/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include "common/gen_device_info.h" #include "common/gen_sample_positions.h" #include "genxml/gen_macros.h" #include "main/bufferobj.h" #include "main/context.h" #include "main/enums.h" #include "main/macros.h" #include "brw_context.h" #if GEN_GEN == 6 #include "brw_defines.h" #endif #include "brw_draw.h" #include "brw_multisample_state.h" #include "brw_state.h" #include "brw_wm.h" #include "brw_util.h" #include "intel_batchbuffer.h" #include "intel_buffer_objects.h" #include "intel_fbo.h" #include "main/enums.h" #include "main/fbobject.h" #include "main/framebuffer.h" #include "main/glformats.h" #include "main/shaderapi.h" #include "main/stencil.h" #include "main/transformfeedback.h" #include "main/varray.h" #include "main/viewport.h" UNUSED static void * emit_dwords(struct brw_context *brw, unsigned n) { intel_batchbuffer_begin(brw, n, RENDER_RING); uint32_t *map = brw->batch.map_next; brw->batch.map_next += n; intel_batchbuffer_advance(brw); return map; } struct brw_address { struct brw_bo *bo; uint32_t read_domains; uint32_t write_domain; uint32_t offset; }; static uint64_t emit_reloc(struct brw_context *brw, void *location, struct brw_address address, uint32_t delta) { uint32_t offset = (char *) location - (char *) brw->batch.map; return brw_emit_reloc(&brw->batch, offset, address.bo, address.offset + delta, address.read_domains, address.write_domain); } #define __gen_address_type struct brw_address #define __gen_user_data struct brw_context static uint64_t __gen_combine_address(struct brw_context *brw, void *location, struct brw_address address, uint32_t delta) { if (address.bo == NULL) { return address.offset + delta; } else { return emit_reloc(brw, location, address, delta); } } static inline struct brw_address render_bo(struct brw_bo *bo, uint32_t offset) { return (struct brw_address) { .bo = bo, .offset = offset, .read_domains = I915_GEM_DOMAIN_RENDER, .write_domain = I915_GEM_DOMAIN_RENDER, }; } static inline struct brw_address render_ro_bo(struct brw_bo *bo, uint32_t offset) { return (struct brw_address) { .bo = bo, .offset = offset, .read_domains = I915_GEM_DOMAIN_RENDER, .write_domain = 0, }; } static inline struct brw_address instruction_bo(struct brw_bo *bo, uint32_t offset) { return (struct brw_address) { .bo = bo, .offset = offset, .read_domains = I915_GEM_DOMAIN_INSTRUCTION, .write_domain = I915_GEM_DOMAIN_INSTRUCTION, }; } static inline struct brw_address instruction_ro_bo(struct brw_bo *bo, uint32_t offset) { return (struct brw_address) { .bo = bo, .offset = offset, .read_domains = I915_GEM_DOMAIN_INSTRUCTION, .write_domain = 0, }; } static inline struct brw_address vertex_bo(struct brw_bo *bo, uint32_t offset) { return (struct brw_address) { .bo = bo, .offset = offset, .read_domains = I915_GEM_DOMAIN_VERTEX, .write_domain = 0, }; } #include "genxml/genX_pack.h" #define _brw_cmd_length(cmd) cmd ## _length #define _brw_cmd_length_bias(cmd) cmd ## _length_bias #define _brw_cmd_header(cmd) cmd ## _header #define _brw_cmd_pack(cmd) cmd ## _pack #define brw_batch_emit(brw, cmd, name) \ for (struct cmd name = { _brw_cmd_header(cmd) }, \ *_dst = emit_dwords(brw, _brw_cmd_length(cmd)); \ __builtin_expect(_dst != NULL, 1); \ _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \ _dst = NULL) #define brw_batch_emitn(brw, cmd, n, ...) ({ \ uint32_t *_dw = emit_dwords(brw, n); \ struct cmd template = { \ _brw_cmd_header(cmd), \ .DWordLength = n - _brw_cmd_length_bias(cmd), \ __VA_ARGS__ \ }; \ _brw_cmd_pack(cmd)(brw, _dw, &template); \ _dw + 1; /* Array starts at dw[1] */ \ }) #define brw_state_emit(brw, cmd, align, offset, name) \ for (struct cmd name = { 0, }, \ *_dst = brw_state_batch(brw, _brw_cmd_length(cmd) * 4, \ align, offset); \ __builtin_expect(_dst != NULL, 1); \ _brw_cmd_pack(cmd)(brw, (void *)_dst, &name), \ _dst = NULL) /** * Polygon stipple packet */ static void genX(upload_polygon_stipple)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; /* _NEW_POLYGON */ if (!ctx->Polygon.StippleFlag) return; brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) { /* Polygon stipple is provided in OpenGL order, i.e. bottom * row first. If we're rendering to a window (i.e. the * default frame buffer object, 0), then we need to invert * it to match our pixel layout. But if we're rendering * to a FBO (i.e. any named frame buffer object), we *don't* * need to invert - we already match the layout. */ if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) { for (unsigned i = 0; i < 32; i++) poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */ } else { for (unsigned i = 0; i < 32; i++) poly.PatternRow[i] = ctx->PolygonStipple[i]; } } } static const struct brw_tracked_state genX(polygon_stipple) = { .dirty = { .mesa = _NEW_POLYGON | _NEW_POLYGONSTIPPLE, .brw = BRW_NEW_CONTEXT, }, .emit = genX(upload_polygon_stipple), }; /** * Polygon stipple offset packet */ static void genX(upload_polygon_stipple_offset)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; /* _NEW_POLYGON */ if (!ctx->Polygon.StippleFlag) return; brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) { /* _NEW_BUFFERS * * If we're drawing to a system window we have to invert the Y axis * in order to match the OpenGL pixel coordinate system, and our * offset must be matched to the window position. If we're drawing * to a user-created FBO then our native pixel coordinate system * works just fine, and there's no window system to worry about. */ if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) { poly.PolygonStippleYOffset = (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31; } } } static const struct brw_tracked_state genX(polygon_stipple_offset) = { .dirty = { .mesa = _NEW_BUFFERS | _NEW_POLYGON, .brw = BRW_NEW_CONTEXT, }, .emit = genX(upload_polygon_stipple_offset), }; /** * Line stipple packet */ static void genX(upload_line_stipple)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; if (!ctx->Line.StippleFlag) return; brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) { line.LineStipplePattern = ctx->Line.StipplePattern; line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor; line.LineStippleRepeatCount = ctx->Line.StippleFactor; } } static const struct brw_tracked_state genX(line_stipple) = { .dirty = { .mesa = _NEW_LINE, .brw = BRW_NEW_CONTEXT, }, .emit = genX(upload_line_stipple), }; /* Constant single cliprect for framebuffer object or DRI2 drawing */ static void genX(upload_drawing_rect)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; const struct gl_framebuffer *fb = ctx->DrawBuffer; const unsigned int fb_width = _mesa_geometric_width(fb); const unsigned int fb_height = _mesa_geometric_height(fb); brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) { rect.ClippedDrawingRectangleXMax = fb_width - 1; rect.ClippedDrawingRectangleYMax = fb_height - 1; } } static const struct brw_tracked_state genX(drawing_rect) = { .dirty = { .mesa = _NEW_BUFFERS, .brw = BRW_NEW_BLORP | BRW_NEW_CONTEXT, }, .emit = genX(upload_drawing_rect), }; static uint32_t * genX(emit_vertex_buffer_state)(struct brw_context *brw, uint32_t *dw, unsigned buffer_nr, struct brw_bo *bo, unsigned start_offset, unsigned end_offset, unsigned stride, unsigned step_rate) { struct GENX(VERTEX_BUFFER_STATE) buf_state = { .VertexBufferIndex = buffer_nr, .BufferPitch = stride, .BufferStartingAddress = vertex_bo(bo, start_offset), #if GEN_GEN >= 8 .BufferSize = end_offset - start_offset, #endif #if GEN_GEN >= 7 .AddressModifyEnable = true, #endif #if GEN_GEN < 8 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA, .InstanceDataStepRate = step_rate, #if GEN_GEN >= 5 .EndAddress = vertex_bo(bo, end_offset - 1), #endif #endif #if GEN_GEN == 9 .VertexBufferMOCS = SKL_MOCS_WB, #elif GEN_GEN == 8 .VertexBufferMOCS = BDW_MOCS_WB, #elif GEN_GEN == 7 .VertexBufferMOCS = GEN7_MOCS_L3, #endif }; GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state); return dw + GENX(VERTEX_BUFFER_STATE_length); } UNUSED static bool is_passthru_format(uint32_t format) { switch (format) { case ISL_FORMAT_R64_PASSTHRU: case ISL_FORMAT_R64G64_PASSTHRU: case ISL_FORMAT_R64G64B64_PASSTHRU: case ISL_FORMAT_R64G64B64A64_PASSTHRU: return true; default: return false; } } UNUSED static int uploads_needed(uint32_t format) { if (!is_passthru_format(format)) return 1; switch (format) { case ISL_FORMAT_R64_PASSTHRU: case ISL_FORMAT_R64G64_PASSTHRU: return 1; case ISL_FORMAT_R64G64B64_PASSTHRU: case ISL_FORMAT_R64G64B64A64_PASSTHRU: return 2; default: unreachable("not reached"); } } /* * Returns the format that we are finally going to use when upload a vertex * element. It will only change if we are using *64*PASSTHRU formats, as for * gen < 8 they need to be splitted on two *32*FLOAT formats. * * @upload points in which upload we are. Valid values are [0,1] */ static uint32_t downsize_format_if_needed(uint32_t format, int upload) { assert(upload == 0 || upload == 1); if (!is_passthru_format(format)) return format; switch (format) { case ISL_FORMAT_R64_PASSTHRU: return ISL_FORMAT_R32G32_FLOAT; case ISL_FORMAT_R64G64_PASSTHRU: return ISL_FORMAT_R32G32B32A32_FLOAT; case ISL_FORMAT_R64G64B64_PASSTHRU: return !upload ? ISL_FORMAT_R32G32B32A32_FLOAT : ISL_FORMAT_R32G32_FLOAT; case ISL_FORMAT_R64G64B64A64_PASSTHRU: return ISL_FORMAT_R32G32B32A32_FLOAT; default: unreachable("not reached"); } } /* * Returns the number of componentes associated with a format that is used on * a 64 to 32 format split. See downsize_format() */ static int upload_format_size(uint32_t upload_format) { switch (upload_format) { case ISL_FORMAT_R32G32_FLOAT: return 2; case ISL_FORMAT_R32G32B32A32_FLOAT: return 4; default: unreachable("not reached"); } } static void genX(emit_vertices)(struct brw_context *brw) { uint32_t *dw; brw_prepare_vertices(brw); brw_prepare_shader_draw_parameters(brw); #if GEN_GEN < 6 brw_emit_query_begin(brw); #endif const struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(brw->vs.base.prog_data); #if GEN_GEN >= 8 struct gl_context *ctx = &brw->ctx; const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL || ctx->Polygon.BackMode != GL_FILL); if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) { unsigned vue = brw->vb.nr_enabled; /* The element for the edge flags must always be last, so we have to * insert the SGVS before it in that case. */ if (uses_edge_flag) { assert(vue > 0); vue--; } WARN_ONCE(vue >= 33, "Trying to insert VID/IID past 33rd vertex element, " "need to reorder the vertex attrbutes."); brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) { if (vs_prog_data->uses_vertexid) { vfs.VertexIDEnable = true; vfs.VertexIDComponentNumber = 2; vfs.VertexIDElementOffset = vue; } if (vs_prog_data->uses_instanceid) { vfs.InstanceIDEnable = true; vfs.InstanceIDComponentNumber = 3; vfs.InstanceIDElementOffset = vue; } } brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) { vfi.InstancingEnable = true; vfi.VertexElementIndex = vue; } } else { brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs); } /* Normally we don't need an element for the SGVS attribute because the * 3DSTATE_VF_SGVS instruction lets you store the generated attribute in an * element that is past the list in 3DSTATE_VERTEX_ELEMENTS. However if * we're using draw parameters then we need an element for the those * values. Additionally if there is an edge flag element then the SGVS * can't be inserted past that so we need a dummy element to ensure that * the edge flag is the last one. */ const bool needs_sgvs_element = (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance || ((vs_prog_data->uses_instanceid || vs_prog_data->uses_vertexid) && uses_edge_flag)); #else const bool needs_sgvs_element = (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance || vs_prog_data->uses_instanceid || vs_prog_data->uses_vertexid); #endif unsigned nr_elements = brw->vb.nr_enabled + needs_sgvs_element + vs_prog_data->uses_drawid; #if GEN_GEN < 8 /* If any of the formats of vb.enabled needs more that one upload, we need * to add it to nr_elements */ for (unsigned i = 0; i < brw->vb.nr_enabled; i++) { struct brw_vertex_element *input = brw->vb.enabled[i]; uint32_t format = brw_get_vertex_surface_type(brw, input->glarray); if (uploads_needed(format) > 1) nr_elements++; } #endif /* If the VS doesn't read any inputs (calculating vertex position from * a state variable for some reason, for example), emit a single pad * VERTEX_ELEMENT struct and bail. * * The stale VB state stays in place, but they don't do anything unless * a VE loads from them. */ if (nr_elements == 0) { dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS), 1 + GENX(VERTEX_ELEMENT_STATE_length)); struct GENX(VERTEX_ELEMENT_STATE) elem = { .Valid = true, .SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT, .Component0Control = VFCOMP_STORE_0, .Component1Control = VFCOMP_STORE_0, .Component2Control = VFCOMP_STORE_0, .Component3Control = VFCOMP_STORE_1_FP, }; GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem); return; } /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */ const bool uses_draw_params = vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance; const unsigned nr_buffers = brw->vb.nr_buffers + uses_draw_params + vs_prog_data->uses_drawid; if (nr_buffers) { assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17)); dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS), 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers); for (unsigned i = 0; i < brw->vb.nr_buffers; i++) { const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i]; /* Prior to Haswell and Bay Trail we have to use 4-component formats * to fake 3-component ones. In particular, we do this for * half-float and 8 and 16-bit integer formats. This means that the * vertex element may poke over the end of the buffer by 2 bytes. */ const unsigned padding = (GEN_GEN <= 7 && !brw->is_baytrail && !brw->is_haswell) * 2; const unsigned end = buffer->offset + buffer->size + padding; dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo, buffer->offset, end, buffer->stride, buffer->step_rate); } if (uses_draw_params) { dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers, brw->draw.draw_params_bo, brw->draw.draw_params_offset, brw->draw.draw_params_bo->size, 0 /* stride */, 0 /* step rate */); } if (vs_prog_data->uses_drawid) { dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1, brw->draw.draw_id_bo, brw->draw.draw_id_offset, brw->draw.draw_id_bo->size, 0 /* stride */, 0 /* step rate */); } } /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, * presumably for VertexID/InstanceID. */ #if GEN_GEN >= 6 assert(nr_elements <= 34); const struct brw_vertex_element *gen6_edgeflag_input = NULL; #else assert(nr_elements <= 18); #endif dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS), 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements); unsigned i; for (i = 0; i < brw->vb.nr_enabled; i++) { const struct brw_vertex_element *input = brw->vb.enabled[i]; uint32_t format = brw_get_vertex_surface_type(brw, input->glarray); uint32_t comp0 = VFCOMP_STORE_SRC; uint32_t comp1 = VFCOMP_STORE_SRC; uint32_t comp2 = VFCOMP_STORE_SRC; uint32_t comp3 = VFCOMP_STORE_SRC; const unsigned num_uploads = GEN_GEN < 8 ? uploads_needed(format) : 1; #if GEN_GEN >= 8 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE): * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an * element which has edge flag enabled." */ assert(!(is_passthru_format(format) && uses_edge_flag)); #endif /* The gen4 driver expects edgeflag to come in as a float, and passes * that float on to the tests in the clipper. Mesa's current vertex * attribute value for EdgeFlag is stored as a float, which works out. * glEdgeFlagPointer, on the other hand, gives us an unnormalized * integer ubyte. Just rewrite that to convert to a float. * * Gen6+ passes edgeflag as sideband along with the vertex, instead * of in the VUE. We have to upload it sideband as the last vertex * element according to the B-Spec. */ #if GEN_GEN >= 6 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) { gen6_edgeflag_input = input; continue; } #endif for (unsigned c = 0; c < num_uploads; c++) { const uint32_t upload_format = GEN_GEN >= 8 ? format : downsize_format_if_needed(format, c); /* If we need more that one upload, the offset stride would be 128 * bits (16 bytes), as for previous uploads we are using the full * entry. */ const unsigned offset = input->offset + c * 16; const int size = (GEN_GEN < 8 && is_passthru_format(format)) ? upload_format_size(upload_format) : input->glarray->Size; switch (size) { case 0: comp0 = VFCOMP_STORE_0; case 1: comp1 = VFCOMP_STORE_0; case 2: comp2 = VFCOMP_STORE_0; case 3: if (GEN_GEN >= 8 && input->glarray->Doubles) { comp3 = VFCOMP_STORE_0; } else if (input->glarray->Integer) { comp3 = VFCOMP_STORE_1_INT; } else { comp3 = VFCOMP_STORE_1_FP; } break; } #if GEN_GEN >= 8 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE): * * "When SourceElementFormat is set to one of the *64*_PASSTHRU * formats, 64-bit components are stored in the URB without any * conversion. In this case, vertex elements must be written as 128 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red * component into the URB, Component 1 must be specified as * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in * order to output a 128-bit vertex element, or Components 1-3 must * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit * vertex element." */ if (input->glarray->Doubles && !input->is_dual_slot) { /* Store vertex elements which correspond to double and dvec2 vertex * shader inputs as 128-bit vertex elements, instead of 256-bits. */ comp2 = VFCOMP_NOSTORE; comp3 = VFCOMP_NOSTORE; } #endif struct GENX(VERTEX_ELEMENT_STATE) elem_state = { .VertexBufferIndex = input->buffer, .Valid = true, .SourceElementFormat = upload_format, .SourceElementOffset = offset, .Component0Control = comp0, .Component1Control = comp1, .Component2Control = comp2, .Component3Control = comp3, #if GEN_GEN < 5 .DestinationElementOffset = i * 4, #endif }; GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state); dw += GENX(VERTEX_ELEMENT_STATE_length); } } if (needs_sgvs_element) { struct GENX(VERTEX_ELEMENT_STATE) elem_state = { .Valid = true, .Component0Control = VFCOMP_STORE_0, .Component1Control = VFCOMP_STORE_0, .Component2Control = VFCOMP_STORE_0, .Component3Control = VFCOMP_STORE_0, #if GEN_GEN < 5 .DestinationElementOffset = i * 4, #endif }; #if GEN_GEN >= 8 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) { elem_state.VertexBufferIndex = brw->vb.nr_buffers; elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT; elem_state.Component0Control = VFCOMP_STORE_SRC; elem_state.Component1Control = VFCOMP_STORE_SRC; } #else elem_state.VertexBufferIndex = brw->vb.nr_buffers; elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT; if (vs_prog_data->uses_basevertex) elem_state.Component0Control = VFCOMP_STORE_SRC; if (vs_prog_data->uses_baseinstance) elem_state.Component1Control = VFCOMP_STORE_SRC; if (vs_prog_data->uses_vertexid) elem_state.Component2Control = VFCOMP_STORE_VID; if (vs_prog_data->uses_instanceid) elem_state.Component3Control = VFCOMP_STORE_IID; #endif GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state); dw += GENX(VERTEX_ELEMENT_STATE_length); } if (vs_prog_data->uses_drawid) { struct GENX(VERTEX_ELEMENT_STATE) elem_state = { .Valid = true, .VertexBufferIndex = brw->vb.nr_buffers + 1, .SourceElementFormat = ISL_FORMAT_R32_UINT, .Component0Control = VFCOMP_STORE_SRC, .Component1Control = VFCOMP_STORE_0, .Component2Control = VFCOMP_STORE_0, .Component3Control = VFCOMP_STORE_0, #if GEN_GEN < 5 .DestinationElementOffset = i * 4, #endif }; GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state); dw += GENX(VERTEX_ELEMENT_STATE_length); } #if GEN_GEN >= 6 if (gen6_edgeflag_input) { const uint32_t format = brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray); struct GENX(VERTEX_ELEMENT_STATE) elem_state = { .Valid = true, .VertexBufferIndex = gen6_edgeflag_input->buffer, .EdgeFlagEnable = true, .SourceElementFormat = format, .SourceElementOffset = gen6_edgeflag_input->offset, .Component0Control = VFCOMP_STORE_SRC, .Component1Control = VFCOMP_STORE_0, .Component2Control = VFCOMP_STORE_0, .Component3Control = VFCOMP_STORE_0, }; GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state); dw += GENX(VERTEX_ELEMENT_STATE_length); } #endif #if GEN_GEN >= 8 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) { const struct brw_vertex_element *input = brw->vb.enabled[i]; const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer]; unsigned element_index; /* The edge flag element is reordered to be the last one in the code * above so we need to compensate for that in the element indices used * below. */ if (input == gen6_edgeflag_input) element_index = nr_elements - 1; else element_index = j++; brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) { vfi.VertexElementIndex = element_index; vfi.InstancingEnable = buffer->step_rate != 0; vfi.InstanceDataStepRate = buffer->step_rate; } } if (vs_prog_data->uses_drawid) { const unsigned element = brw->vb.nr_enabled + needs_sgvs_element; brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) { vfi.VertexElementIndex = element; } } #endif } static const struct brw_tracked_state genX(vertices) = { .dirty = { .mesa = _NEW_POLYGON, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_VERTICES | BRW_NEW_VS_PROG_DATA, }, .emit = genX(emit_vertices), }; static void genX(emit_index_buffer)(struct brw_context *brw) { const struct _mesa_index_buffer *index_buffer = brw->ib.ib; if (index_buffer == NULL) return; brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) { #if GEN_GEN < 8 && !GEN_IS_HASWELL ib.CutIndexEnable = brw->prim_restart.enable_cut_index; #endif ib.IndexFormat = brw_get_index_type(index_buffer->index_size); ib.BufferStartingAddress = vertex_bo(brw->ib.bo, 0); #if GEN_GEN >= 8 ib.IndexBufferMOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB; ib.BufferSize = brw->ib.size; #else ib.BufferEndingAddress = vertex_bo(brw->ib.bo, brw->ib.size - 1); #endif } } static const struct brw_tracked_state genX(index_buffer) = { .dirty = { .mesa = 0, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_INDEX_BUFFER, }, .emit = genX(emit_index_buffer), }; #if GEN_IS_HASWELL || GEN_GEN >= 8 static void genX(upload_cut_index)(struct brw_context *brw) { const struct gl_context *ctx = &brw->ctx; brw_batch_emit(brw, GENX(3DSTATE_VF), vf) { if (ctx->Array._PrimitiveRestart && brw->ib.ib) { vf.IndexedDrawCutIndexEnable = true; vf.CutIndex = _mesa_primitive_restart_index(ctx, brw->ib.index_size); } } } const struct brw_tracked_state genX(cut_index) = { .dirty = { .mesa = _NEW_TRANSFORM, .brw = BRW_NEW_INDEX_BUFFER, }, .emit = genX(upload_cut_index), }; #endif #if GEN_GEN >= 6 /** * Determine the appropriate attribute override value to store into the * 3DSTATE_SF structure for a given fragment shader attribute. The attribute * override value contains two pieces of information: the location of the * attribute in the VUE (relative to urb_entry_read_offset, see below), and a * flag indicating whether to "swizzle" the attribute based on the direction * the triangle is facing. * * If an attribute is "swizzled", then the given VUE location is used for * front-facing triangles, and the VUE location that immediately follows is * used for back-facing triangles. We use this to implement the mapping from * gl_FrontColor/gl_BackColor to gl_Color. * * urb_entry_read_offset is the offset into the VUE at which the SF unit is * being instructed to begin reading attribute data. It can be set to a * nonzero value to prevent the SF unit from wasting time reading elements of * the VUE that are not needed by the fragment shader. It is measured in * 256-bit increments. */ static void genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr, const struct brw_vue_map *vue_map, int urb_entry_read_offset, int fs_attr, bool two_side_color, uint32_t *max_source_attr) { /* Find the VUE slot for this attribute. */ int slot = vue_map->varying_to_slot[fs_attr]; /* Viewport and Layer are stored in the VUE header. We need to override * them to zero if earlier stages didn't write them, as GL requires that * they read back as zero when not explicitly set. */ if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) { attr->ComponentOverrideX = true; attr->ComponentOverrideW = true; attr->ConstantSource = CONST_0000; if (!(vue_map->slots_valid & VARYING_BIT_LAYER)) attr->ComponentOverrideY = true; if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT)) attr->ComponentOverrideZ = true; return; } /* If there was only a back color written but not front, use back * as the color instead of undefined */ if (slot == -1 && fs_attr == VARYING_SLOT_COL0) slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0]; if (slot == -1 && fs_attr == VARYING_SLOT_COL1) slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1]; if (slot == -1) { /* This attribute does not exist in the VUE--that means that the vertex * shader did not write to it. This means that either: * * (a) This attribute is a texture coordinate, and it is going to be * replaced with point coordinates (as a consequence of a call to * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the * hardware will ignore whatever attribute override we supply. * * (b) This attribute is read by the fragment shader but not written by * the vertex shader, so its value is undefined. Therefore the * attribute override we supply doesn't matter. * * (c) This attribute is gl_PrimitiveID, and it wasn't written by the * previous shader stage. * * Note that we don't have to worry about the cases where the attribute * is gl_PointCoord or is undergoing point sprite coordinate * replacement, because in those cases, this function isn't called. * * In case (c), we need to program the attribute overrides so that the * primitive ID will be stored in this slot. In every other case, the * attribute override we supply doesn't matter. So just go ahead and * program primitive ID in every case. */ attr->ComponentOverrideW = true; attr->ComponentOverrideX = true; attr->ComponentOverrideY = true; attr->ComponentOverrideZ = true; attr->ConstantSource = PRIM_ID; return; } /* Compute the location of the attribute relative to urb_entry_read_offset. * Each increment of urb_entry_read_offset represents a 256-bit value, so * it counts for two 128-bit VUE slots. */ int source_attr = slot - 2 * urb_entry_read_offset; assert(source_attr >= 0 && source_attr < 32); /* If we are doing two-sided color, and the VUE slot following this one * represents a back-facing color, then we need to instruct the SF unit to * do back-facing swizzling. */ bool swizzling = two_side_color && ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 && vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) || (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 && vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)); /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */ if (*max_source_attr < source_attr + swizzling) *max_source_attr = source_attr + swizzling; attr->SourceAttribute = source_attr; if (swizzling) attr->SwizzleSelect = INPUTATTR_FACING; } static void genX(calculate_attr_overrides)(const struct brw_context *brw, struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides, uint32_t *point_sprite_enables, uint32_t *urb_entry_read_length, uint32_t *urb_entry_read_offset) { const struct gl_context *ctx = &brw->ctx; /* _NEW_POINT */ const struct gl_point_attrib *point = &ctx->Point; /* BRW_NEW_FS_PROG_DATA */ const struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(brw->wm.base.prog_data); uint32_t max_source_attr = 0; *point_sprite_enables = 0; /* BRW_NEW_FRAGMENT_PROGRAM * * If the fragment shader reads VARYING_SLOT_LAYER, then we need to pass in * the full vertex header. Otherwise, we can program the SF to start * reading at an offset of 1 (2 varying slots) to skip unnecessary data: * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5 * - VARYING_SLOT_{PSIZ,LAYER} and VARYING_SLOT_POS on gen6+ */ bool fs_needs_vue_header = brw->fragment_program->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT); *urb_entry_read_offset = fs_needs_vue_header ? 0 : 1; /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE, * description of dw10 Point Sprite Texture Coordinate Enable: * * "This field must be programmed to zero when non-point primitives * are rendered." * * The SandyBridge PRM doesn't explicitly say that point sprite enables * must be programmed to zero when rendering non-point primitives, but * the IvyBridge PRM does, and if we don't, we get garbage. * * This is not required on Haswell, as the hardware ignores this state * when drawing non-points -- although we do still need to be careful to * correctly set the attr overrides. * * _NEW_POLYGON * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA */ bool drawing_points = brw_is_drawing_points(brw); for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) { int input_index = wm_prog_data->urb_setup[attr]; if (input_index < 0) continue; /* _NEW_POINT */ bool point_sprite = false; if (drawing_points) { if (point->PointSprite && (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) && (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) { point_sprite = true; } if (attr == VARYING_SLOT_PNTC) point_sprite = true; if (point_sprite) *point_sprite_enables |= (1 << input_index); } /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */ struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 }; if (!point_sprite) { genX(get_attr_override)(&attribute, &brw->vue_map_geom_out, *urb_entry_read_offset, attr, brw->ctx.VertexProgram._TwoSideEnabled, &max_source_attr); } /* The hardware can only do the overrides on 16 overrides at a * time, and the other up to 16 have to be lined up so that the * input index = the output index. We'll need to do some * tweaking to make sure that's the case. */ if (input_index < 16) attr_overrides[input_index] = attribute; else assert(attribute.SourceAttribute == input_index); } /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length": * * "This field should be set to the minimum length required to read the * maximum source attribute. The maximum source attribute is indicated * by the maximum value of the enabled Attribute # Source Attribute if * Attribute Swizzle Enable is set, Number of Output Attributes-1 if * enable is not set. * read_length = ceiling((max_source_attr + 1) / 2) * * [errata] Corruption/Hang possible if length programmed larger than * recommended" * * Similar text exists for Ivy Bridge. */ *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2); } #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 6 static void genX(upload_depth_stencil_state)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; /* _NEW_BUFFERS */ struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH); /* _NEW_DEPTH */ struct gl_depthbuffer_attrib *depth = &ctx->Depth; /* _NEW_STENCIL */ struct gl_stencil_attrib *stencil = &ctx->Stencil; const int b = stencil->_BackFace; #if GEN_GEN >= 8 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) { #else uint32_t ds_offset; brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, wmds) { #endif if (depth->Test && depth_irb) { wmds.DepthTestEnable = true; wmds.DepthBufferWriteEnable = brw_depth_writes_enabled(brw); wmds.DepthTestFunction = intel_translate_compare_func(depth->Func); } if (stencil->_Enabled) { wmds.StencilTestEnable = true; wmds.StencilWriteMask = stencil->WriteMask[0] & 0xff; wmds.StencilTestMask = stencil->ValueMask[0] & 0xff; wmds.StencilTestFunction = intel_translate_compare_func(stencil->Function[0]); wmds.StencilFailOp = intel_translate_stencil_op(stencil->FailFunc[0]); wmds.StencilPassDepthPassOp = intel_translate_stencil_op(stencil->ZPassFunc[0]); wmds.StencilPassDepthFailOp = intel_translate_stencil_op(stencil->ZFailFunc[0]); wmds.StencilBufferWriteEnable = stencil->_WriteEnabled; if (stencil->_TestTwoSide) { wmds.DoubleSidedStencilEnable = true; wmds.BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff; wmds.BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff; wmds.BackfaceStencilTestFunction = intel_translate_compare_func(stencil->Function[b]); wmds.BackfaceStencilFailOp = intel_translate_stencil_op(stencil->FailFunc[b]); wmds.BackfaceStencilPassDepthPassOp = intel_translate_stencil_op(stencil->ZPassFunc[b]); wmds.BackfaceStencilPassDepthFailOp = intel_translate_stencil_op(stencil->ZFailFunc[b]); } #if GEN_GEN >= 9 wmds.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0); wmds.BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b); #endif } } #if GEN_GEN == 6 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) { ptr.PointertoDEPTH_STENCIL_STATE = ds_offset; ptr.DEPTH_STENCIL_STATEChange = true; } #elif GEN_GEN == 7 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) { ptr.PointertoDEPTH_STENCIL_STATE = ds_offset; } #endif } static const struct brw_tracked_state genX(depth_stencil_state) = { .dirty = { .mesa = _NEW_BUFFERS | _NEW_DEPTH | _NEW_STENCIL, .brw = BRW_NEW_BLORP | (GEN_GEN >= 8 ? BRW_NEW_CONTEXT : BRW_NEW_BATCH | BRW_NEW_STATE_BASE_ADDRESS), }, .emit = genX(upload_depth_stencil_state), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 6 static void genX(upload_clip_state)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; /* _NEW_BUFFERS */ struct gl_framebuffer *fb = ctx->DrawBuffer; /* BRW_NEW_FS_PROG_DATA */ struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(brw->wm.base.prog_data); brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) { clip.StatisticsEnable = !brw->meta_in_progress; if (wm_prog_data->barycentric_interp_modes & BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) clip.NonPerspectiveBarycentricEnable = true; #if GEN_GEN >= 7 clip.EarlyCullEnable = true; #endif #if GEN_GEN == 7 clip.FrontWinding = ctx->Polygon._FrontBit == _mesa_is_user_fbo(fb); if (ctx->Polygon.CullFlag) { switch (ctx->Polygon.CullFaceMode) { case GL_FRONT: clip.CullMode = CULLMODE_FRONT; break; case GL_BACK: clip.CullMode = CULLMODE_BACK; break; case GL_FRONT_AND_BACK: clip.CullMode = CULLMODE_BOTH; break; default: unreachable("Should not get here: invalid CullFlag"); } } else { clip.CullMode = CULLMODE_NONE; } #endif #if GEN_GEN < 8 clip.UserClipDistanceCullTestEnableBitmask = brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask; clip.ViewportZClipTestEnable = !ctx->Transform.DepthClamp; #endif /* _NEW_LIGHT */ if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) { clip.TriangleStripListProvokingVertexSelect = 0; clip.TriangleFanProvokingVertexSelect = 1; clip.LineStripListProvokingVertexSelect = 0; } else { clip.TriangleStripListProvokingVertexSelect = 2; clip.TriangleFanProvokingVertexSelect = 2; clip.LineStripListProvokingVertexSelect = 1; } /* _NEW_TRANSFORM */ clip.UserClipDistanceClipTestEnableBitmask = ctx->Transform.ClipPlanesEnabled; #if GEN_GEN >= 8 clip.ForceUserClipDistanceClipTestEnableBitmask = true; #endif if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE) clip.APIMode = APIMODE_D3D; else clip.APIMode = APIMODE_OGL; clip.GuardbandClipTestEnable = true; /* BRW_NEW_VIEWPORT_COUNT */ const unsigned viewport_count = brw->clip.viewport_count; if (ctx->RasterDiscard) { clip.ClipMode = CLIPMODE_REJECT_ALL; #if GEN_GEN == 6 perf_debug("Rasterizer discard is currently implemented via the " "clipper; having the GS not write primitives would " "likely be faster.\n"); #endif } else { clip.ClipMode = CLIPMODE_NORMAL; } clip.ClipEnable = brw->primitive != _3DPRIM_RECTLIST; /* _NEW_POLYGON, * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE */ if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw)) clip.ViewportXYClipTestEnable = true; clip.MinimumPointWidth = 0.125; clip.MaximumPointWidth = 255.875; clip.MaximumVPIndex = viewport_count - 1; if (_mesa_geometric_layers(fb) == 0) clip.ForceZeroRTAIndexEnable = true; } } static const struct brw_tracked_state genX(clip_state) = { .dirty = { .mesa = _NEW_BUFFERS | _NEW_LIGHT | _NEW_POLYGON | _NEW_TRANSFORM, .brw = BRW_NEW_BLORP | BRW_NEW_CONTEXT | BRW_NEW_FS_PROG_DATA | BRW_NEW_GS_PROG_DATA | BRW_NEW_VS_PROG_DATA | BRW_NEW_META_IN_PROGRESS | BRW_NEW_PRIMITIVE | BRW_NEW_RASTERIZER_DISCARD | BRW_NEW_TES_PROG_DATA | BRW_NEW_VIEWPORT_COUNT, }, .emit = genX(upload_clip_state), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 6 static void genX(upload_sf)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; float point_size; #if GEN_GEN <= 7 /* _NEW_BUFFERS */ bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer); const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1; #endif brw_batch_emit(brw, GENX(3DSTATE_SF), sf) { sf.StatisticsEnable = true; sf.ViewportTransformEnable = true; #if GEN_GEN == 7 /* _NEW_BUFFERS */ sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw); #endif #if GEN_GEN <= 7 /* _NEW_POLYGON */ sf.FrontWinding = ctx->Polygon._FrontBit == render_to_fbo; sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill; sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine; sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint; switch (ctx->Polygon.FrontMode) { case GL_FILL: sf.FrontFaceFillMode = FILL_MODE_SOLID; break; case GL_LINE: sf.FrontFaceFillMode = FILL_MODE_WIREFRAME; break; case GL_POINT: sf.FrontFaceFillMode = FILL_MODE_POINT; break; default: unreachable("not reached"); } switch (ctx->Polygon.BackMode) { case GL_FILL: sf.BackFaceFillMode = FILL_MODE_SOLID; break; case GL_LINE: sf.BackFaceFillMode = FILL_MODE_WIREFRAME; break; case GL_POINT: sf.BackFaceFillMode = FILL_MODE_POINT; break; default: unreachable("not reached"); } sf.ScissorRectangleEnable = true; if (ctx->Polygon.CullFlag) { switch (ctx->Polygon.CullFaceMode) { case GL_FRONT: sf.CullMode = CULLMODE_FRONT; break; case GL_BACK: sf.CullMode = CULLMODE_BACK; break; case GL_FRONT_AND_BACK: sf.CullMode = CULLMODE_BOTH; break; default: unreachable("not reached"); } } else { sf.CullMode = CULLMODE_NONE; } #if GEN_IS_HASWELL sf.LineStippleEnable = ctx->Line.StippleFlag; #endif if (multisampled_fbo && ctx->Multisample.Enabled) sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN; sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2; sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor; sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp; #endif /* _NEW_LINE */ #if GEN_GEN == 8 if (brw->is_cherryview) sf.CHVLineWidth = brw_get_line_width(brw); else sf.LineWidth = brw_get_line_width(brw); #else sf.LineWidth = brw_get_line_width(brw); #endif if (ctx->Line.SmoothFlag) { sf.LineEndCapAntialiasingRegionWidth = _10pixels; #if GEN_GEN <= 7 sf.AntiAliasingEnable = true; #endif } /* _NEW_POINT - Clamp to ARB_point_parameters user limits */ point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize); /* Clamp to the hardware limits */ sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f); /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */ if (use_state_point_size(brw)) sf.PointWidthSource = State; #if GEN_GEN >= 8 /* _NEW_POINT | _NEW_MULTISAMPLE */ if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) && !ctx->Point.PointSprite) sf.SmoothPointEnable = true; #endif sf.AALineDistanceMode = AALINEDISTANCE_TRUE; /* _NEW_LIGHT */ if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) { sf.TriangleStripListProvokingVertexSelect = 2; sf.TriangleFanProvokingVertexSelect = 2; sf.LineStripListProvokingVertexSelect = 1; } else { sf.TriangleFanProvokingVertexSelect = 1; } #if GEN_GEN == 6 /* BRW_NEW_FS_PROG_DATA */ const struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(brw->wm.base.prog_data); sf.AttributeSwizzleEnable = true; sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs; /* * Window coordinates in an FBO are inverted, which means point * sprite origin must be inverted, too. */ if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) { sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT; } else { sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT; } /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM | * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA */ uint32_t urb_entry_read_length; uint32_t urb_entry_read_offset; uint32_t point_sprite_enables; genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables, &urb_entry_read_length, &urb_entry_read_offset); sf.VertexURBEntryReadLength = urb_entry_read_length; sf.VertexURBEntryReadOffset = urb_entry_read_offset; sf.PointSpriteTextureCoordinateEnable = point_sprite_enables; sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs; #endif } } static const struct brw_tracked_state genX(sf_state) = { .dirty = { .mesa = _NEW_LIGHT | _NEW_LINE | _NEW_MULTISAMPLE | _NEW_POINT | _NEW_PROGRAM | (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0), .brw = BRW_NEW_BLORP | BRW_NEW_CONTEXT | BRW_NEW_VUE_MAP_GEOM_OUT | (GEN_GEN <= 7 ? BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA : 0) | (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM : 0), }, .emit = genX(upload_sf), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 6 static void genX(upload_wm)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; /* BRW_NEW_FS_PROG_DATA */ const struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(brw->wm.base.prog_data); UNUSED bool writes_depth = wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF; #if GEN_GEN < 7 const struct brw_stage_state *stage_state = &brw->wm.base; const struct gen_device_info *devinfo = &brw->screen->devinfo; /* We can't fold this into gen6_upload_wm_push_constants(), because * according to the SNB PRM, vol 2 part 1 section 7.2.2 * (3DSTATE_CONSTANT_PS [DevSNB]): * * "[DevSNB]: This packet must be followed by WM_STATE." */ brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) { if (wm_prog_data->base.nr_params != 0) { wmcp.Buffer0Valid = true; /* Pointer to the WM constant buffer. Covered by the set of * state flags from gen6_upload_wm_push_constants. */ wmcp.PointertoPSConstantBuffer0 = stage_state->push_const_offset; wmcp.PSConstantBuffer0ReadLength = stage_state->push_const_size - 1; } } #endif brw_batch_emit(brw, GENX(3DSTATE_WM), wm) { wm.StatisticsEnable = true; wm.LineAntialiasingRegionWidth = _10pixels; wm.LineEndCapAntialiasingRegionWidth = _05pixels; #if GEN_GEN < 7 if (wm_prog_data->base.use_alt_mode) wm.FloatingPointMode = Alternate; wm.SamplerCount = DIV_ROUND_UP(stage_state->sampler_count, 4); wm.BindingTableEntryCount = wm_prog_data->base.binding_table.size_bytes / 4; wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1; wm._8PixelDispatchEnable = wm_prog_data->dispatch_8; wm._16PixelDispatchEnable = wm_prog_data->dispatch_16; wm.DispatchGRFStartRegisterForConstantSetupData0 = wm_prog_data->base.dispatch_grf_start_reg; wm.DispatchGRFStartRegisterForConstantSetupData2 = wm_prog_data->dispatch_grf_start_reg_2; wm.KernelStartPointer0 = stage_state->prog_offset; wm.KernelStartPointer2 = stage_state->prog_offset + wm_prog_data->prog_offset_2; wm.DualSourceBlendEnable = wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) && ctx->Color.Blend[0]._UsesDualSrc; wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask; wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs; /* From the SNB PRM, volume 2 part 1, page 281: * "If the PS kernel does not need the Position XY Offsets * to compute a Position XY value, then this field should be * programmed to POSOFFSET_NONE." * * "SW Recommendation: If the PS kernel needs the Position Offsets * to compute a Position XY value, this field should match Position * ZW Interpolation Mode to ensure a consistent position.xyzw * computation." * We only require XY sample offsets. So, this recommendation doesn't * look useful at the moment. We might need this in future. */ if (wm_prog_data->uses_pos_offset) wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE; else wm.PositionXYOffsetSelect = POSOFFSET_NONE; if (wm_prog_data->base.total_scratch) { wm.ScratchSpaceBasePointer = render_bo(stage_state->scratch_bo, ffs(stage_state->per_thread_scratch) - 11); } wm.PixelShaderComputedDepth = writes_depth; #endif wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT; /* _NEW_LINE */ wm.LineStippleEnable = ctx->Line.StippleFlag; /* _NEW_POLYGON */ wm.PolygonStippleEnable = ctx->Polygon.StippleFlag; wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes; #if GEN_GEN < 8 /* _NEW_BUFFERS */ const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1; wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth; wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w; if (wm_prog_data->uses_kill || _mesa_is_alpha_test_enabled(ctx) || _mesa_is_alpha_to_coverage_enabled(ctx) || wm_prog_data->uses_omask) { wm.PixelShaderKillsPixel = true; } /* _NEW_BUFFERS | _NEW_COLOR */ if (brw_color_buffer_write_enabled(brw) || writes_depth || wm_prog_data->has_side_effects || wm.PixelShaderKillsPixel) { wm.ThreadDispatchEnable = true; } if (multisampled_fbo) { /* _NEW_MULTISAMPLE */ if (ctx->Multisample.Enabled) wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN; else wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL; if (wm_prog_data->persample_dispatch) wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE; else wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL; } else { wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL; wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE; } #if GEN_GEN >= 7 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode; wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask; #endif /* The "UAV access enable" bits are unnecessary on HSW because they only * seem to have an effect on the HW-assisted coherency mechanism which we * don't need, and the rasterization-related UAV_ONLY flag and the * DISPATCH_ENABLE bit can be set independently from it. * C.f. gen8_upload_ps_extra(). * * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS | * _NEW_COLOR */ #if GEN_IS_HASWELL if (!(brw_color_buffer_write_enabled(brw) || writes_depth) && wm_prog_data->has_side_effects) wm.PSUAVonly = ON; #endif #endif #if GEN_GEN >= 7 /* BRW_NEW_FS_PROG_DATA */ if (wm_prog_data->early_fragment_tests) wm.EarlyDepthStencilControl = EDSC_PREPS; else if (wm_prog_data->has_side_effects) wm.EarlyDepthStencilControl = EDSC_PSEXEC; #endif } } static const struct brw_tracked_state genX(wm_state) = { .dirty = { .mesa = _NEW_LINE | _NEW_POLYGON | (GEN_GEN < 8 ? _NEW_BUFFERS | _NEW_COLOR | _NEW_MULTISAMPLE : 0) | (GEN_GEN < 7 ? _NEW_PROGRAM_CONSTANTS : 0), .brw = BRW_NEW_BLORP | BRW_NEW_FS_PROG_DATA | (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT), }, .emit = genX(upload_wm), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN == 4 static inline struct brw_address KSP(struct brw_context *brw, uint32_t offset) { return instruction_bo(brw->cache.bo, offset); } #else static inline uint32_t KSP(struct brw_context *brw, uint32_t offset) { return offset; } #endif #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \ pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset); \ pkt.SamplerCount = \ DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \ pkt.BindingTableEntryCount = \ stage_prog_data->binding_table.size_bytes / 4; \ pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \ \ if (stage_prog_data->total_scratch) { \ pkt.ScratchSpaceBasePointer = \ render_bo(stage_state->scratch_bo, 0); \ pkt.PerThreadScratchSpace = \ ffs(stage_state->per_thread_scratch) - 11; \ } \ \ pkt.DispatchGRFStartRegisterForURBData = \ stage_prog_data->dispatch_grf_start_reg; \ pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \ pkt.prefix##URBEntryReadOffset = 0; \ \ pkt.StatisticsEnable = true; \ pkt.Enable = true; static void genX(upload_vs_state)(struct brw_context *brw) { UNUSED struct gl_context *ctx = &brw->ctx; const struct gen_device_info *devinfo = &brw->screen->devinfo; struct brw_stage_state *stage_state = &brw->vs.base; /* BRW_NEW_VS_PROG_DATA */ const struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(brw->vs.base.prog_data); const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base; assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 || vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT); #if GEN_GEN == 6 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State, * 3DSTATE_VS, Dword 5.0 "VS Function Enable": * * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS * command that causes the VS Function Enable to toggle. Pipeline * flush can be executed by sending a PIPE_CONTROL command with CS * stall bit set and a post sync operation. * * We've already done such a flush at the start of state upload, so we * don't need to do another one here. */ brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) { if (stage_state->push_const_size != 0) { cvs.Buffer0Valid = true; cvs.PointertoVSConstantBuffer0 = stage_state->push_const_offset; cvs.VSConstantBuffer0ReadLength = stage_state->push_const_size - 1; } } #endif if (GEN_GEN == 7 && devinfo->is_ivybridge) gen7_emit_vs_workaround_flush(brw); #if GEN_GEN >= 6 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) { #else ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE; brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) { #endif INIT_THREAD_DISPATCH_FIELDS(vs, Vertex); vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1; #if GEN_GEN < 6 vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1; vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0); vs.URBEntryAllocationSize = brw->urb.vsize - 1; vs.MaximumNumberofThreads = CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1; vs.StatisticsEnable = false; vs.SamplerStateOffset = instruction_ro_bo(brw->batch.bo, stage_state->sampler_offset); #endif #if GEN_GEN == 5 /* Force single program flow on Ironlake. We cannot reliably get * all applications working without it. See: * https://bugs.freedesktop.org/show_bug.cgi?id=29172 * * The most notable and reliably failing application is the Humus * demo "CelShading" */ vs.SingleProgramFlow = true; vs.SamplerCount = 0; /* hardware requirement */ #endif #if GEN_GEN >= 8 vs.SIMD8DispatchEnable = vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8; vs.UserClipDistanceCullTestEnableBitmask = vue_prog_data->cull_distance_mask; #endif } #if GEN_GEN == 6 /* Based on my reading of the simulator, the VS constants don't get * pulled into the VS FF unit until an appropriate pipeline flush * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds * references to them into a little FIFO. The flushes are common, * but don't reliably happen between this and a 3DPRIMITIVE, causing * the primitive to use the wrong constants. Then the FIFO * containing the constant setup gets added to again on the next * constants change, and eventually when a flush does happen the * unit is overwhelmed by constant changes and dies. * * To avoid this, send a PIPE_CONTROL down the line that will * update the unit immediately loading the constants. The flush * type bits here were those set by the STATE_BASE_ADDRESS whose * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the * bug reports that led to this workaround, and may be more than * what is strictly required to avoid the issue. */ brw_emit_pipe_control_flush(brw, PIPE_CONTROL_DEPTH_STALL | PIPE_CONTROL_INSTRUCTION_INVALIDATE | PIPE_CONTROL_STATE_CACHE_INVALIDATE); #endif } static const struct brw_tracked_state genX(vs_state) = { .dirty = { .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0), .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_CONTEXT | BRW_NEW_VS_PROG_DATA | (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) | (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION | BRW_NEW_PROGRAM_CACHE | BRW_NEW_SAMPLER_STATE_TABLE | BRW_NEW_URB_FENCE : 0), }, .emit = genX(upload_vs_state), }; /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 6 static void brw_calculate_guardband_size(const struct gen_device_info *devinfo, uint32_t fb_width, uint32_t fb_height, float m00, float m11, float m30, float m31, float *xmin, float *xmax, float *ymin, float *ymax) { /* According to the "Vertex X,Y Clamping and Quantization" section of the * Strips and Fans documentation: * * "The vertex X and Y screen-space coordinates are also /clamped/ to the * fixed-point "guardband" range supported by the rasterization hardware" * * and * * "In almost all circumstances, if an object’s vertices are actually * modified by this clamping (i.e., had X or Y coordinates outside of * the guardband extent the rendered object will not match the intended * result. Therefore software should take steps to ensure that this does * not happen - e.g., by clipping objects such that they do not exceed * these limits after the Drawing Rectangle is applied." * * I believe the fundamental restriction is that the rasterizer (in * the SF/WM stages) have a limit on the number of pixels that can be * rasterized. We need to ensure any coordinates beyond the rasterizer * limit are handled by the clipper. So effectively that limit becomes * the clipper's guardband size. * * It goes on to say: * * "In addition, in order to be correctly rendered, objects must have a * screenspace bounding box not exceeding 8K in the X or Y direction. * This additional restriction must also be comprehended by software, * i.e., enforced by use of clipping." * * This makes no sense. Gen7+ hardware supports 16K render targets, * and you definitely need to be able to draw polygons that fill the * surface. Our assumption is that the rasterizer was limited to 8K * on Sandybridge, which only supports 8K surfaces, and it was actually * increased to 16K on Ivybridge and later. * * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge. */ const float gb_size = devinfo->gen >= 7 ? 16384.0f : 8192.0f; if (m00 != 0 && m11 != 0) { /* First, we compute the screen-space render area */ const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00); const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00); const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11); const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11); /* We want the guardband to be centered on that */ const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size; const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size; const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size; const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size; /* Now we need it in native device coordinates */ const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00; const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00; const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11; const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11; /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be * flipped upside-down. X should be fine though. */ assert(ndc_gb_xmin <= ndc_gb_xmax); *xmin = ndc_gb_xmin; *xmax = ndc_gb_xmax; *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax); *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax); } else { /* The viewport scales to 0, so nothing will be rendered. */ *xmin = 0.0f; *xmax = 0.0f; *ymin = 0.0f; *ymax = 0.0f; } } static void genX(upload_sf_clip_viewport)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; float y_scale, y_bias; const struct gen_device_info *devinfo = &brw->screen->devinfo; /* BRW_NEW_VIEWPORT_COUNT */ const unsigned viewport_count = brw->clip.viewport_count; /* _NEW_BUFFERS */ const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer); const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer); const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer); #if GEN_GEN >= 7 #define clv sfv struct GENX(SF_CLIP_VIEWPORT) sfv; uint32_t sf_clip_vp_offset; uint32_t *sf_clip_map = brw_state_batch(brw, 16 * 4 * viewport_count, 64, &sf_clip_vp_offset); #else struct GENX(SF_VIEWPORT) sfv; struct GENX(CLIP_VIEWPORT) clv; uint32_t *sf_map = brw_state_batch(brw, 8 * 4 * viewport_count, 32, &brw->sf.vp_offset); uint32_t *clip_map = brw_state_batch(brw, 4 * 4 * viewport_count, 32, &brw->clip.vp_offset); #endif /* _NEW_BUFFERS */ if (render_to_fbo) { y_scale = 1.0; y_bias = 0; } else { y_scale = -1.0; y_bias = (float)fb_height; } for (unsigned i = 0; i < brw->clip.viewport_count; i++) { /* _NEW_VIEWPORT: Guardband Clipping */ float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax; _mesa_get_viewport_xform(ctx, i, scale, translate); sfv.ViewportMatrixElementm00 = scale[0]; sfv.ViewportMatrixElementm11 = scale[1] * y_scale, sfv.ViewportMatrixElementm22 = scale[2], sfv.ViewportMatrixElementm30 = translate[0], sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias, sfv.ViewportMatrixElementm32 = translate[2], brw_calculate_guardband_size(devinfo, fb_width, fb_height, sfv.ViewportMatrixElementm00, sfv.ViewportMatrixElementm11, sfv.ViewportMatrixElementm30, sfv.ViewportMatrixElementm31, &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax); clv.XMinClipGuardband = gb_xmin; clv.XMaxClipGuardband = gb_xmax; clv.YMinClipGuardband = gb_ymin; clv.YMaxClipGuardband = gb_ymax; #if GEN_GEN >= 8 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport * The hardware will take the intersection of the drawing rectangle, * scissor rectangle, and the viewport extents. We don't need to be * smart, and can therefore just program the viewport extents. */ const float viewport_Xmax = ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width; const float viewport_Ymax = ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height; if (render_to_fbo) { sfv.XMinViewPort = ctx->ViewportArray[i].X; sfv.XMaxViewPort = viewport_Xmax - 1; sfv.YMinViewPort = ctx->ViewportArray[i].Y; sfv.YMaxViewPort = viewport_Ymax - 1; } else { sfv.XMinViewPort = ctx->ViewportArray[i].X; sfv.XMaxViewPort = viewport_Xmax - 1; sfv.YMinViewPort = fb_height - viewport_Ymax; sfv.YMaxViewPort = fb_height - ctx->ViewportArray[i].Y - 1; } #endif #if GEN_GEN >= 7 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv); sf_clip_map += 16; #else GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv); GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv); sf_map += 8; clip_map += 4; #endif } #if GEN_GEN >= 7 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) { ptr.SFClipViewportPointer = sf_clip_vp_offset; } #else brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP; #endif } static const struct brw_tracked_state genX(sf_clip_viewport) = { .dirty = { .mesa = _NEW_BUFFERS | _NEW_VIEWPORT, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_VIEWPORT_COUNT, }, .emit = genX(upload_sf_clip_viewport), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 6 static void genX(upload_gs_state)(struct brw_context *brw) { const struct gen_device_info *devinfo = &brw->screen->devinfo; const struct brw_stage_state *stage_state = &brw->gs.base; /* BRW_NEW_GEOMETRY_PROGRAM */ bool active = brw->geometry_program; /* BRW_NEW_GS_PROG_DATA */ struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data; const struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(stage_prog_data); #if GEN_GEN >= 7 const struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(stage_prog_data); #endif #if GEN_GEN < 7 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) { if (active && stage_state->push_const_size != 0) { cgs.Buffer0Valid = true; cgs.PointertoGSConstantBuffer0 = stage_state->push_const_offset; cgs.GSConstantBuffer0ReadLength = stage_state->push_const_size - 1; } } #endif #if GEN_GEN == 7 && !GEN_IS_HASWELL /** * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages > * Geometry > Geometry Shader > State: * * "Note: Because of corruption in IVB:GT2, software needs to flush the * whole fixed function pipeline when the GS enable changes value in * the 3DSTATE_GS." * * The hardware architects have clarified that in this context "flush the * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS * Stall" bit set. */ if (brw->gt == 2 && brw->gs.enabled != active) gen7_emit_cs_stall_flush(brw); #endif if (active) { brw_batch_emit(brw, GENX(3DSTATE_GS), gs) { INIT_THREAD_DISPATCH_FIELDS(gs, Vertex); #if GEN_GEN >= 7 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1; gs.OutputTopology = gs_prog_data->output_topology; gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords; gs.InstanceControl = gs_prog_data->invocations - 1; gs.DispatchMode = vue_prog_data->dispatch_mode; gs.IncludePrimitiveID = gs_prog_data->include_primitive_id; gs.ControlDataFormat = gs_prog_data->control_data_format; #endif /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between * Ivy Bridge and Haswell. * * On Ivy Bridge, setting this bit causes the vertices of a triangle * strip to be delivered to the geometry shader in an order that does * not strictly follow the OpenGL spec, but preserves triangle * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then * the geometry shader sees triangles: * * (1, 2, 3), (2, 4, 3), (3, 4, 5) * * (Clearing the bit is even worse, because it fails to preserve * orientation). * * Triangle strips with adjacency always ordered in a way that preserves * triangle orientation but does not strictly follow the OpenGL spec, * regardless of the setting of this bit. * * On Haswell, both triangle strips and triangle strips with adjacency * are always ordered in a way that preserves triangle orientation. * Setting this bit causes the ordering to strictly follow the OpenGL * spec. * * So in either case we want to set the bit. Unfortunately on Ivy * Bridge this will get the order close to correct but not perfect. */ gs.ReorderMode = TRAILING; gs.MaximumNumberofThreads = GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1) : (devinfo->max_gs_threads - 1); #if GEN_GEN < 7 gs.SOStatisticsEnable = true; gs.RenderingEnabled = 1; if (brw->geometry_program->info.has_transform_feedback_varyings) gs.SVBIPayloadEnable = true; /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it * was previously done for gen6. * * TODO: test with both disabled to see if the HW is behaving * as expected, like in gen7. */ gs.SingleProgramFlow = true; gs.VectorMaskEnable = true; #endif #if GEN_GEN >= 8 gs.ExpectedVertexCount = gs_prog_data->vertices_in; if (gs_prog_data->static_vertex_count != -1) { gs.StaticOutput = true; gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count; } gs.IncludeVertexHandles = vue_prog_data->include_vue_handles; gs.UserClipDistanceCullTestEnableBitmask = vue_prog_data->cull_distance_mask; const int urb_entry_write_offset = 1; const uint32_t urb_entry_output_length = DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) - urb_entry_write_offset; gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset; gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1); #endif } #if GEN_GEN < 7 } else if (brw->ff_gs.prog_active) { /* In gen6, transform feedback for the VS stage is done with an ad-hoc GS * program. This function provides the needed 3DSTATE_GS for this. */ upload_gs_state_for_tf(brw); #endif } else { brw_batch_emit(brw, GENX(3DSTATE_GS), gs) { gs.StatisticsEnable = true; #if GEN_GEN < 7 gs.RenderingEnabled = true; #endif #if GEN_GEN < 8 gs.DispatchGRFStartRegisterForURBData = 1; #if GEN_GEN >= 7 gs.IncludeVertexHandles = true; #endif #endif } } #if GEN_GEN < 7 brw->gs.enabled = active; #endif } static const struct brw_tracked_state genX(gs_state) = { .dirty = { .mesa = (GEN_GEN < 7 ? _NEW_PROGRAM_CONSTANTS : 0), .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_CONTEXT | BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_GS_PROG_DATA | (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0), }, .emit = genX(upload_gs_state), }; #endif /* ---------------------------------------------------------------------- */ #define blend_factor(x) brw_translate_blend_factor(x) #define blend_eqn(x) brw_translate_blend_equation(x) #if GEN_GEN >= 6 static void genX(upload_blend_state)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; int size; /* We need at least one BLEND_STATE written, because we might do * thread dispatch even if _NumColorDrawBuffers is 0 (for example * for computed depth or alpha test), which will do an FB write * with render target 0, which will reference BLEND_STATE[0] for * alpha test enable. */ int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers; if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled) nr_draw_buffers = 1; size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers; #if GEN_GEN >= 8 size += GENX(BLEND_STATE_length) * 4; #endif uint32_t *blend_map; blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset); #if GEN_GEN >= 8 struct GENX(BLEND_STATE) blend = { 0 }; { #else for (int i = 0; i < nr_draw_buffers; i++) { struct GENX(BLEND_STATE_ENTRY) entry = { 0 }; #define blend entry #endif /* OpenGL specification 3.3 (page 196), section 4.1.3 says: * "If drawbuffer zero is not NONE and the buffer it references has an * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE * operations are skipped." */ if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) { /* _NEW_MULTISAMPLE */ if (_mesa_is_multisample_enabled(ctx)) { if (ctx->Multisample.SampleAlphaToCoverage) { blend.AlphaToCoverageEnable = true; blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7; } if (ctx->Multisample.SampleAlphaToOne) blend.AlphaToOneEnable = true; } /* _NEW_COLOR */ if (ctx->Color.AlphaEnabled) { blend.AlphaTestEnable = true; blend.AlphaTestFunction = intel_translate_compare_func(ctx->Color.AlphaFunc); } if (ctx->Color.DitherFlag) { blend.ColorDitherEnable = true; } } #if GEN_GEN >= 8 for (int i = 0; i < nr_draw_buffers; i++) { struct GENX(BLEND_STATE_ENTRY) entry = { 0 }; #else { #endif /* _NEW_BUFFERS */ struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i]; /* Used for implementing the following bit of GL_EXT_texture_integer: * "Per-fragment operations that require floating-point color * components, including multisample alpha operations, alpha test, * blending, and dithering, have no effect when the corresponding * colors are written to an integer color buffer." */ bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i); /* _NEW_COLOR */ if (ctx->Color.ColorLogicOpEnabled) { GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format) : GL_UNSIGNED_NORMALIZED; WARN_ONCE(ctx->Color.LogicOp != GL_COPY && rb_type != GL_UNSIGNED_NORMALIZED && rb_type != GL_FLOAT, "Ignoring %s logic op on %s " "renderbuffer\n", _mesa_enum_to_string(ctx->Color.LogicOp), _mesa_enum_to_string(rb_type)); if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) { entry.LogicOpEnable = true; entry.LogicOpFunction = intel_translate_logic_op(ctx->Color.LogicOp); } } else if (ctx->Color.BlendEnabled & (1 << i) && !integer && !ctx->Color._AdvancedBlendMode) { GLenum eqRGB = ctx->Color.Blend[i].EquationRGB; GLenum eqA = ctx->Color.Blend[i].EquationA; GLenum srcRGB = ctx->Color.Blend[i].SrcRGB; GLenum dstRGB = ctx->Color.Blend[i].DstRGB; GLenum srcA = ctx->Color.Blend[i].SrcA; GLenum dstA = ctx->Color.Blend[i].DstA; if (eqRGB == GL_MIN || eqRGB == GL_MAX) srcRGB = dstRGB = GL_ONE; if (eqA == GL_MIN || eqA == GL_MAX) srcA = dstA = GL_ONE; /* Due to hardware limitations, the destination may have information * in an alpha channel even when the format specifies no alpha * channel. In order to avoid getting any incorrect blending due to * that alpha channel, coerce the blend factors to values that will * not read the alpha channel, but will instead use the correct * implicit value for alpha. */ if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat, GL_TEXTURE_ALPHA_TYPE)) { srcRGB = brw_fix_xRGB_alpha(srcRGB); srcA = brw_fix_xRGB_alpha(srcA); dstRGB = brw_fix_xRGB_alpha(dstRGB); dstA = brw_fix_xRGB_alpha(dstA); } entry.ColorBufferBlendEnable = true; entry.DestinationBlendFactor = blend_factor(dstRGB); entry.SourceBlendFactor = blend_factor(srcRGB); entry.DestinationAlphaBlendFactor = blend_factor(dstA); entry.SourceAlphaBlendFactor = blend_factor(srcA); entry.ColorBlendFunction = blend_eqn(eqRGB); entry.AlphaBlendFunction = blend_eqn(eqA); if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) blend.IndependentAlphaBlendEnable = true; } /* See section 8.1.6 "Pre-Blend Color Clamping" of the * SandyBridge PRM Volume 2 Part 1 for HW requirements. * * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR * clamping in the fragment shader. For its clamping of * blending, the spec says: * * "RESOLVED: For fixed-point color buffers, the inputs and * the result of the blending equation are clamped. For * floating-point color buffers, no clamping occurs." * * So, generally, we want clamping to the render target's range. * And, good news, the hardware tables for both pre- and * post-blend color clamping are either ignored, or any are * allowed, or clamping is required but RT range clamping is a * valid option. */ entry.PreBlendColorClampEnable = true; entry.PostBlendColorClampEnable = true; entry.ColorClampRange = COLORCLAMP_RTFORMAT; entry.WriteDisableRed = !ctx->Color.ColorMask[i][0]; entry.WriteDisableGreen = !ctx->Color.ColorMask[i][1]; entry.WriteDisableBlue = !ctx->Color.ColorMask[i][2]; entry.WriteDisableAlpha = !ctx->Color.ColorMask[i][3]; /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable): * "If Dual Source Blending is enabled, this bit must be disabled." */ WARN_ONCE(ctx->Color.Blend[i]._UsesDualSrc && _mesa_is_multisample_enabled(ctx) && ctx->Multisample.SampleAlphaToOne, "HW workaround: disabling alpha to one with dual src " "blending\n"); if (ctx->Color.Blend[i]._UsesDualSrc) blend.AlphaToOneEnable = false; #if GEN_GEN >= 8 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry); #else GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry); #endif } } #if GEN_GEN >= 8 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend); #endif #if GEN_GEN < 7 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) { ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset; ptr.BLEND_STATEChange = true; } #else brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) { ptr.BlendStatePointer = brw->cc.blend_state_offset; #if GEN_GEN >= 8 ptr.BlendStatePointerValid = true; #endif } #endif } static const struct brw_tracked_state genX(blend_state) = { .dirty = { .mesa = _NEW_BUFFERS | _NEW_COLOR | _NEW_MULTISAMPLE, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_STATE_BASE_ADDRESS, }, .emit = genX(upload_blend_state), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 6 static void genX(upload_scissor_state)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; const bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer); struct GENX(SCISSOR_RECT) scissor; uint32_t scissor_state_offset; const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer); const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer); uint32_t *scissor_map; /* BRW_NEW_VIEWPORT_COUNT */ const unsigned viewport_count = brw->clip.viewport_count; scissor_map = brw_state_batch( brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count, 32, &scissor_state_offset); /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */ /* The scissor only needs to handle the intersection of drawable and * scissor rect. Clipping to the boundaries of static shared buffers * for front/back/depth is covered by looping over cliprects in brw_draw.c. * * Note that the hardware's coordinates are inclusive, while Mesa's min is * inclusive but max is exclusive. */ for (unsigned i = 0; i < viewport_count; i++) { int bbox[4]; bbox[0] = MAX2(ctx->ViewportArray[i].X, 0); bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width); bbox[2] = MAX2(ctx->ViewportArray[i].Y, 0); bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height); _mesa_intersect_scissor_bounding_box(ctx, i, bbox); if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) { /* If the scissor was out of bounds and got clamped to 0 width/height * at the bounds, the subtraction of 1 from maximums could produce a * negative number and thus not clip anything. Instead, just provide * a min > max scissor inside the bounds, which produces the expected * no rendering. */ scissor.ScissorRectangleXMin = 1; scissor.ScissorRectangleXMax = 0; scissor.ScissorRectangleYMin = 1; scissor.ScissorRectangleYMax = 0; } else if (render_to_fbo) { /* texmemory: Y=0=bottom */ scissor.ScissorRectangleXMin = bbox[0]; scissor.ScissorRectangleXMax = bbox[1] - 1; scissor.ScissorRectangleYMin = bbox[2]; scissor.ScissorRectangleYMax = bbox[3] - 1; } else { /* memory: Y=0=top */ scissor.ScissorRectangleXMin = bbox[0]; scissor.ScissorRectangleXMax = bbox[1] - 1; scissor.ScissorRectangleYMin = fb_height - bbox[3]; scissor.ScissorRectangleYMax = fb_height - bbox[2] - 1; } GENX(SCISSOR_RECT_pack)( NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor); } brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) { ptr.ScissorRectPointer = scissor_state_offset; } } static const struct brw_tracked_state genX(scissor_state) = { .dirty = { .mesa = _NEW_BUFFERS | _NEW_SCISSOR | _NEW_VIEWPORT, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_VIEWPORT_COUNT, }, .emit = genX(upload_scissor_state), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 7 UNUSED static const uint32_t push_constant_opcodes[] = { [MESA_SHADER_VERTEX] = 21, [MESA_SHADER_TESS_CTRL] = 25, /* HS */ [MESA_SHADER_TESS_EVAL] = 26, /* DS */ [MESA_SHADER_GEOMETRY] = 22, [MESA_SHADER_FRAGMENT] = 23, [MESA_SHADER_COMPUTE] = 0, }; static void upload_constant_state(struct brw_context *brw, struct brw_stage_state *stage_state, bool active, uint32_t stage) { UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0; active = active && stage_state->push_const_size != 0; brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) { pkt._3DCommandSubOpcode = push_constant_opcodes[stage]; if (active) { #if GEN_GEN >= 8 || GEN_IS_HASWELL pkt.ConstantBody.ConstantBuffer2ReadLength = stage_state->push_const_size; pkt.ConstantBody.PointerToConstantBuffer2 = render_ro_bo(brw->curbe.curbe_bo, stage_state->push_const_offset); #else pkt.ConstantBody.ConstantBuffer0ReadLength = stage_state->push_const_size; pkt.ConstantBody.PointerToConstantBuffer0.offset = stage_state->push_const_offset | mocs; #endif } } brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0; } #endif #if GEN_GEN >= 6 static void genX(upload_vs_push_constants)(struct brw_context *brw) { struct brw_stage_state *stage_state = &brw->vs.base; /* _BRW_NEW_VERTEX_PROGRAM */ const struct brw_program *vp = brw_program_const(brw->vertex_program); /* BRW_NEW_VS_PROG_DATA */ const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data; _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_VERTEX); gen6_upload_push_constants(brw, &vp->program, prog_data, stage_state); #if GEN_GEN >= 7 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !brw->is_baytrail) gen7_emit_vs_workaround_flush(brw); upload_constant_state(brw, stage_state, true /* active */, MESA_SHADER_VERTEX); #endif } static const struct brw_tracked_state genX(vs_push_constants) = { .dirty = { .mesa = _NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_PUSH_CONSTANT_ALLOCATION | BRW_NEW_VERTEX_PROGRAM | BRW_NEW_VS_PROG_DATA, }, .emit = genX(upload_vs_push_constants), }; static void genX(upload_gs_push_constants)(struct brw_context *brw) { struct brw_stage_state *stage_state = &brw->gs.base; /* BRW_NEW_GEOMETRY_PROGRAM */ const struct brw_program *gp = brw_program_const(brw->geometry_program); if (gp) { /* BRW_NEW_GS_PROG_DATA */ struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data; _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_GEOMETRY); gen6_upload_push_constants(brw, &gp->program, prog_data, stage_state); } #if GEN_GEN >= 7 upload_constant_state(brw, stage_state, gp, MESA_SHADER_GEOMETRY); #endif } static const struct brw_tracked_state genX(gs_push_constants) = { .dirty = { .mesa = _NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_GS_PROG_DATA | BRW_NEW_PUSH_CONSTANT_ALLOCATION, }, .emit = genX(upload_gs_push_constants), }; static void genX(upload_wm_push_constants)(struct brw_context *brw) { struct brw_stage_state *stage_state = &brw->wm.base; /* BRW_NEW_FRAGMENT_PROGRAM */ const struct brw_program *fp = brw_program_const(brw->fragment_program); /* BRW_NEW_FS_PROG_DATA */ const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data; _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_FRAGMENT); gen6_upload_push_constants(brw, &fp->program, prog_data, stage_state); #if GEN_GEN >= 7 upload_constant_state(brw, stage_state, true, MESA_SHADER_FRAGMENT); #endif } static const struct brw_tracked_state genX(wm_push_constants) = { .dirty = { .mesa = _NEW_PROGRAM_CONSTANTS, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | BRW_NEW_PUSH_CONSTANT_ALLOCATION, }, .emit = genX(upload_wm_push_constants), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 6 static unsigned genX(determine_sample_mask)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; float coverage = 1.0f; float coverage_invert = false; unsigned sample_mask = ~0u; /* BRW_NEW_NUM_SAMPLES */ unsigned num_samples = brw->num_samples; if (_mesa_is_multisample_enabled(ctx)) { if (ctx->Multisample.SampleCoverage) { coverage = ctx->Multisample.SampleCoverageValue; coverage_invert = ctx->Multisample.SampleCoverageInvert; } if (ctx->Multisample.SampleMask) { sample_mask = ctx->Multisample.SampleMaskValue; } } if (num_samples > 1) { int coverage_int = (int) (num_samples * coverage + 0.5f); uint32_t coverage_bits = (1 << coverage_int) - 1; if (coverage_invert) coverage_bits ^= (1 << num_samples) - 1; return coverage_bits & sample_mask; } else { return 1; } } static void genX(emit_3dstate_multisample2)(struct brw_context *brw, unsigned num_samples) { assert(brw->num_samples <= 16); unsigned log2_samples = ffs(MAX2(num_samples, 1)) - 1; brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) { multi.PixelLocation = CENTER; multi.NumberofMultisamples = log2_samples; #if GEN_GEN == 6 GEN_SAMPLE_POS_4X(multi.Sample); #elif GEN_GEN == 7 switch (num_samples) { case 1: GEN_SAMPLE_POS_1X(multi.Sample); break; case 2: GEN_SAMPLE_POS_2X(multi.Sample); break; case 4: GEN_SAMPLE_POS_4X(multi.Sample); break; case 8: GEN_SAMPLE_POS_8X(multi.Sample); break; default: break; } #endif } } static void genX(upload_multisample_state)(struct brw_context *brw) { genX(emit_3dstate_multisample2)(brw, brw->num_samples); brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) { sm.SampleMask = genX(determine_sample_mask)(brw); } } static const struct brw_tracked_state genX(multisample_state) = { .dirty = { .mesa = _NEW_MULTISAMPLE, .brw = BRW_NEW_BLORP | BRW_NEW_CONTEXT | BRW_NEW_NUM_SAMPLES, }, .emit = genX(upload_multisample_state) }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 6 static void genX(upload_color_calc_state)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) { /* _NEW_COLOR */ cc.AlphaTestFormat = ALPHATEST_UNORM8; UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8, ctx->Color.AlphaRef); #if GEN_GEN < 9 /* _NEW_STENCIL */ cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0); cc.BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace); #endif /* _NEW_COLOR */ cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0]; cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1]; cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2]; cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3]; } brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) { ptr.ColorCalcStatePointer = brw->cc.state_offset; #if GEN_GEN != 7 ptr.ColorCalcStatePointerValid = true; #endif } } static const struct brw_tracked_state genX(color_calc_state) = { .dirty = { .mesa = _NEW_COLOR | _NEW_STENCIL, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_CC_STATE | BRW_NEW_STATE_BASE_ADDRESS, }, .emit = genX(upload_color_calc_state), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 7 static void genX(upload_sbe)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; /* BRW_NEW_FS_PROG_DATA */ const struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(brw->wm.base.prog_data); #if GEN_GEN >= 8 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } }; #else #define attr_overrides sbe.Attribute #endif uint32_t urb_entry_read_length; uint32_t urb_entry_read_offset; uint32_t point_sprite_enables; brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) { sbe.AttributeSwizzleEnable = true; sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs; /* _NEW_BUFFERS */ bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer); /* _NEW_POINT * * Window coordinates in an FBO are inverted, which means point * sprite origin must be inverted. */ if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT; else sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT; /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM, * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA | * BRW_NEW_VUE_MAP_GEOM_OUT */ genX(calculate_attr_overrides)(brw, attr_overrides, &point_sprite_enables, &urb_entry_read_length, &urb_entry_read_offset); /* Typically, the URB entry read length and offset should be programmed * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active * stage which produces geometry. However, we don't know the proper * value until we call calculate_attr_overrides(). * * To fit with our existing code, we override the inherited values and * specify it here directly, as we did on previous generations. */ sbe.VertexURBEntryReadLength = urb_entry_read_length; sbe.VertexURBEntryReadOffset = urb_entry_read_offset; sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables; sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs; #if GEN_GEN >= 8 sbe.ForceVertexURBEntryReadLength = true; sbe.ForceVertexURBEntryReadOffset = true; #endif #if GEN_GEN >= 9 /* prepare the active component dwords */ int input_index = 0; for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) { if (!(brw->fragment_program->info.inputs_read & BITFIELD64_BIT(attr))) { continue; } assert(input_index < 32); sbe.AttributeActiveComponentFormat[input_index] = ACTIVE_COMPONENT_XYZW; ++input_index; } #endif } #if GEN_GEN >= 8 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) { for (int i = 0; i < 16; i++) sbes.Attribute[i] = attr_overrides[i]; } #endif #undef attr_overrides } static const struct brw_tracked_state genX(sbe_state) = { .dirty = { .mesa = _NEW_BUFFERS | _NEW_LIGHT | _NEW_POINT | _NEW_POLYGON | _NEW_PROGRAM, .brw = BRW_NEW_BLORP | BRW_NEW_CONTEXT | BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA | BRW_NEW_VUE_MAP_GEOM_OUT | (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE : 0), }, .emit = genX(upload_sbe), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 7 /** * Outputs the 3DSTATE_SO_DECL_LIST command. * * The data output is a series of 64-bit entries containing a SO_DECL per * stream. We only have one stream of rendering coming out of the GS unit, so * we only emit stream 0 (low 16 bits) SO_DECLs. */ static void genX(upload_3dstate_so_decl_list)(struct brw_context *brw, const struct brw_vue_map *vue_map) { struct gl_context *ctx = &brw->ctx; /* BRW_NEW_TRANSFORM_FEEDBACK */ struct gl_transform_feedback_object *xfb_obj = ctx->TransformFeedback.CurrentObject; const struct gl_transform_feedback_info *linked_xfb_info = xfb_obj->program->sh.LinkedTransformFeedback; struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128]; int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0}; int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0}; int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0}; int max_decls = 0; STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS); memset(so_decl, 0, sizeof(so_decl)); /* Construct the list of SO_DECLs to be emitted. The formatting of the * command feels strange -- each dword pair contains a SO_DECL per stream. */ for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) { int buffer = linked_xfb_info->Outputs[i].OutputBuffer; struct GENX(SO_DECL) decl = {0}; int varying = linked_xfb_info->Outputs[i].OutputRegister; const unsigned components = linked_xfb_info->Outputs[i].NumComponents; unsigned component_mask = (1 << components) - 1; unsigned stream_id = linked_xfb_info->Outputs[i].StreamId; unsigned decl_buffer_slot = buffer; assert(stream_id < MAX_VERTEX_STREAMS); /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w * gl_Layer is stored in VARYING_SLOT_PSIZ.y * gl_ViewportIndex is stored in VARYING_SLOT_PSIZ.z */ if (varying == VARYING_SLOT_PSIZ) { assert(components == 1); component_mask <<= 3; } else if (varying == VARYING_SLOT_LAYER) { assert(components == 1); component_mask <<= 1; } else if (varying == VARYING_SLOT_VIEWPORT) { assert(components == 1); component_mask <<= 2; } else { component_mask <<= linked_xfb_info->Outputs[i].ComponentOffset; } buffer_mask[stream_id] |= 1 << buffer; decl.OutputBufferSlot = decl_buffer_slot; if (varying == VARYING_SLOT_LAYER || varying == VARYING_SLOT_VIEWPORT) { decl.RegisterIndex = vue_map->varying_to_slot[VARYING_SLOT_PSIZ]; } else { assert(vue_map->varying_to_slot[varying] >= 0); decl.RegisterIndex = vue_map->varying_to_slot[varying]; } decl.ComponentMask = component_mask; /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[] * array. Instead, it simply increments DstOffset for the following * input by the number of components that should be skipped. * * Our hardware is unusual in that it requires us to program SO_DECLs * for fake "hole" components, rather than simply taking the offset * for each real varying. Each hole can have size 1, 2, 3, or 4; we * program as many size = 4 holes as we can, then a final hole to * accommodate the final 1, 2, or 3 remaining. */ int skip_components = linked_xfb_info->Outputs[i].DstOffset - next_offset[buffer]; next_offset[buffer] += skip_components; while (skip_components >= 4) { struct GENX(SO_DECL) *d = &so_decl[stream_id][decls[stream_id]++]; d->HoleFlag = 1; d->OutputBufferSlot = decl_buffer_slot; d->ComponentMask = 0xf; skip_components -= 4; } if (skip_components > 0) { struct GENX(SO_DECL) *d = &so_decl[stream_id][decls[stream_id]++]; d->HoleFlag = 1; d->OutputBufferSlot = decl_buffer_slot; d->ComponentMask = (1 << skip_components) - 1; } assert(linked_xfb_info->Outputs[i].DstOffset == next_offset[buffer]); next_offset[buffer] += components; so_decl[stream_id][decls[stream_id]++] = decl; if (decls[stream_id] > max_decls) max_decls = decls[stream_id]; } uint32_t *dw; dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls, .StreamtoBufferSelects0 = buffer_mask[0], .StreamtoBufferSelects1 = buffer_mask[1], .StreamtoBufferSelects2 = buffer_mask[2], .StreamtoBufferSelects3 = buffer_mask[3], .NumEntries0 = decls[0], .NumEntries1 = decls[1], .NumEntries2 = decls[2], .NumEntries3 = decls[3]); for (int i = 0; i < max_decls; i++) { GENX(SO_DECL_ENTRY_pack)( brw, dw + 2 + i * 2, &(struct GENX(SO_DECL_ENTRY)) { .Stream0Decl = so_decl[0][i], .Stream1Decl = so_decl[1][i], .Stream2Decl = so_decl[2][i], .Stream3Decl = so_decl[3][i], }); } } static void genX(upload_3dstate_so_buffers)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; /* BRW_NEW_TRANSFORM_FEEDBACK */ struct gl_transform_feedback_object *xfb_obj = ctx->TransformFeedback.CurrentObject; #if GEN_GEN < 8 const struct gl_transform_feedback_info *linked_xfb_info = xfb_obj->program->sh.LinkedTransformFeedback; #else struct brw_transform_feedback_object *brw_obj = (struct brw_transform_feedback_object *) xfb_obj; uint32_t mocs_wb = brw->gen >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB; #endif /* Set up the up to 4 output buffers. These are the ranges defined in the * gl_transform_feedback_object. */ for (int i = 0; i < 4; i++) { struct intel_buffer_object *bufferobj = intel_buffer_object(xfb_obj->Buffers[i]); if (!bufferobj) { brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) { sob.SOBufferIndex = i; } continue; } uint32_t start = xfb_obj->Offset[i]; assert(start % 4 == 0); uint32_t end = ALIGN(start + xfb_obj->Size[i], 4); struct brw_bo *bo = intel_bufferobj_buffer(brw, bufferobj, start, end - start); assert(end <= bo->size); brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) { sob.SOBufferIndex = i; sob.SurfaceBaseAddress = render_bo(bo, start); #if GEN_GEN < 8 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4; sob.SurfaceEndAddress = render_bo(bo, end); #else sob.SOBufferEnable = true; sob.StreamOffsetWriteEnable = true; sob.StreamOutputBufferOffsetAddressEnable = true; sob.SOBufferMOCS = mocs_wb; sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1; sob.StreamOutputBufferOffsetAddress = instruction_bo(brw_obj->offset_bo, i * sizeof(uint32_t)); if (brw_obj->zero_offsets) { /* Zero out the offset and write that to offset_bo */ sob.StreamOffset = 0; } else { /* Use offset_bo as the "Stream Offset." */ sob.StreamOffset = 0xFFFFFFFF; } #endif } } #if GEN_GEN >= 8 brw_obj->zero_offsets = false; #endif } static inline bool query_active(struct gl_query_object *q) { return q && q->Active; } static void genX(upload_3dstate_streamout)(struct brw_context *brw, bool active, const struct brw_vue_map *vue_map) { struct gl_context *ctx = &brw->ctx; /* BRW_NEW_TRANSFORM_FEEDBACK */ struct gl_transform_feedback_object *xfb_obj = ctx->TransformFeedback.CurrentObject; brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) { if (active) { int urb_entry_read_offset = 0; int urb_entry_read_length = (vue_map->num_slots + 1) / 2 - urb_entry_read_offset; sos.SOFunctionEnable = true; sos.SOStatisticsEnable = true; /* BRW_NEW_RASTERIZER_DISCARD */ if (ctx->RasterDiscard) { if (!query_active(ctx->Query.PrimitivesGenerated[0])) { sos.RenderingDisable = true; } else { perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED " "query active relies on the clipper."); } } /* _NEW_LIGHT */ if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) sos.ReorderMode = TRAILING; #if GEN_GEN < 8 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL; sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL; sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL; sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL; #else const struct gl_transform_feedback_info *linked_xfb_info = xfb_obj->program->sh.LinkedTransformFeedback; /* Set buffer pitches; 0 means unbound. */ if (xfb_obj->Buffers[0]) sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4; if (xfb_obj->Buffers[1]) sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4; if (xfb_obj->Buffers[2]) sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4; if (xfb_obj->Buffers[3]) sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4; #endif /* We always read the whole vertex. This could be reduced at some * point by reading less and offsetting the register index in the * SO_DECLs. */ sos.Stream0VertexReadOffset = urb_entry_read_offset; sos.Stream0VertexReadLength = urb_entry_read_length - 1; sos.Stream1VertexReadOffset = urb_entry_read_offset; sos.Stream1VertexReadLength = urb_entry_read_length - 1; sos.Stream2VertexReadOffset = urb_entry_read_offset; sos.Stream2VertexReadLength = urb_entry_read_length - 1; sos.Stream3VertexReadOffset = urb_entry_read_offset; sos.Stream3VertexReadLength = urb_entry_read_length - 1; } } } static void genX(upload_sol)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; /* BRW_NEW_TRANSFORM_FEEDBACK */ bool active = _mesa_is_xfb_active_and_unpaused(ctx); if (active) { genX(upload_3dstate_so_buffers)(brw); /* BRW_NEW_VUE_MAP_GEOM_OUT */ genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out); } /* Finally, set up the SOL stage. This command must always follow updates to * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or * MMIO register updates (current performed by the kernel at each batch * emit). */ genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out); } static const struct brw_tracked_state genX(sol_state) = { .dirty = { .mesa = _NEW_LIGHT, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_RASTERIZER_DISCARD | BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_TRANSFORM_FEEDBACK, }, .emit = genX(upload_sol), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 7 static void genX(upload_ps)(struct brw_context *brw) { UNUSED const struct gl_context *ctx = &brw->ctx; UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo; /* BRW_NEW_FS_PROG_DATA */ const struct brw_wm_prog_data *prog_data = brw_wm_prog_data(brw->wm.base.prog_data); const struct brw_stage_state *stage_state = &brw->wm.base; #if GEN_GEN < 8 #endif brw_batch_emit(brw, GENX(3DSTATE_PS), ps) { /* Initialize the execution mask with VMask. Otherwise, derivatives are * incorrect for subspans where some of the pixels are unlit. We believe * the bit just didn't take effect in previous generations. */ ps.VectorMaskEnable = GEN_GEN >= 8; ps.SamplerCount = DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); /* BRW_NEW_FS_PROG_DATA */ ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4; if (prog_data->base.use_alt_mode) ps.FloatingPointMode = Alternate; /* Haswell requires the sample mask to be set in this packet as well as * in 3DSTATE_SAMPLE_MASK; the values should match. */ /* _NEW_BUFFERS, _NEW_MULTISAMPLE */ #if GEN_IS_HASWELL ps.SampleMask = genX(determine_sample_mask(brw)); #endif /* 3DSTATE_PS expects the number of threads per PSD, which is always 64; * it implicitly scales for different GT levels (which have some # of * PSDs). * * In Gen8 the format is U8-2 whereas in Gen9 it is U8-1. */ #if GEN_GEN >= 9 ps.MaximumNumberofThreadsPerPSD = 64 - 1; #elif GEN_GEN >= 8 ps.MaximumNumberofThreadsPerPSD = 64 - 2; #else ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1; #endif if (prog_data->base.nr_params > 0) ps.PushConstantEnable = true; #if GEN_GEN < 8 /* From the IVB PRM, volume 2 part 1, page 287: * "This bit is inserted in the PS payload header and made available to * the DataPort (either via the message header or via header bypass) to * indicate that oMask data (one or two phases) is included in Render * Target Write messages. If present, the oMask data is used to mask off * samples." */ ps.oMaskPresenttoRenderTarget = prog_data->uses_omask; /* The hardware wedges if you have this bit set but don't turn on any * dual source blend factors. * * BRW_NEW_FS_PROG_DATA | _NEW_COLOR */ ps.DualSourceBlendEnable = prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) && ctx->Color.Blend[0]._UsesDualSrc; /* BRW_NEW_FS_PROG_DATA */ ps.AttributeEnable = (prog_data->num_varying_inputs != 0); #endif /* From the documentation for this packet: * "If the PS kernel does not need the Position XY Offsets to * compute a Position Value, then this field should be programmed * to POSOFFSET_NONE." * * "SW Recommendation: If the PS kernel needs the Position Offsets * to compute a Position XY value, this field should match Position * ZW Interpolation Mode to ensure a consistent position.xyzw * computation." * * We only require XY sample offsets. So, this recommendation doesn't * look useful at the moment. We might need this in future. */ if (prog_data->uses_pos_offset) ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE; else ps.PositionXYOffsetSelect = POSOFFSET_NONE; ps.RenderTargetFastClearEnable = brw->wm.fast_clear_op; ps._8PixelDispatchEnable = prog_data->dispatch_8; ps._16PixelDispatchEnable = prog_data->dispatch_16; ps.DispatchGRFStartRegisterForConstantSetupData0 = prog_data->base.dispatch_grf_start_reg; ps.DispatchGRFStartRegisterForConstantSetupData2 = prog_data->dispatch_grf_start_reg_2; ps.KernelStartPointer0 = stage_state->prog_offset; ps.KernelStartPointer2 = stage_state->prog_offset + prog_data->prog_offset_2; if (prog_data->base.total_scratch) { ps.ScratchSpaceBasePointer = render_bo(stage_state->scratch_bo, ffs(stage_state->per_thread_scratch) - 11); } } } static const struct brw_tracked_state genX(ps_state) = { .dirty = { .mesa = _NEW_MULTISAMPLE | (GEN_GEN < 8 ? _NEW_BUFFERS | _NEW_COLOR : 0), .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_FS_PROG_DATA, }, .emit = genX(upload_ps), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 7 static void genX(upload_hs_state)(struct brw_context *brw) { const struct gen_device_info *devinfo = &brw->screen->devinfo; struct brw_stage_state *stage_state = &brw->tcs.base; struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data; const struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(stage_prog_data); /* BRW_NEW_TES_PROG_DATA */ struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(stage_prog_data); if (!tcs_prog_data) { brw_batch_emit(brw, GENX(3DSTATE_HS), hs); } else { brw_batch_emit(brw, GENX(3DSTATE_HS), hs) { INIT_THREAD_DISPATCH_FIELDS(hs, Vertex); hs.InstanceCount = tcs_prog_data->instances - 1; hs.IncludeVertexHandles = true; hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1; } } } static const struct brw_tracked_state genX(hs_state) = { .dirty = { .mesa = 0, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_TCS_PROG_DATA | BRW_NEW_TESS_PROGRAMS, }, .emit = genX(upload_hs_state), }; static void genX(upload_ds_state)(struct brw_context *brw) { const struct gen_device_info *devinfo = &brw->screen->devinfo; const struct brw_stage_state *stage_state = &brw->tes.base; struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data; /* BRW_NEW_TES_PROG_DATA */ const struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(stage_prog_data); const struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(stage_prog_data); if (!tes_prog_data) { brw_batch_emit(brw, GENX(3DSTATE_DS), ds); } else { brw_batch_emit(brw, GENX(3DSTATE_DS), ds) { INIT_THREAD_DISPATCH_FIELDS(ds, Patch); ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1; ds.ComputeWCoordinateEnable = tes_prog_data->domain == BRW_TESS_DOMAIN_TRI; #if GEN_GEN >= 8 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8) ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH; ds.UserClipDistanceCullTestEnableBitmask = vue_prog_data->cull_distance_mask; #endif } } } static const struct brw_tracked_state genX(ds_state) = { .dirty = { .mesa = 0, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_TESS_PROGRAMS | BRW_NEW_TES_PROG_DATA, }, .emit = genX(upload_ds_state), }; /* ---------------------------------------------------------------------- */ static void upload_te_state(struct brw_context *brw) { /* BRW_NEW_TESS_PROGRAMS */ bool active = brw->tess_eval_program; /* BRW_NEW_TES_PROG_DATA */ const struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(brw->tes.base.prog_data); if (active) { brw_batch_emit(brw, GENX(3DSTATE_TE), te) { te.Partitioning = tes_prog_data->partitioning; te.OutputTopology = tes_prog_data->output_topology; te.TEDomain = tes_prog_data->domain; te.TEEnable = true; te.MaximumTessellationFactorOdd = 63.0; te.MaximumTessellationFactorNotOdd = 64.0; } } else { brw_batch_emit(brw, GENX(3DSTATE_TE), te); } } static const struct brw_tracked_state genX(te_state) = { .dirty = { .mesa = 0, .brw = BRW_NEW_BLORP | BRW_NEW_CONTEXT | BRW_NEW_TES_PROG_DATA | BRW_NEW_TESS_PROGRAMS, }, .emit = upload_te_state, }; /* ---------------------------------------------------------------------- */ static void genX(upload_tes_push_constants)(struct brw_context *brw) { struct brw_stage_state *stage_state = &brw->tes.base; /* BRW_NEW_TESS_PROGRAMS */ const struct brw_program *tep = brw_program_const(brw->tess_eval_program); if (tep) { /* BRW_NEW_TES_PROG_DATA */ const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data; _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_EVAL); gen6_upload_push_constants(brw, &tep->program, prog_data, stage_state); } upload_constant_state(brw, stage_state, tep, MESA_SHADER_TESS_EVAL); } static const struct brw_tracked_state genX(tes_push_constants) = { .dirty = { .mesa = _NEW_PROGRAM_CONSTANTS, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_PUSH_CONSTANT_ALLOCATION | BRW_NEW_TESS_PROGRAMS | BRW_NEW_TES_PROG_DATA, }, .emit = genX(upload_tes_push_constants), }; static void genX(upload_tcs_push_constants)(struct brw_context *brw) { struct brw_stage_state *stage_state = &brw->tcs.base; /* BRW_NEW_TESS_PROGRAMS */ const struct brw_program *tcp = brw_program_const(brw->tess_ctrl_program); bool active = brw->tess_eval_program; if (active) { /* BRW_NEW_TCS_PROG_DATA */ const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data; _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_TESS_CTRL); gen6_upload_push_constants(brw, &tcp->program, prog_data, stage_state); } upload_constant_state(brw, stage_state, active, MESA_SHADER_TESS_CTRL); } static const struct brw_tracked_state genX(tcs_push_constants) = { .dirty = { .mesa = _NEW_PROGRAM_CONSTANTS, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_DEFAULT_TESS_LEVELS | BRW_NEW_PUSH_CONSTANT_ALLOCATION | BRW_NEW_TESS_PROGRAMS | BRW_NEW_TCS_PROG_DATA, }, .emit = genX(upload_tcs_push_constants), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 7 static void genX(upload_cs_state)(struct brw_context *brw) { if (!brw->cs.base.prog_data) return; uint32_t offset; uint32_t *desc = (uint32_t*) brw_state_batch( brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64, &offset); struct brw_stage_state *stage_state = &brw->cs.base; struct brw_stage_prog_data *prog_data = stage_state->prog_data; struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data); const struct gen_device_info *devinfo = &brw->screen->devinfo; if (INTEL_DEBUG & DEBUG_SHADER_TIME) { brw_emit_buffer_surface_state( brw, &stage_state->surf_offset[ prog_data->binding_table.shader_time_start], brw->shader_time.bo, 0, ISL_FORMAT_RAW, brw->shader_time.bo->size, 1, true); } uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes, 32, &stage_state->bind_bo_offset); brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) { if (prog_data->total_scratch) { uint32_t bo_offset; if (GEN_GEN >= 8) { /* Broadwell's Per Thread Scratch Space is in the range [0, 11] * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M. */ bo_offset = ffs(stage_state->per_thread_scratch) - 11; } else if (GEN_IS_HASWELL) { /* Haswell's Per Thread Scratch Space is in the range [0, 10] * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M. */ bo_offset = ffs(stage_state->per_thread_scratch) - 12; } else { /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB] * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB. */ bo_offset = stage_state->per_thread_scratch / 1024 - 1; } vfe.ScratchSpaceBasePointer = render_bo(stage_state->scratch_bo, bo_offset); } const uint32_t subslices = MAX2(brw->screen->subslice_total, 1); vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1; vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;; vfe.ResetGatewayTimer = Resettingrelativetimerandlatchingtheglobaltimestamp; #if GEN_GEN < 9 vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol; #endif #if GEN_GEN == 7 vfe.GPGPUMode = 1; #endif /* We are uploading duplicated copies of push constant uniforms for each * thread. Although the local id data needs to vary per thread, it won't * change for other uniform data. Unfortunately this duplication is * required for gen7. As of Haswell, this duplication can be avoided, * but this older mechanism with duplicated data continues to work. * * FINISHME: As of Haswell, we could make use of the * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length" * field to only store one copy of uniform data. * * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage" * which is described in the GPGPU_WALKER command and in the Broadwell * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of * Operations => GPGPU Mode => Indirect Payload Storage. * * Note: The constant data is built in brw_upload_cs_push_constants * below. */ vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0; const uint32_t vfe_curbe_allocation = ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads + cs_prog_data->push.cross_thread.regs, 2); vfe.CURBEAllocationSize = vfe_curbe_allocation; } if (cs_prog_data->push.total.size > 0) { brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) { curbe.CURBETotalDataLength = ALIGN(cs_prog_data->push.total.size, 64); curbe.CURBEDataStartAddress = stage_state->push_const_offset; } } /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */ memcpy(bind, stage_state->surf_offset, prog_data->binding_table.size_bytes); const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = { .KernelStartPointer = brw->cs.base.prog_offset, .SamplerStatePointer = stage_state->sampler_offset, .SamplerCount = DIV_ROUND_UP(stage_state->sampler_count, 4) >> 2, .BindingTablePointer = stage_state->bind_bo_offset, .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs, .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads, .SharedLocalMemorySize = encode_slm_size(devinfo->gen, prog_data->total_shared), .BarrierEnable = cs_prog_data->uses_barrier, #if GEN_GEN >= 8 || GEN_IS_HASWELL .CrossThreadConstantDataReadLength = cs_prog_data->push.cross_thread.regs, #endif }; GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd); brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) { load.InterfaceDescriptorTotalLength = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t); load.InterfaceDescriptorDataStartAddress = offset; } } static const struct brw_tracked_state genX(cs_state) = { .dirty = { .mesa = _NEW_PROGRAM_CONSTANTS, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_CS_PROG_DATA | BRW_NEW_SAMPLER_STATE_TABLE | BRW_NEW_SURFACES, }, .emit = genX(upload_cs_state) }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 8 static void genX(upload_raster)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; /* _NEW_BUFFERS */ bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer); /* _NEW_POLYGON */ struct gl_polygon_attrib *polygon = &ctx->Polygon; /* _NEW_POINT */ struct gl_point_attrib *point = &ctx->Point; brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) { if (polygon->_FrontBit == render_to_fbo) raster.FrontWinding = CounterClockwise; if (polygon->CullFlag) { switch (polygon->CullFaceMode) { case GL_FRONT: raster.CullMode = CULLMODE_FRONT; break; case GL_BACK: raster.CullMode = CULLMODE_BACK; break; case GL_FRONT_AND_BACK: raster.CullMode = CULLMODE_BOTH; break; default: unreachable("not reached"); } } else { raster.CullMode = CULLMODE_NONE; } point->SmoothFlag = raster.SmoothPointEnable; raster.DXMultisampleRasterizationEnable = _mesa_is_multisample_enabled(ctx); raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill; raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine; raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint; switch (polygon->FrontMode) { case GL_FILL: raster.FrontFaceFillMode = FILL_MODE_SOLID; break; case GL_LINE: raster.FrontFaceFillMode = FILL_MODE_WIREFRAME; break; case GL_POINT: raster.FrontFaceFillMode = FILL_MODE_POINT; break; default: unreachable("not reached"); } switch (polygon->BackMode) { case GL_FILL: raster.BackFaceFillMode = FILL_MODE_SOLID; break; case GL_LINE: raster.BackFaceFillMode = FILL_MODE_WIREFRAME; break; case GL_POINT: raster.BackFaceFillMode = FILL_MODE_POINT; break; default: unreachable("not reached"); } /* _NEW_LINE */ raster.AntialiasingEnable = ctx->Line.SmoothFlag; /* _NEW_SCISSOR */ raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags; /* _NEW_TRANSFORM */ if (!ctx->Transform.DepthClamp) { #if GEN_GEN >= 9 raster.ViewportZFarClipTestEnable = true; raster.ViewportZNearClipTestEnable = true; #else raster.ViewportZClipTestEnable = true; #endif } /* BRW_NEW_CONSERVATIVE_RASTERIZATION */ #if GEN_GEN >= 9 raster.ConservativeRasterizationEnable = ctx->IntelConservativeRasterization; #endif raster.GlobalDepthOffsetClamp = polygon->OffsetClamp; raster.GlobalDepthOffsetScale = polygon->OffsetFactor; raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2; } } static const struct brw_tracked_state genX(raster_state) = { .dirty = { .mesa = _NEW_BUFFERS | _NEW_LINE | _NEW_MULTISAMPLE | _NEW_POINT | _NEW_POLYGON | _NEW_SCISSOR | _NEW_TRANSFORM, .brw = BRW_NEW_BLORP | BRW_NEW_CONTEXT | BRW_NEW_CONSERVATIVE_RASTERIZATION, }, .emit = genX(upload_raster), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 8 static void genX(upload_ps_extra)(struct brw_context *brw) { UNUSED struct gl_context *ctx = &brw->ctx; const struct brw_wm_prog_data *prog_data = brw_wm_prog_data(brw->wm.base.prog_data); brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) { psx.PixelShaderValid = true; psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode; psx.PixelShaderKillsPixel = prog_data->uses_kill; psx.AttributeEnable = prog_data->num_varying_inputs != 0; psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth; psx.PixelShaderUsesSourceW = prog_data->uses_src_w; psx.PixelShaderIsPerSample = prog_data->persample_dispatch; /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */ if (prog_data->uses_sample_mask) { #if GEN_GEN >= 9 if (prog_data->post_depth_coverage) psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE; else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization) psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE; else psx.InputCoverageMaskState = ICMS_NORMAL; #else psx.PixelShaderUsesInputCoverageMask = true; #endif } psx.oMaskPresenttoRenderTarget = prog_data->uses_omask; #if GEN_GEN >= 9 psx.PixelShaderPullsBary = prog_data->pulls_bary; psx.PixelShaderComputesStencil = prog_data->computed_stencil; #endif /* The stricter cross-primitive coherency guarantees that the hardware * gives us with the "Accesses UAV" bit set for at least one shader stage * and the "UAV coherency required" bit set on the 3DPRIMITIVE command * are redundant within the current image, atomic counter and SSBO GL * APIs, which all have very loose ordering and coherency requirements * and generally rely on the application to insert explicit barriers when * a shader invocation is expected to see the memory writes performed by * the invocations of some previous primitive. Regardless of the value * of "UAV coherency required", the "Accesses UAV" bits will implicitly * cause an in most cases useless DC flush when the lowermost stage with * the bit set finishes execution. * * It would be nice to disable it, but in some cases we can't because on * Gen8+ it also has an influence on rasterization via the PS UAV-only * signal (which could be set independently from the coherency mechanism * in the 3DSTATE_WM command on Gen7), and because in some cases it will * determine whether the hardware skips execution of the fragment shader * or not via the ThreadDispatchEnable signal. However if we know that * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any * difference so we may just disable it here. * * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't * take into account KillPixels when no depth or stencil writes are * enabled. In order for occlusion queries to work correctly with no * attachments, we need to force-enable here. * * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | * _NEW_COLOR */ if ((prog_data->has_side_effects || prog_data->uses_kill) && !brw_color_buffer_write_enabled(brw)) psx.PixelShaderHasUAV = true; } } const struct brw_tracked_state genX(ps_extra) = { .dirty = { .mesa = _NEW_BUFFERS | _NEW_COLOR, .brw = BRW_NEW_BLORP | BRW_NEW_CONTEXT | BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | BRW_NEW_CONSERVATIVE_RASTERIZATION, }, .emit = genX(upload_ps_extra), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 8 static void genX(upload_ps_blend)(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; /* _NEW_BUFFERS */ struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1; /* _NEW_COLOR */ struct gl_colorbuffer_attrib *color = &ctx->Color; brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) { /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */ pb.HasWriteableRT = brw_color_buffer_write_enabled(brw); if (!buffer0_is_integer) { /* _NEW_MULTISAMPLE */ pb.AlphaToCoverageEnable = _mesa_is_multisample_enabled(ctx) && ctx->Multisample.SampleAlphaToCoverage; pb.AlphaTestEnable = color->AlphaEnabled; } /* Used for implementing the following bit of GL_EXT_texture_integer: * "Per-fragment operations that require floating-point color * components, including multisample alpha operations, alpha test, * blending, and dithering, have no effect when the corresponding * colors are written to an integer color buffer." * * The OpenGL specification 3.3 (page 196), section 4.1.3 says: * "If drawbuffer zero is not NONE and the buffer it references has an * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE * operations are skipped." */ if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) { GLenum eqRGB = color->Blend[0].EquationRGB; GLenum eqA = color->Blend[0].EquationA; GLenum srcRGB = color->Blend[0].SrcRGB; GLenum dstRGB = color->Blend[0].DstRGB; GLenum srcA = color->Blend[0].SrcA; GLenum dstA = color->Blend[0].DstA; if (eqRGB == GL_MIN || eqRGB == GL_MAX) srcRGB = dstRGB = GL_ONE; if (eqA == GL_MIN || eqA == GL_MAX) srcA = dstA = GL_ONE; /* Due to hardware limitations, the destination may have information * in an alpha channel even when the format specifies no alpha * channel. In order to avoid getting any incorrect blending due to * that alpha channel, coerce the blend factors to values that will * not read the alpha channel, but will instead use the correct * implicit value for alpha. */ if (!_mesa_base_format_has_channel(rb->_BaseFormat, GL_TEXTURE_ALPHA_TYPE)) { srcRGB = brw_fix_xRGB_alpha(srcRGB); srcA = brw_fix_xRGB_alpha(srcA); dstRGB = brw_fix_xRGB_alpha(dstRGB); dstA = brw_fix_xRGB_alpha(dstA); } pb.ColorBufferBlendEnable = true; pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA); pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA); pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB); pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB); pb.IndependentAlphaBlendEnable = srcA != srcRGB || dstA != dstRGB || eqA != eqRGB; } } } static const struct brw_tracked_state genX(ps_blend) = { .dirty = { .mesa = _NEW_BUFFERS | _NEW_COLOR | _NEW_MULTISAMPLE, .brw = BRW_NEW_BLORP | BRW_NEW_CONTEXT | BRW_NEW_FRAGMENT_PROGRAM, }, .emit = genX(upload_ps_blend) }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN >= 8 static void genX(emit_vf_topology)(struct brw_context *brw) { brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) { vftopo.PrimitiveTopologyType = brw->primitive; } } static const struct brw_tracked_state genX(vf_topology) = { .dirty = { .mesa = 0, .brw = BRW_NEW_BLORP | BRW_NEW_PRIMITIVE, }, .emit = genX(emit_vf_topology), }; #endif /* ---------------------------------------------------------------------- */ #if GEN_GEN == 6 static void genX(upload_viewport_state_pointers)(struct brw_context *brw) { brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) { vp.CCViewportStateChange = 1; vp.SFViewportStateChange = 1; vp.CLIPViewportStateChange = 1; vp.PointertoCLIP_VIEWPORT = brw->clip.vp_offset; vp.PointertoSF_VIEWPORT = brw->sf.vp_offset; vp.PointertoCC_VIEWPORT = brw->cc.vp_offset; } } static const struct brw_tracked_state genX(viewport_state) = { .dirty = { .mesa = 0, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_CC_VP | BRW_NEW_CLIP_VP | BRW_NEW_SF_VP | BRW_NEW_STATE_BASE_ADDRESS, }, .emit = genX(upload_viewport_state_pointers), }; #endif /* ---------------------------------------------------------------------- */ void genX(init_atoms)(struct brw_context *brw) { #if GEN_GEN < 6 static const struct brw_tracked_state *render_atoms[] = { /* Once all the programs are done, we know how large urb entry * sizes need to be and can decide if we need to change the urb * layout. */ &brw_curbe_offsets, &brw_recalculate_urb_fence, &brw_cc_vp, &brw_cc_unit, /* Surface state setup. Must come before the VS/WM unit. The binding * table upload must be last. */ &brw_vs_pull_constants, &brw_wm_pull_constants, &brw_renderbuffer_surfaces, &brw_renderbuffer_read_surfaces, &brw_texture_surfaces, &brw_vs_binding_table, &brw_wm_binding_table, &brw_fs_samplers, &brw_vs_samplers, /* These set up state for brw_psp_urb_cbs */ &brw_wm_unit, &brw_sf_vp, &brw_sf_unit, &genX(vs_state), /* always required, enabled or not */ &brw_clip_unit, &brw_gs_unit, /* Command packets: */ &brw_invariant_state, &brw_binding_table_pointers, &brw_blend_constant_color, &brw_depthbuffer, &genX(polygon_stipple), &genX(polygon_stipple_offset), &genX(line_stipple), &brw_psp_urb_cbs, &genX(drawing_rect), &brw_indices, /* must come before brw_vertices */ &genX(index_buffer), &genX(vertices), &brw_constant_buffer }; #elif GEN_GEN == 6 static const struct brw_tracked_state *render_atoms[] = { &genX(sf_clip_viewport), /* Command packets: */ &brw_cc_vp, &genX(viewport_state), /* must do after *_vp stages */ &gen6_urb, &genX(blend_state), /* must do before cc unit */ &genX(color_calc_state), /* must do before cc unit */ &genX(depth_stencil_state), /* must do before cc unit */ &genX(vs_push_constants), /* Before vs_state */ &genX(gs_push_constants), /* Before gs_state */ &genX(wm_push_constants), /* Before wm_state */ /* Surface state setup. Must come before the VS/WM unit. The binding * table upload must be last. */ &brw_vs_pull_constants, &brw_vs_ubo_surfaces, &brw_gs_pull_constants, &brw_gs_ubo_surfaces, &brw_wm_pull_constants, &brw_wm_ubo_surfaces, &gen6_renderbuffer_surfaces, &brw_renderbuffer_read_surfaces, &brw_texture_surfaces, &gen6_sol_surface, &brw_vs_binding_table, &gen6_gs_binding_table, &brw_wm_binding_table, &brw_fs_samplers, &brw_vs_samplers, &brw_gs_samplers, &gen6_sampler_state, &genX(multisample_state), &genX(vs_state), &genX(gs_state), &genX(clip_state), &genX(sf_state), &genX(wm_state), &genX(scissor_state), &gen6_binding_table_pointers, &brw_depthbuffer, &genX(polygon_stipple), &genX(polygon_stipple_offset), &genX(line_stipple), &genX(drawing_rect), &brw_indices, /* must come before brw_vertices */ &genX(index_buffer), &genX(vertices), }; #elif GEN_GEN == 7 static const struct brw_tracked_state *render_atoms[] = { /* Command packets: */ &brw_cc_vp, &genX(sf_clip_viewport), &gen7_l3_state, &gen7_push_constant_space, &gen7_urb, &genX(blend_state), /* must do before cc unit */ &genX(color_calc_state), /* must do before cc unit */ &genX(depth_stencil_state), /* must do before cc unit */ &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */ &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */ &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */ &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */ &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */ &genX(vs_push_constants), /* Before vs_state */ &genX(tcs_push_constants), &genX(tes_push_constants), &genX(gs_push_constants), /* Before gs_state */ &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */ /* Surface state setup. Must come before the VS/WM unit. The binding * table upload must be last. */ &brw_vs_pull_constants, &brw_vs_ubo_surfaces, &brw_vs_abo_surfaces, &brw_tcs_pull_constants, &brw_tcs_ubo_surfaces, &brw_tcs_abo_surfaces, &brw_tes_pull_constants, &brw_tes_ubo_surfaces, &brw_tes_abo_surfaces, &brw_gs_pull_constants, &brw_gs_ubo_surfaces, &brw_gs_abo_surfaces, &brw_wm_pull_constants, &brw_wm_ubo_surfaces, &brw_wm_abo_surfaces, &gen6_renderbuffer_surfaces, &brw_renderbuffer_read_surfaces, &brw_texture_surfaces, &brw_vs_binding_table, &brw_tcs_binding_table, &brw_tes_binding_table, &brw_gs_binding_table, &brw_wm_binding_table, &brw_fs_samplers, &brw_vs_samplers, &brw_tcs_samplers, &brw_tes_samplers, &brw_gs_samplers, &genX(multisample_state), &genX(vs_state), &genX(hs_state), &genX(te_state), &genX(ds_state), &genX(gs_state), &genX(sol_state), &genX(clip_state), &genX(sbe_state), &genX(sf_state), &genX(wm_state), &genX(ps_state), &genX(scissor_state), &gen7_depthbuffer, &genX(polygon_stipple), &genX(polygon_stipple_offset), &genX(line_stipple), &genX(drawing_rect), &brw_indices, /* must come before brw_vertices */ &genX(index_buffer), &genX(vertices), #if GEN_IS_HASWELL &genX(cut_index), #endif }; #elif GEN_GEN >= 8 static const struct brw_tracked_state *render_atoms[] = { &brw_cc_vp, &genX(sf_clip_viewport), &gen7_l3_state, &gen7_push_constant_space, &gen7_urb, &genX(blend_state), &genX(color_calc_state), &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */ &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */ &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */ &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */ &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */ &genX(vs_push_constants), /* Before vs_state */ &genX(tcs_push_constants), &genX(tes_push_constants), &genX(gs_push_constants), /* Before gs_state */ &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */ /* Surface state setup. Must come before the VS/WM unit. The binding * table upload must be last. */ &brw_vs_pull_constants, &brw_vs_ubo_surfaces, &brw_vs_abo_surfaces, &brw_tcs_pull_constants, &brw_tcs_ubo_surfaces, &brw_tcs_abo_surfaces, &brw_tes_pull_constants, &brw_tes_ubo_surfaces, &brw_tes_abo_surfaces, &brw_gs_pull_constants, &brw_gs_ubo_surfaces, &brw_gs_abo_surfaces, &brw_wm_pull_constants, &brw_wm_ubo_surfaces, &brw_wm_abo_surfaces, &gen6_renderbuffer_surfaces, &brw_renderbuffer_read_surfaces, &brw_texture_surfaces, &brw_vs_binding_table, &brw_tcs_binding_table, &brw_tes_binding_table, &brw_gs_binding_table, &brw_wm_binding_table, &brw_fs_samplers, &brw_vs_samplers, &brw_tcs_samplers, &brw_tes_samplers, &brw_gs_samplers, &genX(multisample_state), &genX(vs_state), &genX(hs_state), &genX(te_state), &genX(ds_state), &genX(gs_state), &genX(sol_state), &genX(clip_state), &genX(raster_state), &genX(sbe_state), &genX(sf_state), &genX(ps_blend), &genX(ps_extra), &genX(ps_state), &genX(depth_stencil_state), &genX(wm_state), &genX(scissor_state), &gen7_depthbuffer, &genX(polygon_stipple), &genX(polygon_stipple_offset), &genX(line_stipple), &genX(drawing_rect), &genX(vf_topology), &brw_indices, &genX(index_buffer), &genX(vertices), &genX(cut_index), &gen8_pma_fix, }; #endif STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms)); brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE, render_atoms, ARRAY_SIZE(render_atoms)); #if GEN_GEN >= 7 static const struct brw_tracked_state *compute_atoms[] = { &gen7_l3_state, &brw_cs_image_surfaces, &gen7_cs_push_constants, &brw_cs_pull_constants, &brw_cs_ubo_surfaces, &brw_cs_abo_surfaces, &brw_cs_texture_surfaces, &brw_cs_work_groups_surface, &brw_cs_samplers, &genX(cs_state), }; STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms)); brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE, compute_atoms, ARRAY_SIZE(compute_atoms)); #endif }