_y < height; chunk_y += max_chunk_size) { const uint32_t chunk_w = MIN2(max_chunk_size, width - chunk_x); const uint32_t chunk_h = MIN2(max_chunk_size, height - chunk_y); uint32_t offset, tile_x, tile_y; get_blit_intratile_offset_el(brw, mt, x + chunk_x, y + chunk_y, &offset, &tile_x, &tile_y); BEGIN_BATCH_BLT_TILED(length, dst_y_tiled, false); OUT_BATCH(CMD | (length - 2)); OUT_BATCH(BR13); OUT_BATCH(SET_FIELD(y + chunk_y, BLT_Y) | SET_FIELD(x + chunk_x, BLT_X)); OUT_BATCH(SET_FIELD(y + chunk_y + chunk_h, BLT_Y) | SET_FIELD(x + chunk_x + chunk_w, BLT_X)); if (brw->gen >= 8) { OUT_RELOC64(mt->bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, offset); } else { OUT_RELOC(mt->bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, offset); } OUT_BATCH(0xffffffff); /* white, but only alpha gets written */ ADVANCE_BATCH_TILED(dst_y_tiled, false); } } brw_emit_mi_flush(brw); }