/* * Copyright 2006 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "intel_batchbuffer.h" #include "intel_buffer_objects.h" #include "brw_bufmgr.h" #include "intel_buffers.h" #include "intel_fbo.h" #include "brw_context.h" #include "brw_defines.h" #include "brw_state.h" #include "common/gen_decoder.h" #include "common/gen_gem.h" #include "util/hash_table.h" #include #include #define FILE_DEBUG_FLAG DEBUG_BUFMGR /** * Target sizes of the batch and state buffers. We create the initial * buffers at these sizes, and flush when they're nearly full. If we * underestimate how close we are to the end, and suddenly need more space * in the middle of a draw, we can grow the buffers, and finish the draw. * At that point, we'll be over our target size, so the next operation * should flush. Each time we flush the batch, we recreate both buffers * at the original target size, so it doesn't grow without bound. */ #define BATCH_SZ (20 * 1024) #define STATE_SZ (16 * 1024) static void intel_batchbuffer_reset(struct brw_context *brw); static void dump_validation_list(struct intel_batchbuffer *batch) { fprintf(stderr, "Validation list (length %d):\n", batch->exec_count); for (int i = 0; i < batch->exec_count; i++) { uint64_t flags = batch->validation_list[i].flags; assert(batch->validation_list[i].handle == batch->exec_bos[i]->gem_handle); fprintf(stderr, "[%2d]: %2d %-14s %p %s%-7s @ 0x%016llx%s (%"PRIu64"B)\n", i, batch->validation_list[i].handle, batch->exec_bos[i]->name, batch->exec_bos[i], (flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) ? "(48b" : "(32b", (flags & EXEC_OBJECT_WRITE) ? " write)" : ")", batch->validation_list[i].offset, (flags & EXEC_OBJECT_PINNED) ? " (pinned)" : "", batch->exec_bos[i]->size); } } static struct gen_batch_decode_bo decode_get_bo(void *v_brw, uint64_t address) { struct brw_context *brw = v_brw; struct intel_batchbuffer *batch = &brw->batch; for (int i = 0; i < batch->exec_count; i++) { struct brw_bo *bo = batch->exec_bos[i]; /* The decoder zeroes out the top 16 bits, so we need to as well */ uint64_t bo_address = bo->gtt_offset & (~0ull >> 16); if (address >= bo_address && address < bo_address + bo->size) { return (struct gen_batch_decode_bo) { .addr = address, .size = bo->size, .map = brw_bo_map(brw, bo, MAP_READ) + (address - bo_address), }; } } return (struct gen_batch_decode_bo) { }; } static unsigned decode_get_state_size(void *v_brw, uint32_t offset_from_dsba) { struct brw_context *brw = v_brw; struct intel_batchbuffer *batch = &brw->batch; struct hash_entry *entry = _mesa_hash_table_search(batch->state_batch_sizes, (void *) (uintptr_t) offset_from_dsba); return entry ? (uintptr_t) entry->data : 0; } static bool uint_key_compare(const void *a, const void *b) { return a == b; } static uint32_t uint_key_hash(const void *key) { return (uintptr_t) key; } static void init_reloc_list(struct brw_reloc_list *rlist, int count) { rlist->reloc_count = 0; rlist->reloc_array_size = count; rlist->relocs = malloc(rlist->reloc_array_size * sizeof(struct drm_i915_gem_relocation_entry)); } void intel_batchbuffer_init(struct brw_context *brw) { struct intel_screen *screen = brw->screen; struct intel_batchbuffer *batch = &brw->batch; const struct gen_device_info *devinfo = &screen->devinfo; batch->use_shadow_copy = !devinfo->has_llc; init_reloc_list(&batch->batch_relocs, 250); init_reloc_list(&batch->state_relocs, 250); batch->batch.map = NULL; batch->state.map = NULL; batch->exec_count = 0; batch->exec_array_size = 100; batch->exec_bos = malloc(batch->exec_array_size * sizeof(batch->exec_bos[0])); batch->validation_list = malloc(batch->exec_array_size * sizeof(batch->validation_list[0])); if (INTEL_DEBUG & DEBUG_BATCH) { batch->state_batch_sizes = _mesa_hash_table_create(NULL, uint_key_hash, uint_key_compare); const unsigned decode_flags = GEN_BATCH_DECODE_FULL | ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) | GEN_BATCH_DECODE_OFFSETS | GEN_BATCH_DECODE_FLOATS; gen_batch_decode_ctx_init(&batch->decoder, devinfo, stderr, decode_flags, NULL, decode_get_bo, decode_get_state_size, brw); batch->decoder.max_vbo_decoded_lines = 100; } batch->use_batch_first = screen->kernel_features & KERNEL_ALLOWS_EXEC_BATCH_FIRST; /* PIPE_CONTROL needs a w/a but only on gen6 */ batch->valid_reloc_flags = EXEC_OBJECT_WRITE; if (devinfo->gen == 6) batch->valid_reloc_flags |= EXEC_OBJECT_NEEDS_GTT; intel_batchbuffer_reset(brw); } #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x)) static unsigned add_exec_bo(struct intel_batchbuffer *batch, struct brw_bo *bo) { unsigned index = READ_ONCE(bo->index); if (index < batch->exec_count && batch->exec_bos[index] == bo) return index; /* May have been shared between multiple active batches */ for (index = 0; index < batch->exec_count; index++) { if (batch->exec_bos[index] == bo) return index; } brw_bo_reference(bo); if (batch->exec_count == batch->exec_array_size) { batch->exec_array_size *= 2; batch->exec_bos = realloc(batch->exec_bos, batch->exec_array_size * sizeof(batch->exec_bos[0])); batch->validation_list = realloc(batch->validation_list, batch->exec_array_size * sizeof(batch->validation_list[0])); } batch->validation_list[batch->exec_count] = (struct drm_i915_gem_exec_object2) { .handle = bo->gem_handle, .offset = bo->gtt_offset, .flags = bo->kflags, }; bo->index = batch->exec_count; batch->exec_bos[batch->exec_count] = bo; batch->aperture_space += bo->size; return batch->exec_count++; } static void recreate_growing_buffer(struct brw_context *brw, struct brw_growing_bo *grow, const char *name, unsigned size, enum brw_memory_zone memzone) { struct intel_screen *screen = brw->screen; struct intel_batchbuffer *batch = &brw->batch; struct brw_bufmgr *bufmgr = screen->bufmgr; /* We can't grow buffers when using softpin, so just overallocate them. */ if (brw_using_softpin(bufmgr)) size *= 2; grow->bo = brw_bo_alloc(bufmgr, name, size, memzone); grow->bo->kflags |= can_do_exec_capture(screen) ? EXEC_OBJECT_CAPTURE : 0; grow->partial_bo = NULL; grow->partial_bo_map = NULL; grow->partial_bytes = 0; grow->memzone = memzone; if (batch->use_shadow_copy) grow->map = realloc(grow->map, grow->bo->size); else grow->map = brw_bo_map(brw, grow->bo, MAP_READ | MAP_WRITE); } static void intel_batchbuffer_reset(struct brw_context *brw) { struct intel_batchbuffer *batch = &brw->batch; if (batch->last_bo != NULL) { brw_bo_unreference(batch->last_bo); batch->last_bo = NULL; } batch->last_bo = batch->batch.bo; recreate_growing_buffer(brw, &batch->batch, "batchbuffer", BATCH_SZ, BRW_MEMZONE_OTHER); batch->map_next = batch->batch.map; recreate_growing_buffer(brw, &batch->state, "statebuffer", STATE_SZ, BRW_MEMZONE_DYNAMIC); /* Avoid making 0 a valid state offset - otherwise the decoder will try * and decode data when we use offset 0 as a null pointer. */ batch->state_used = 1; add_exec_bo(batch, batch->batch.bo); assert(batch->batch.bo->index == 0); batch->needs_sol_reset = false; batch->state_base_address_emitted = false; if (batch->state_batch_sizes) _mesa_hash_table_clear(batch->state_batch_sizes, NULL); } static void intel_batchbuffer_reset_and_clear_render_cache(struct brw_context *brw) { intel_batchbuffer_reset(brw); brw_cache_sets_clear(brw); } void intel_batchbuffer_save_state(struct brw_context *brw) { brw->batch.saved.map_next = brw->batch.map_next; brw->batch.saved.batch_reloc_count = brw->batch.batch_relocs.reloc_count; brw->batch.saved.state_reloc_count = brw->batch.state_relocs.reloc_count; brw->batch.saved.exec_count = brw->batch.exec_count; } void intel_batchbuffer_reset_to_saved(struct brw_context *brw) { for (int i = brw->batch.saved.exec_count; i < brw->batch.exec_count; i++) { brw_bo_unreference(brw->batch.exec_bos[i]); } brw->batch.batch_relocs.reloc_count = brw->batch.saved.batch_reloc_count; brw->batch.state_relocs.reloc_count = brw->batch.saved.state_reloc_count; brw->batch.exec_count = brw->batch.saved.exec_count; brw->batch.map_next = brw->batch.saved.map_next; } void intel_batchbuffer_free(struct intel_batchbuffer *batch) { if (batch->use_shadow_copy) { free(batch->batch.map); free(batch->state.map); } for (int i = 0; i < batch->exec_count; i++) { brw_bo_unreference(batch->exec_bos[i]); } free(batch->batch_relocs.relocs); free(batch->state_relocs.relocs); free(batch->exec_bos); free(batch->validation_list); brw_bo_unreference(batch->last_bo); brw_bo_unreference(batch->batch.bo); brw_bo_unreference(batch->state.bo); if (batch->state_batch_sizes) { _mesa_hash_table_destroy(batch->state_batch_sizes, NULL); gen_batch_decode_ctx_finish(&batch->decoder); } } /** * Finish copying the old batch/state buffer's contents to the new one * after we tried to "grow" the buffer in an earlier operation. */ static void finish_growing_bos(struct brw_growing_bo *grow) { struct brw_bo *old_bo = grow->partial_bo; if (!old_bo) return; memcpy(grow->map, grow->partial_bo_map, grow->partial_bytes); grow->partial_bo = NULL; grow->partial_bo_map = NULL; grow->partial_bytes = 0; brw_bo_unreference(old_bo); } static void replace_bo_in_reloc_list(struct brw_reloc_list *rlist, uint32_t old_handle, uint32_t new_handle) { for (int i = 0; i < rlist->reloc_count; i++) { if (rlist->relocs[i].target_handle == old_handle) rlist->relocs[i].target_handle = new_handle; } } /** * Grow either the batch or state buffer to a new larger size. * * We can't actually grow buffers, so we allocate a new one, copy over * the existing contents, and update our lists to refer to the new one. * * Note that this is only temporary - each new batch recreates the buffers * at their original target size (BATCH_SZ or STATE_SZ). */ static void grow_buffer(struct brw_context *brw, struct brw_growing_bo *grow, unsigned existing_bytes, unsigned new_size) { struct intel_batchbuffer *batch = &brw->batch; struct brw_bufmgr *bufmgr = brw->bufmgr; struct brw_bo *bo = grow->bo; /* We can't grow buffers that are softpinned, as the growing mechanism * involves putting a larger buffer at the same gtt_offset...and we've * only allocated the smaller amount of VMA. Without relocations, this * simply won't work. This should never happen, however. */ assert(!(bo->kflags & EXEC_OBJECT_PINNED)); perf_debug("Growing %s - ran out of space\n", bo->name); if (grow->partial_bo) { /* We've already grown once, and now we need to do it again. * Finish our last grow operation so we can start a new one. * This should basically never happen. */ perf_debug("Had to grow multiple times"); finish_growing_bos(grow); } struct brw_bo *new_bo = brw_bo_alloc(bufmgr, bo->name, new_size, grow->memzone); /* Copy existing data to the new larger buffer */ grow->partial_bo_map = grow->map; if (batch->use_shadow_copy) { /* We can't safely use realloc, as it may move the existing buffer, * breaking existing pointers the caller may still be using. Just * malloc a new copy and memcpy it like the normal BO path. * * Use bo->size rather than new_size because the bufmgr may have * rounded up the size, and we want the shadow size to match. */ grow->map = malloc(new_bo->size); } else { grow->map = brw_bo_map(brw, new_bo, MAP_READ | MAP_WRITE); } /* Try to put the new BO at the same GTT offset as the old BO (which * we're throwing away, so it doesn't need to be there). * * This guarantees that our relocations continue to work: values we've * already written into the buffer, values we're going to write into the * buffer, and the validation/relocation lists all will match. * * Also preserve kflags for EXEC_OBJECT_CAPTURE. */ new_bo->gtt_offset = bo->gtt_offset; new_bo->index = bo->index; new_bo->kflags = bo->kflags; /* Batch/state buffers are per-context, and if we've run out of space, * we must have actually used them before, so...they will be in the list. */ assert(bo->index < batch->exec_count); assert(batch->exec_bos[bo->index] == bo); /* Update the validation list to use the new BO. */ batch->validation_list[bo->index].handle = new_bo->gem_handle; if (!batch->use_batch_first) { /* We're not using I915_EXEC_HANDLE_LUT, which means we need to go * update the relocation list entries to point at the new BO as well. * (With newer kernels, the "handle" is an offset into the validation * list, which remains unchanged, so we can skip this.) */ replace_bo_in_reloc_list(&batch->batch_relocs, bo->gem_handle, new_bo->gem_handle); replace_bo_in_reloc_list(&batch->state_relocs, bo->gem_handle, new_bo->gem_handle); } /* Exchange the two BOs...without breaking pointers to the old BO. * * Consider this scenario: * * 1. Somebody calls brw_state_batch() to get a region of memory, and * and then creates a brw_address pointing to brw->batch.state.bo. * 2. They then call brw_state_batch() a second time, which happens to * grow and replace the state buffer. They then try to emit a * relocation to their first section of memory. * * If we replace the brw->batch.state.bo pointer at step 2, we would * break the address created in step 1. They'd have a pointer to the * old destroyed BO. Emitting a relocation would add this dead BO to * the validation list...causing /both/ statebuffers to be in the list, * and all kinds of disasters. * * This is not a contrived case - BLORP vertex data upload hits this. * * There are worse scenarios too. Fences for GL sync objects reference * brw->batch.batch.bo. If we replaced the batch pointer when growing, * we'd need to chase down every fence and update it to point to the * new BO. Otherwise, it would refer to a "batch" that never actually * gets submitted, and would fail to trigger. * * To work around both of these issues, we transmutate the buffers in * place, making the existing struct brw_bo represent the new buffer, * and "new_bo" represent the old BO. This is highly unusual, but it * seems like a necessary evil. * * We also defer the memcpy of the existing batch's contents. Callers * may make multiple brw_state_batch calls, and retain pointers to the * old BO's map. We'll perform the memcpy in finish_growing_bo() when * we finally submit the batch, at which point we've finished uploading * state, and nobody should have any old references anymore. * * To do that, we keep a reference to the old BO in grow->partial_bo, * and store the number of bytes to copy in grow->partial_bytes. We * can monkey with the refcounts directly without atomics because these * are per-context BOs and they can only be touched by this thread. */ assert(new_bo->refcount == 1); new_bo->refcount = bo->refcount; bo->refcount = 1; struct brw_bo tmp; memcpy(&tmp, bo, sizeof(struct brw_bo)); memcpy(bo, new_bo, sizeof(struct brw_bo)); memcpy(new_bo, &tmp, sizeof(struct brw_bo)); grow->partial_bo = new_bo; /* the one reference of the OLD bo */ grow->partial_bytes = existing_bytes; } void intel_batchbuffer_require_space(struct brw_context *brw, GLuint sz) { struct intel_batchbuffer *batch = &brw->batch; const unsigned batch_used = USED_BATCH(*batch) * 4; if (batch_used + sz >= BATCH_SZ && !batch->no_wrap) { intel_batchbuffer_flush(brw); } else if (batch_used + sz >= batch->batch.bo->size) { const unsigned new_size = MIN2(batch->batch.bo->size + batch->batch.bo->size / 2, MAX_BATCH_SIZE); grow_buffer(brw, &batch->batch, batch_used, new_size); batch->map_next = (void *) batch->batch.map + batch_used; assert(batch_used + sz < batch->batch.bo->size); } } /** * Called when starting a new batch buffer. */ static void brw_new_batch(struct brw_context *brw) { /* Unreference any BOs held by the previous batch, and reset counts. */ for (int i = 0; i < brw->batch.exec_count; i++) { brw_bo_unreference(brw->batch.exec_bos[i]); brw->batch.exec_bos[i] = NULL; } brw->batch.batch_relocs.reloc_count = 0; brw->batch.state_relocs.reloc_count = 0; brw->batch.exec_count = 0; brw->batch.aperture_space = 0; brw_bo_unreference(brw->batch.state.bo); /* Create a new batchbuffer and reset the associated state: */ intel_batchbuffer_reset_and_clear_render_cache(brw); /* If the kernel supports hardware contexts, then most hardware state is * preserved between batches; we only need to re-emit state that is required * to be in every batch. Otherwise we need to re-emit all the state that * would otherwise be stored in the context (which for all intents and * purposes means everything). */ if (brw->hw_ctx == 0) { brw->ctx.NewDriverState |= BRW_NEW_CONTEXT; brw_upload_invariant_state(brw); } brw->ctx.NewDriverState |= BRW_NEW_BATCH; brw->ib.index_size = -1; /* We need to periodically reap the shader time results, because rollover * happens every few seconds. We also want to see results every once in a * while, because many programs won't cleanly destroy our context, so the * end-of-run printout may not happen. */ if (INTEL_DEBUG & DEBUG_SHADER_TIME) brw_collect_and_report_shader_time(brw); } /** * Called from intel_batchbuffer_flush before emitting MI_BATCHBUFFER_END and * sending it off. * * This function can emit state (say, to preserve registers that aren't saved * between batches). */ static void brw_finish_batch(struct brw_context *brw) { const struct gen_device_info *devinfo = &brw->screen->devinfo; brw->batch.no_wrap = true; /* Capture the closing pipeline statistics register values necessary to * support query objects (in the non-hardware context world). */ brw_emit_query_end(brw); /* Work around L3 state leaks into contexts set MI_RESTORE_INHIBIT which * assume that the L3 cache is configured according to the hardware * defaults. On Kernel 4.16+, we no longer need to do this. */ if (devinfo->gen >= 7 && !(brw->screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION)) gen7_restore_default_l3_config(brw); if (devinfo->is_haswell) { /* From the Haswell PRM, Volume 2b, Command Reference: Instructions, * 3DSTATE_CC_STATE_POINTERS > "Note": * * "SW must program 3DSTATE_CC_STATE_POINTERS command at the end of every * 3D batch buffer followed by a PIPE_CONTROL with RC flush and CS stall." * * From the example in the docs, it seems to expect a regular pipe control * flush here as well. We may have done it already, but meh. * * See also WaAvoidRCZCounterRollover. */ brw_emit_mi_flush(brw); BEGIN_BATCH(2); OUT_BATCH(_3DSTATE_CC_STATE_POINTERS << 16 | (2 - 2)); OUT_BATCH(brw->cc.state_offset | 1); ADVANCE_BATCH(); brw_emit_pipe_control_flush(brw, PIPE_CONTROL_RENDER_TARGET_FLUSH | PIPE_CONTROL_CS_STALL); } /* Do not restore push constant packets during context restore. */ if (devinfo->gen >= 7) gen10_emit_isp_disable(brw); /* Emit MI_BATCH_BUFFER_END to finish our batch. Note that execbuf2 * requires our batch size to be QWord aligned, so we pad it out if * necessary by emitting an extra MI_NOOP after the end. */ intel_batchbuffer_require_space(brw, 8); *brw->batch.map_next++ = MI_BATCH_BUFFER_END; if (USED_BATCH(brw->batch) & 1) { *brw->batch.map_next++ = MI_NOOP; } brw->batch.no_wrap = false; } static void throttle(struct brw_context *brw) { /* Wait for the swapbuffers before the one we just emitted, so we * don't get too many swaps outstanding for apps that are GPU-heavy * but not CPU-heavy. * * We're using intelDRI2Flush (called from the loader before * swapbuffer) and glFlush (for front buffer rendering) as the * indicator that a frame is done and then throttle when we get * here as we prepare to render the next frame. At this point for * round trips for swap/copy and getting new buffers are done and * we'll spend less time waiting on the GPU. * * Unfortunately, we don't have a handle to the batch containing * the swap, and getting our hands on that doesn't seem worth it, * so we just use the first batch we emitted after the last swap. */ if (brw->need_swap_throttle && brw->throttle_batch[0]) { if (brw->throttle_batch[1]) { if (!brw->disable_throttling) { brw_bo_wait_rendering(brw->throttle_batch[1]); } brw_bo_unreference(brw->throttle_batch[1]); } brw->throttle_batch[1] = brw->throttle_batch[0]; brw->throttle_batch[0] = NULL; brw->need_swap_throttle = false; /* Throttling here is more precise than the throttle ioctl, so skip it */ brw->need_flush_throttle = false; } if (brw->need_flush_throttle) { __DRIscreen *dri_screen = brw->screen->driScrnPriv; drmCommandNone(dri_screen->fd, DRM_I915_GEM_THROTTLE); brw->need_flush_throttle = false; } } static int execbuffer(int fd, struct intel_batchbuffer *batch, uint32_t ctx_id, int used, int in_fence, int *out_fence, int flags) { struct drm_i915_gem_execbuffer2 execbuf = { .buffers_ptr = (uintptr_t) batch->validation_list, .buffer_count = batch->exec_count, .batch_start_offset = 0, .batch_len = used, .flags = flags, .rsvd1 = ctx_id, /* rsvd1 is actually the context ID */ }; unsigned long cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2; if (in_fence != -1) { execbuf.rsvd2 = in_fence; execbuf.flags |= I915_EXEC_FENCE_IN; } if (out_fence != NULL) { cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2_WR; *out_fence = -1; execbuf.flags |= I915_EXEC_FENCE_OUT; } int ret = drmIoctl(fd, cmd, &execbuf); if (ret != 0) ret = -errno; for (int i = 0; i < batch->exec_count; i++) { struct brw_bo *bo = batch->exec_bos[i]; bo->idle = false; bo->index = -1; /* Update brw_bo::gtt_offset */ if (batch->validation_list[i].offset != bo->gtt_offset) { assert(!(bo->kflags & EXEC_OBJECT_PINNED)); DBG("BO %d migrated: 0x%" PRIx64 " -> 0x%llx\n", bo->gem_handle, bo->gtt_offset, batch->validation_list[i].offset); bo->gtt_offset = batch->validation_list[i].offset; } } if (ret == 0 && out_fence != NULL) *out_fence = execbuf.rsvd2 >> 32; return ret; } static int submit_batch(struct brw_context *brw, int in_fence_fd, int *out_fence_fd) { __DRIscreen *dri_screen = brw->screen->driScrnPriv; struct intel_batchbuffer *batch = &brw->batch; int ret = 0; if (batch->use_shadow_copy) { void *bo_map = brw_bo_map(brw, batch->batch.bo, MAP_WRITE); memcpy(bo_map, batch->batch.map, 4 * USED_BATCH(*batch)); bo_map = brw_bo_map(brw, batch->state.bo, MAP_WRITE); memcpy(bo_map, batch->state.map, batch->state_used); } brw_bo_unmap(batch->batch.bo); brw_bo_unmap(batch->state.bo); if (!brw->screen->no_hw) { /* The requirement for using I915_EXEC_NO_RELOC are: * * The addresses written in the objects must match the corresponding * reloc.gtt_offset which in turn must match the corresponding * execobject.offset. * * Any render targets written to in the batch must be flagged with * EXEC_OBJECT_WRITE. * * To avoid stalling, execobject.offset should match the current * address of that object within the active context. */ int flags = I915_EXEC_NO_RELOC | I915_EXEC_RENDER; if (batch->needs_sol_reset) flags |= I915_EXEC_GEN7_SOL_RESET; /* Set statebuffer relocations */ const unsigned state_index = batch->state.bo->index; if (state_index < batch->exec_count && batch->exec_bos[state_index] == batch->state.bo) { struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[state_index]; assert(entry->handle == batch->state.bo->gem_handle); entry->relocation_count = batch->state_relocs.reloc_count; entry->relocs_ptr = (uintptr_t) batch->state_relocs.relocs; } /* Set batchbuffer relocations */ struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[0]; assert(entry->handle == batch->batch.bo->gem_handle); entry->relocation_count = batch->batch_relocs.reloc_count; entry->relocs_ptr = (uintptr_t) batch->batch_relocs.relocs; if (batch->use_batch_first) { flags |= I915_EXEC_BATCH_FIRST | I915_EXEC_HANDLE_LUT; } else { /* Move the batch to the end of the validation list */ struct drm_i915_gem_exec_object2 tmp; struct brw_bo *tmp_bo; const unsigned index = batch->exec_count - 1; tmp = *entry; *entry = batch->validation_list[index]; batch->validation_list[index] = tmp; tmp_bo = batch->exec_bos[0]; batch->exec_bos[0] = batch->exec_bos[index]; batch->exec_bos[index] = tmp_bo; } ret = execbuffer(dri_screen->fd, batch, brw->hw_ctx, 4 * USED_BATCH(*batch), in_fence_fd, out_fence_fd, flags); throttle(brw); } if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) { gen_print_batch(&batch->decoder, batch->batch.map, 4 * USED_BATCH(*batch), batch->batch.bo->gtt_offset); } if (brw->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB) brw_check_for_reset(brw); if (ret != 0) { fprintf(stderr, "i965: Failed to submit batchbuffer: %s\n", strerror(-ret)); exit(1); } return ret; } /** * The in_fence_fd is ignored if -1. Otherwise this function takes ownership * of the fd. * * The out_fence_fd is ignored if NULL. Otherwise, the caller takes ownership * of the returned fd. */ int _intel_batchbuffer_flush_fence(struct brw_context *brw, int in_fence_fd, int *out_fence_fd, const char *file, int line) { int ret; if (USED_BATCH(brw->batch) == 0) return 0; /* Check that we didn't just wrap our batchbuffer at a bad time. */ assert(!brw->batch.no_wrap); brw_finish_batch(brw); brw_upload_finish(&brw->upload); finish_growing_bos(&brw->batch.batch); finish_growing_bos(&brw->batch.state); if (brw->throttle_batch[0] == NULL) { brw->throttle_batch[0] = brw->batch.batch.bo; brw_bo_reference(brw->throttle_batch[0]); } if (unlikely(INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT))) { int bytes_for_commands = 4 * USED_BATCH(brw->batch); int bytes_for_state = brw->batch.state_used; fprintf(stderr, "%19s:%-3d: Batchbuffer flush with %5db (%0.1f%%) (pkt)," " %5db (%0.1f%%) (state), %4d BOs (%0.1fMb aperture)," " %4d batch relocs, %4d state relocs\n", file, line, bytes_for_commands, 100.0f * bytes_for_commands / BATCH_SZ, bytes_for_state, 100.0f * bytes_for_state / STATE_SZ, brw->batch.exec_count, (float) (brw->batch.aperture_space / (1024 * 1024)), brw->batch.batch_relocs.reloc_count, brw->batch.state_relocs.reloc_count); dump_validation_list(&brw->batch); } ret = submit_batch(brw, in_fence_fd, out_fence_fd); if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) { fprintf(stderr, "waiting for idle\n"); brw_bo_wait_rendering(brw->batch.batch.bo); } /* Start a new batch buffer. */ brw_new_batch(brw); return ret; } bool brw_batch_references(struct intel_batchbuffer *batch, struct brw_bo *bo) { unsigned index = READ_ONCE(bo->index); if (index < batch->exec_count && batch->exec_bos[index] == bo) return true; for (int i = 0; i < batch->exec_count; i++) { if (batch->exec_bos[i] == bo) return true; } return false; } /* This is the only way buffers get added to the validate list. */ static uint64_t emit_reloc(struct intel_batchbuffer *batch, struct brw_reloc_list *rlist, uint32_t offset, struct brw_bo *target, int32_t target_offset, unsigned int reloc_flags) { assert(target != NULL); if (target->kflags & EXEC_OBJECT_PINNED) { brw_use_pinned_bo(batch, target, reloc_flags & RELOC_WRITE); return gen_canonical_address(target->gtt_offset + target_offset); } unsigned int index = add_exec_bo(batch, target); struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[index]; if (rlist->reloc_count == rlist->reloc_array_size) { rlist->reloc_array_size *= 2; rlist->relocs = realloc(rlist->relocs, rlist->reloc_array_size * sizeof(struct drm_i915_gem_relocation_entry)); } if (reloc_flags & RELOC_32BIT) { /* Restrict this buffer to the low 32 bits of the address space. * * Altering the validation list flags restricts it for this batch, * but we also alter the BO's kflags to restrict it permanently * (until the BO is destroyed and put back in the cache). Buffers * may stay bound across batches, and we want keep it constrained. */ target->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS; entry->flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS; /* RELOC_32BIT is not an EXEC_OBJECT_* flag, so get rid of it. */ reloc_flags &= ~RELOC_32BIT; } if (reloc_flags) entry->flags |= reloc_flags & batch->valid_reloc_flags; rlist->relocs[rlist->reloc_count++] = (struct drm_i915_gem_relocation_entry) { .offset = offset, .delta = target_offset, .target_handle = batch->use_batch_first ? index : target->gem_handle, .presumed_offset = entry->offset, }; /* Using the old buffer offset, write in what the right data would be, in * case the buffer doesn't move and we can short-circuit the relocation * processing in the kernel */ return entry->offset + target_offset; } void brw_use_pinned_bo(struct intel_batchbuffer *batch, struct brw_bo *bo, unsigned writable_flag) { assert(bo->kflags & EXEC_OBJECT_PINNED); assert((writable_flag & ~EXEC_OBJECT_WRITE) == 0); unsigned int index = add_exec_bo(batch, bo); struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[index]; assert(entry->offset == bo->gtt_offset); if (writable_flag) entry->flags |= EXEC_OBJECT_WRITE; } uint64_t brw_batch_reloc(struct intel_batchbuffer *batch, uint32_t batch_offset, struct brw_bo *target, uint32_t target_offset, unsigned int reloc_flags) { assert(batch_offset <= batch->batch.bo->size - sizeof(uint32_t)); return emit_reloc(batch, &batch->batch_relocs, batch_offset, target, target_offset, reloc_flags); } uint64_t brw_state_reloc(struct intel_batchbuffer *batch, uint32_t state_offset, struct brw_bo *target, uint32_t target_offset, unsigned int reloc_flags) { assert(state_offset <= batch->state.bo->size - sizeof(uint32_t)); return emit_reloc(batch, &batch->state_relocs, state_offset, target, target_offset, reloc_flags); } /** * Reserve some space in the statebuffer, or flush. * * This is used to estimate when we're near the end of the batch, * so we can flush early. */ void brw_require_statebuffer_space(struct brw_context *brw, int size) { if (brw->batch.state_used + size >= STATE_SZ) intel_batchbuffer_flush(brw); } /** * Allocates a block of space in the batchbuffer for indirect state. */ void * brw_state_batch(struct brw_context *brw, int size, int alignment, uint32_t *out_offset) { struct intel_batchbuffer *batch = &brw->batch; assert(size < batch->state.bo->size); uint32_t offset = ALIGN(batch->state_used, alignment); if (offset + size >= STATE_SZ && !batch->no_wrap) { intel_batchbuffer_flush(brw); offset = ALIGN(batch->state_used, alignment); } else if (offset + size >= batch->state.bo->size) { const unsigned new_size = MIN2(batch->state.bo->size + batch->state.bo->size / 2, MAX_STATE_SIZE); grow_buffer(brw, &batch->state, batch->state_used, new_size); assert(offset + size < batch->state.bo->size); } if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) { _mesa_hash_table_insert(batch->state_batch_sizes, (void *) (uintptr_t) offset, (void *) (uintptr_t) size); } batch->state_used = offset + size; *out_offset = offset; return batch->state.map + (offset >> 2); } void intel_batchbuffer_data(struct brw_context *brw, const void *data, GLuint bytes) { assert((bytes & 3) == 0); intel_batchbuffer_require_space(brw, bytes); memcpy(brw->batch.map_next, data, bytes); brw->batch.map_next += bytes >> 2; } static void load_sized_register_mem(struct brw_context *brw, uint32_t reg, struct brw_bo *bo, uint32_t offset, int size) { const struct gen_device_info *devinfo = &brw->screen->devinfo; int i; /* MI_LOAD_REGISTER_MEM only exists on Gen7+. */ assert(devinfo->gen >= 7); if (devinfo->gen >= 8) { BEGIN_BATCH(4 * size); for (i = 0; i < size; i++) { OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (4 - 2)); OUT_BATCH(reg + i * 4); OUT_RELOC64(bo, 0, offset + i * 4); } ADVANCE_BATCH(); } else { BEGIN_BATCH(3 * size); for (i = 0; i < size; i++) { OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2)); OUT_BATCH(reg + i * 4); OUT_RELOC(bo, 0, offset + i * 4); } ADVANCE_BATCH(); } } void brw_load_register_mem(struct brw_context *brw, uint32_t reg, struct brw_bo *bo, uint32_t offset) { load_sized_register_mem(brw, reg, bo, offset, 1); } void brw_load_register_mem64(struct brw_context *brw, uint32_t reg, struct brw_bo *bo, uint32_t offset) { load_sized_register_mem(brw, reg, bo, offset, 2); } /* * Write an arbitrary 32-bit register to a buffer via MI_STORE_REGISTER_MEM. */ void brw_store_register_mem32(struct brw_context *brw, struct brw_bo *bo, uint32_t reg, uint32_t offset) { const struct gen_device_info *devinfo = &brw->screen->devinfo; assert(devinfo->gen >= 6); if (devinfo->gen >= 8) { BEGIN_BATCH(4); OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2)); OUT_BATCH(reg); OUT_RELOC64(bo, RELOC_WRITE, offset); ADVANCE_BATCH(); } else { BEGIN_BATCH(3); OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2)); OUT_BATCH(reg); OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset); ADVANCE_BATCH(); } } /* * Write an arbitrary 64-bit register to a buffer via MI_STORE_REGISTER_MEM. */ void brw_store_register_mem64(struct brw_context *brw, struct brw_bo *bo, uint32_t reg, uint32_t offset) { const struct gen_device_info *devinfo = &brw->screen->devinfo; assert(devinfo->gen >= 6); /* MI_STORE_REGISTER_MEM only stores a single 32-bit value, so to * read a full 64-bit register, we need to do two of them. */ if (devinfo->gen >= 8) { BEGIN_BATCH(8); OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2)); OUT_BATCH(reg); OUT_RELOC64(bo, RELOC_WRITE, offset); OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2)); OUT_BATCH(reg + sizeof(uint32_t)); OUT_RELOC64(bo, RELOC_WRITE, offset + sizeof(uint32_t)); ADVANCE_BATCH(); } else { BEGIN_BATCH(6); OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2)); OUT_BATCH(reg); OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset); OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2)); OUT_BATCH(reg + sizeof(uint32_t)); OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset + sizeof(uint32_t)); ADVANCE_BATCH(); } } /* * Write a 32-bit register using immediate data. */ void brw_load_register_imm32(struct brw_context *brw, uint32_t reg, uint32_t imm) { assert(brw->screen->devinfo.gen >= 6); BEGIN_BATCH(3); OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2)); OUT_BATCH(reg); OUT_BATCH(imm); ADVANCE_BATCH(); } /* * Write a 64-bit register using immediate data. */ void brw_load_register_imm64(struct brw_context *brw, uint32_t reg, uint64_t imm) { assert(brw->screen->devinfo.gen >= 6); BEGIN_BATCH(5); OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2)); OUT_BATCH(reg); OUT_BATCH(imm & 0xffffffff); OUT_BATCH(reg + 4); OUT_BATCH(imm >> 32); ADVANCE_BATCH(); } /* * Copies a 32-bit register. */ void brw_load_register_reg(struct brw_context *brw, uint32_t src, uint32_t dest) { assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell); BEGIN_BATCH(3); OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2)); OUT_BATCH(src); OUT_BATCH(dest); ADVANCE_BATCH(); } /* * Copies a 64-bit register. */ void brw_load_register_reg64(struct brw_context *brw, uint32_t src, uint32_t dest) { assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell); BEGIN_BATCH(6); OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2)); OUT_BATCH(src); OUT_BATCH(dest); OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2)); OUT_BATCH(src + sizeof(uint32_t)); OUT_BATCH(dest + sizeof(uint32_t)); ADVANCE_BATCH(); } /* * Write 32-bits of immediate data to a GPU memory buffer. */ void brw_store_data_imm32(struct brw_context *brw, struct brw_bo *bo, uint32_t offset, uint32_t imm) { const struct gen_device_info *devinfo = &brw->screen->devinfo; assert(devinfo->gen >= 6); BEGIN_BATCH(4); OUT_BATCH(MI_STORE_DATA_IMM | (4 - 2)); if (devinfo->gen >= 8) OUT_RELOC64(bo, RELOC_WRITE, offset); else { OUT_BATCH(0); /* MBZ */ OUT_RELOC(bo, RELOC_WRITE, offset); } OUT_BATCH(imm); ADVANCE_BATCH(); } /* * Write 64-bits of immediate data to a GPU memory buffer. */ void brw_store_data_imm64(struct brw_context *brw, struct brw_bo *bo, uint32_t offset, uint64_t imm) { const struct gen_device_info *devinfo = &brw->screen->devinfo; assert(devinfo->gen >= 6); BEGIN_BATCH(5); OUT_BATCH(MI_STORE_DATA_IMM | (5 - 2)); if (devinfo->gen >= 8) OUT_RELOC64(bo, RELOC_WRITE, offset); else { OUT_BATCH(0); /* MBZ */ OUT_RELOC(bo, RELOC_WRITE, offset); } OUT_BATCH(imm & 0xffffffffu); OUT_BATCH(imm >> 32); ADVANCE_BATCH(); }