/* Copyright (C) Intel Corp. 2006. All Rights Reserved. Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to develop this 3D driver. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice (including the next paragraph) shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **********************************************************************/ /* * Authors: * Keith Whitwell */ #include "main/mtypes.h" #include "main/samplerobj.h" #include "program/prog_parameter.h" #include "intel_mipmap_tree.h" #include "intel_batchbuffer.h" #include "intel_tex.h" #include "intel_fbo.h" #include "intel_buffer_objects.h" #include "brw_context.h" #include "brw_state.h" #include "brw_defines.h" #include "brw_wm.h" GLuint translate_tex_target(GLenum target) { switch (target) { case GL_TEXTURE_1D: case GL_TEXTURE_1D_ARRAY_EXT: return BRW_SURFACE_1D; case GL_TEXTURE_RECTANGLE_NV: return BRW_SURFACE_2D; case GL_TEXTURE_2D: case GL_TEXTURE_2D_ARRAY_EXT: case GL_TEXTURE_EXTERNAL_OES: return BRW_SURFACE_2D; case GL_TEXTURE_3D: return BRW_SURFACE_3D; case GL_TEXTURE_CUBE_MAP: return BRW_SURFACE_CUBE; default: assert(0); return 0; } } struct surface_format_info { bool exists; int sampling; int filtering; int shadow_compare; int chroma_key; int render_target; int alpha_blend; int input_vb; int streamed_output_vb; int color_processing; }; /* This macro allows us to write the table almost as it appears in the PRM, * while restructuring it to turn it into the C code we want. */ #define SF(sampl, filt, shad, ck, rt, ab, vb, so, color, sf) \ [sf] = { true, sampl, filt, shad, ck, rt, ab, vb, so, color }, #define Y 0 #define x 999 /** * This is the table of support for surface (texture, renderbuffer, and vertex * buffer, but not depthbuffer) formats across the various hardware generations. * * The table is formatted to match the documentation, except that the docs have * this ridiculous mapping of Y[*+~^#&] for "supported on DevWhatever". To put * it in our table, here's the mapping: * * Y*: 45 * Y+: 45 (g45/gm45) * Y~: 50 (gen5) * Y^: 60 (gen6) * Y#: 70 (gen7) * * The abbreviations in the header below are: * smpl - Sampling Engine * filt - Sampling Engine Filtering * shad - Sampling Engine Shadow Map * CK - Sampling Engine Chroma Key * RT - Render Target * AB - Alpha Blend Render Target * VB - Input Vertex Buffer * SO - Steamed Output Vertex Buffers (transform feedback) * color - Color Processing * * See page 88 of the Sandybridge PRM VOL4_Part1 PDF. */ const struct surface_format_info surface_formats[] = { /* smpl filt shad CK RT AB VB SO color */ SF( Y, 50, x, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_FLOAT) SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_SINT) SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32A32_UINT) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_UNORM) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_SNORM) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64_FLOAT) SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R32G32B32X32_FLOAT) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_SSCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32A32_USCALED) SF( Y, 50, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_FLOAT) SF( Y, x, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_SINT) SF( Y, x, x, x, x, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32B32_UINT) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_UNORM) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_SNORM) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_SSCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32B32_USCALED) SF( Y, Y, x, x, Y, 45, Y, x, 60, BRW_SURFACEFORMAT_R16G16B16A16_UNORM) SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SNORM) SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SINT) SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_UINT) SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_FLOAT) SF( Y, 50, x, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32G32_FLOAT) SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32_SINT) SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32G32_UINT) SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_R32_FLOAT_X8X24_TYPELESS) SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_X32_TYPELESS_G8X24_UINT) SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32A32_FLOAT) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_UNORM) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_SNORM) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64_FLOAT) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R16G16B16X16_UNORM) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R16G16B16X16_FLOAT) SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_A32X32_FLOAT) SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32X32_FLOAT) SF( Y, 50, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_I32X32_FLOAT) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_SSCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16A16_USCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_SSCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32G32_USCALED) SF( Y, Y, x, Y, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_B8G8R8A8_UNORM) SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB) /* smpl filt shad CK RT AB VB SO color */ SF( Y, Y, x, x, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM) SF( Y, Y, x, x, x, x, x, x, 60, BRW_SURFACEFORMAT_R10G10B10A2_UNORM_SRGB) SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R10G10B10A2_UINT) SF( Y, Y, x, x, x, Y, Y, x, x, BRW_SURFACEFORMAT_R10G10B10_SNORM_A2_UNORM) SF( Y, Y, x, x, Y, Y, Y, x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM) SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_R8G8B8A8_UNORM_SRGB) SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SNORM) SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SINT) SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_UINT) SF( Y, Y, x, x, Y, 45, Y, x, x, BRW_SURFACEFORMAT_R16G16_UNORM) SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16G16_SNORM) SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_SINT) SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_UINT) SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16G16_FLOAT) SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM) SF( Y, Y, x, x, Y, Y, x, x, 60, BRW_SURFACEFORMAT_B10G10R10A2_UNORM_SRGB) SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R11G11B10_FLOAT) SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32_SINT) SF( Y, x, x, x, Y, x, Y, Y, x, BRW_SURFACEFORMAT_R32_UINT) SF( Y, 50, Y, x, Y, Y, Y, Y, x, BRW_SURFACEFORMAT_R32_FLOAT) SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS) SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_X24_TYPELESS_G8_UINT) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16A16_UNORM) SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I24X8_UNORM) SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L24X8_UNORM) SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A24X8_UNORM) SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I32_FLOAT) SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L32_FLOAT) SF( Y, 50, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A32_FLOAT) SF( Y, Y, x, Y, x, x, x, x, 60, BRW_SURFACEFORMAT_B8G8R8X8_UNORM) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_B8G8R8X8_UNORM_SRGB) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R8G8B8X8_UNORM_SRGB) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_B10G10R10X2_UNORM) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16A16_FLOAT) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_UNORM) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_SNORM) /* smpl filt shad CK RT AB VB SO color */ SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R10G10B10X2_USCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_SSCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8A8_USCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_SSCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16_USCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_SSCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R32_USCALED) SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G6R5_UNORM) SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G6R5_UNORM_SRGB) SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM) SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5A1_UNORM_SRGB) SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM) SF( Y, Y, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B4G4R4A4_UNORM_SRGB) SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R8G8_UNORM) SF( Y, Y, x, Y, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8G8_SNORM) SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_SINT) SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_UINT) SF( Y, Y, Y, x, Y, 45, Y, x, 70, BRW_SURFACEFORMAT_R16_UNORM) SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R16_SNORM) SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16_SINT) SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R16_UINT) SF( Y, Y, x, x, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R16_FLOAT) SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I16_UNORM) SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16_UNORM) SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A16_UNORM) SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_L8A8_UNORM) SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_I16_FLOAT) SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_L16_FLOAT) SF( Y, Y, Y, x, x, x, x, x, x, BRW_SURFACEFORMAT_A16_FLOAT) SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L8A8_UNORM_SRGB) SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_R5G5_SNORM_B6_UNORM) SF( x, x, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM) SF( x, x, x, x, Y, Y, x, x, x, BRW_SURFACEFORMAT_B5G5R5X1_UNORM_SRGB) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_SSCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8_USCALED) /* smpl filt shad CK RT AB VB SO color */ SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16_SSCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16_USCALED) SF( Y, Y, x, 45, Y, Y, Y, x, x, BRW_SURFACEFORMAT_R8_UNORM) SF( Y, Y, x, x, Y, 60, Y, x, x, BRW_SURFACEFORMAT_R8_SNORM) SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8_SINT) SF( Y, x, x, x, Y, x, Y, x, x, BRW_SURFACEFORMAT_R8_UINT) SF( Y, Y, x, Y, Y, Y, x, x, x, BRW_SURFACEFORMAT_A8_UNORM) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_I8_UNORM) SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_L8_UNORM) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_P4A4_UNORM) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_A4P4_UNORM) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8_SSCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8_USCALED) SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_L8_UNORM_SRGB) SF(45, 45, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_DXT1_RGB_SRGB) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_R1_UINT) SF( Y, Y, x, Y, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_NORMAL) SF( Y, Y, x, Y, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUVY) SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC1_UNORM) SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC2_UNORM) SF( Y, Y, x, Y, x, x, x, x, x, BRW_SURFACEFORMAT_BC3_UNORM) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC4_UNORM) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC5_UNORM) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC1_UNORM_SRGB) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC2_UNORM_SRGB) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC3_UNORM_SRGB) SF( Y, x, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_MONO8) SF( Y, Y, x, x, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPUV) SF( Y, Y, x, x, Y, x, x, x, 60, BRW_SURFACEFORMAT_YCRCB_SWAPY) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_DXT1_RGB) /* smpl filt shad CK RT AB VB SO color */ SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_FXT1) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_UNORM) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_SNORM) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_SSCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R8G8B8_USCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64B64A64_FLOAT) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R64G64B64_FLOAT) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC4_SNORM) SF( Y, Y, x, x, x, x, x, x, x, BRW_SURFACEFORMAT_BC5_SNORM) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_UNORM) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_SNORM) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_SSCALED) SF( x, x, x, x, x, x, Y, x, x, BRW_SURFACEFORMAT_R16G16B16_USCALED) }; #undef x #undef Y uint32_t brw_format_for_mesa_format(gl_format mesa_format) { /* This table is ordered according to the enum ordering in formats.h. We do * expect that enum to be extended without our explicit initialization * staying in sync, so we initialize to 0 even though * BRW_SURFACEFORMAT_R32G32B32A32_FLOAT happens to also be 0. */ static const uint32_t table[MESA_FORMAT_COUNT] = { [MESA_FORMAT_RGBA8888] = 0, [MESA_FORMAT_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_UNORM, [MESA_FORMAT_ARGB8888] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM, [MESA_FORMAT_ARGB8888_REV] = 0, [MESA_FORMAT_RGBX8888] = 0, [MESA_FORMAT_RGBX8888_REV] = BRW_SURFACEFORMAT_R8G8B8X8_UNORM, [MESA_FORMAT_XRGB8888] = BRW_SURFACEFORMAT_B8G8R8X8_UNORM, [MESA_FORMAT_XRGB8888_REV] = 0, [MESA_FORMAT_RGB888] = 0, [MESA_FORMAT_BGR888] = 0, [MESA_FORMAT_RGB565] = BRW_SURFACEFORMAT_B5G6R5_UNORM, [MESA_FORMAT_RGB565_REV] = 0, [MESA_FORMAT_ARGB4444] = BRW_SURFACEFORMAT_B4G4R4A4_UNORM, [MESA_FORMAT_ARGB4444_REV] = 0, [MESA_FORMAT_RGBA5551] = 0, [MESA_FORMAT_ARGB1555] = BRW_SURFACEFORMAT_B5G5R5A1_UNORM, [MESA_FORMAT_ARGB1555_REV] = 0, [MESA_FORMAT_AL44] = 0, [MESA_FORMAT_AL88] = BRW_SURFACEFORMAT_L8A8_UNORM, [MESA_FORMAT_AL88_REV] = 0, [MESA_FORMAT_AL1616] = BRW_SURFACEFORMAT_L16A16_UNORM, [MESA_FORMAT_AL1616_REV] = 0, [MESA_FORMAT_RGB332] = 0, [MESA_FORMAT_A8] = BRW_SURFACEFORMAT_A8_UNORM, [MESA_FORMAT_A16] = BRW_SURFACEFORMAT_A16_UNORM, [MESA_FORMAT_L8] = BRW_SURFACEFORMAT_L8_UNORM, [MESA_FORMAT_L16] = BRW_SURFACEFORMAT_L16_UNORM, [MESA_FORMAT_I8] = BRW_SURFACEFORMAT_I8_UNORM, [MESA_FORMAT_I16] = BRW_SURFACEFORMAT_I16_UNORM, [MESA_FORMAT_YCBCR_REV] = BRW_SURFACEFORMAT_YCRCB_NORMAL, [MESA_FORMAT_YCBCR] = BRW_SURFACEFORMAT_YCRCB_SWAPUVY, [MESA_FORMAT_R8] = BRW_SURFACEFORMAT_R8_UNORM, [MESA_FORMAT_GR88] = BRW_SURFACEFORMAT_R8G8_UNORM, [MESA_FORMAT_RG88] = 0, [MESA_FORMAT_R16] = BRW_SURFACEFORMAT_R16_UNORM, [MESA_FORMAT_RG1616] = BRW_SURFACEFORMAT_R16G16_UNORM, [MESA_FORMAT_RG1616_REV] = 0, [MESA_FORMAT_ARGB2101010] = BRW_SURFACEFORMAT_B10G10R10A2_UNORM, [MESA_FORMAT_ABGR2101010_UINT] = BRW_SURFACEFORMAT_R10G10B10A2_UINT, [MESA_FORMAT_Z24_S8] = 0, [MESA_FORMAT_S8_Z24] = 0, [MESA_FORMAT_Z16] = 0, [MESA_FORMAT_X8_Z24] = 0, [MESA_FORMAT_Z24_X8] = 0, [MESA_FORMAT_Z32] = 0, [MESA_FORMAT_S8] = 0, [MESA_FORMAT_SRGB8] = 0, [MESA_FORMAT_SRGBA8] = 0, [MESA_FORMAT_SARGB8] = BRW_SURFACEFORMAT_B8G8R8A8_UNORM_SRGB, [MESA_FORMAT_SL8] = BRW_SURFACEFORMAT_L8_UNORM_SRGB, [MESA_FORMAT_SLA8] = BRW_SURFACEFORMAT_L8A8_UNORM_SRGB, [MESA_FORMAT_SRGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB_SRGB, [MESA_FORMAT_SRGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM_SRGB, [MESA_FORMAT_SRGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM_SRGB, [MESA_FORMAT_SRGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM_SRGB, [MESA_FORMAT_RGB_FXT1] = BRW_SURFACEFORMAT_FXT1, [MESA_FORMAT_RGBA_FXT1] = BRW_SURFACEFORMAT_FXT1, [MESA_FORMAT_RGB_DXT1] = BRW_SURFACEFORMAT_DXT1_RGB, [MESA_FORMAT_RGBA_DXT1] = BRW_SURFACEFORMAT_BC1_UNORM, [MESA_FORMAT_RGBA_DXT3] = BRW_SURFACEFORMAT_BC2_UNORM, [MESA_FORMAT_RGBA_DXT5] = BRW_SURFACEFORMAT_BC3_UNORM, [MESA_FORMAT_RGBA_FLOAT32] = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT, [MESA_FORMAT_RGBA_FLOAT16] = BRW_SURFACEFORMAT_R16G16B16A16_FLOAT, [MESA_FORMAT_RGB_FLOAT32] = 0, [MESA_FORMAT_RGB_FLOAT16] = 0, [MESA_FORMAT_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_A32_FLOAT, [MESA_FORMAT_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_A16_FLOAT, [MESA_FORMAT_LUMINANCE_FLOAT32] = BRW_SURFACEFORMAT_L32_FLOAT, [MESA_FORMAT_LUMINANCE_FLOAT16] = BRW_SURFACEFORMAT_L16_FLOAT, [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT32] = BRW_SURFACEFORMAT_L32A32_FLOAT, [MESA_FORMAT_LUMINANCE_ALPHA_FLOAT16] = BRW_SURFACEFORMAT_L16A16_FLOAT, [MESA_FORMAT_INTENSITY_FLOAT32] = BRW_SURFACEFORMAT_I32_FLOAT, [MESA_FORMAT_INTENSITY_FLOAT16] = BRW_SURFACEFORMAT_I16_FLOAT, [MESA_FORMAT_R_FLOAT32] = BRW_SURFACEFORMAT_R32_FLOAT, [MESA_FORMAT_R_FLOAT16] = BRW_SURFACEFORMAT_R16_FLOAT, [MESA_FORMAT_RG_FLOAT32] = BRW_SURFACEFORMAT_R32G32_FLOAT, [MESA_FORMAT_RG_FLOAT16] = BRW_SURFACEFORMAT_R16G16_FLOAT, [MESA_FORMAT_ALPHA_UINT8] = 0, [MESA_FORMAT_ALPHA_UINT16] = 0, [MESA_FORMAT_ALPHA_UINT32] = 0, [MESA_FORMAT_ALPHA_INT8] = 0, [MESA_FORMAT_ALPHA_INT16] = 0, [MESA_FORMAT_ALPHA_INT32] = 0, [MESA_FORMAT_INTENSITY_UINT8] = 0, [MESA_FORMAT_INTENSITY_UINT16] = 0, [MESA_FORMAT_INTENSITY_UINT32] = 0, [MESA_FORMAT_INTENSITY_INT8] = 0, [MESA_FORMAT_INTENSITY_INT16] = 0, [MESA_FORMAT_INTENSITY_INT32] = 0, [MESA_FORMAT_LUMINANCE_UINT8] = 0, [MESA_FORMAT_LUMINANCE_UINT16] = 0, [MESA_FORMAT_LUMINANCE_UINT32] = 0, [MESA_FORMAT_LUMINANCE_INT8] = 0, [MESA_FORMAT_LUMINANCE_INT16] = 0, [MESA_FORMAT_LUMINANCE_INT32] = 0, [MESA_FORMAT_LUMINANCE_ALPHA_UINT8] = 0, [MESA_FORMAT_LUMINANCE_ALPHA_UINT16] = 0, [MESA_FORMAT_LUMINANCE_ALPHA_UINT32] = 0, [MESA_FORMAT_LUMINANCE_ALPHA_INT8] = 0, [MESA_FORMAT_LUMINANCE_ALPHA_INT16] = 0, [MESA_FORMAT_LUMINANCE_ALPHA_INT32] = 0, [MESA_FORMAT_R_INT8] = BRW_SURFACEFORMAT_R8_SINT, [MESA_FORMAT_RG_INT8] = BRW_SURFACEFORMAT_R8G8_SINT, [MESA_FORMAT_RGB_INT8] = 0, [MESA_FORMAT_RGBA_INT8] = BRW_SURFACEFORMAT_R8G8B8A8_SINT, [MESA_FORMAT_R_INT16] = BRW_SURFACEFORMAT_R16_SINT, [MESA_FORMAT_RG_INT16] = BRW_SURFACEFORMAT_R16G16_SINT, [MESA_FORMAT_RGB_INT16] = 0, [MESA_FORMAT_RGBA_INT16] = BRW_SURFACEFORMAT_R16G16B16A16_SINT, [MESA_FORMAT_R_INT32] = BRW_SURFACEFORMAT_R32_SINT, [MESA_FORMAT_RG_INT32] = BRW_SURFACEFORMAT_R32G32_SINT, [MESA_FORMAT_RGB_INT32] = BRW_SURFACEFORMAT_R32G32B32_SINT, [MESA_FORMAT_RGBA_INT32] = BRW_SURFACEFORMAT_R32G32B32A32_SINT, [MESA_FORMAT_R_UINT8] = BRW_SURFACEFORMAT_R8_UINT, [MESA_FORMAT_RG_UINT8] = BRW_SURFACEFORMAT_R8G8_UINT, [MESA_FORMAT_RGB_UINT8] = 0, [MESA_FORMAT_RGBA_UINT8] = BRW_SURFACEFORMAT_R8G8B8A8_UINT, [MESA_FORMAT_R_UINT16] = BRW_SURFACEFORMAT_R16_UINT, [MESA_FORMAT_RG_UINT16] = BRW_SURFACEFORMAT_R16G16_UINT, [MESA_FORMAT_RGB_UINT16] = 0, [MESA_FORMAT_RGBA_UINT16] = BRW_SURFACEFORMAT_R16G16B16A16_UINT, [MESA_FORMAT_R_UINT32] = BRW_SURFACEFORMAT_R32_UINT, [MESA_FORMAT_RG_UINT32] = BRW_SURFACEFORMAT_R32G32_UINT, [MESA_FORMAT_RGB_UINT32] = BRW_SURFACEFORMAT_R32G32B32_UINT, [MESA_FORMAT_RGBA_UINT32] = BRW_SURFACEFORMAT_R32G32B32A32_UINT, [MESA_FORMAT_DUDV8] = BRW_SURFACEFORMAT_R8G8_SNORM, [MESA_FORMAT_SIGNED_R8] = BRW_SURFACEFORMAT_R8_SNORM, [MESA_FORMAT_SIGNED_RG88_REV] = BRW_SURFACEFORMAT_R8G8_SNORM, [MESA_FORMAT_SIGNED_RGBX8888] = 0, [MESA_FORMAT_SIGNED_RGBA8888] = 0, [MESA_FORMAT_SIGNED_RGBA8888_REV] = BRW_SURFACEFORMAT_R8G8B8A8_SNORM, [MESA_FORMAT_SIGNED_R16] = BRW_SURFACEFORMAT_R16_SNORM, [MESA_FORMAT_SIGNED_GR1616] = BRW_SURFACEFORMAT_R16G16_SNORM, [MESA_FORMAT_SIGNED_RGB_16] = 0, [MESA_FORMAT_SIGNED_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_SNORM, [MESA_FORMAT_RGBA_16] = BRW_SURFACEFORMAT_R16G16B16A16_UNORM, [MESA_FORMAT_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_UNORM, [MESA_FORMAT_SIGNED_RED_RGTC1] = BRW_SURFACEFORMAT_BC4_SNORM, [MESA_FORMAT_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_UNORM, [MESA_FORMAT_SIGNED_RG_RGTC2] = BRW_SURFACEFORMAT_BC5_SNORM, [MESA_FORMAT_L_LATC1] = 0, [MESA_FORMAT_SIGNED_L_LATC1] = 0, [MESA_FORMAT_LA_LATC2] = 0, [MESA_FORMAT_SIGNED_LA_LATC2] = 0, [MESA_FORMAT_SIGNED_A8] = 0, [MESA_FORMAT_SIGNED_L8] = 0, [MESA_FORMAT_SIGNED_AL88] = 0, [MESA_FORMAT_SIGNED_I8] = 0, [MESA_FORMAT_SIGNED_A16] = 0, [MESA_FORMAT_SIGNED_L16] = 0, [MESA_FORMAT_SIGNED_AL1616] = 0, [MESA_FORMAT_SIGNED_I16] = 0, [MESA_FORMAT_RGB9_E5_FLOAT] = BRW_SURFACEFORMAT_R9G9B9E5_SHAREDEXP, [MESA_FORMAT_R11_G11_B10_FLOAT] = BRW_SURFACEFORMAT_R11G11B10_FLOAT, [MESA_FORMAT_Z32_FLOAT] = 0, [MESA_FORMAT_Z32_FLOAT_X24S8] = 0, }; assert(mesa_format < MESA_FORMAT_COUNT); return table[mesa_format]; } void brw_init_surface_formats(struct brw_context *brw) { struct intel_context *intel = &brw->intel; struct gl_context *ctx = &intel->ctx; int gen; gl_format format; gen = intel->gen * 10; if (intel->is_g4x) gen += 5; for (format = MESA_FORMAT_NONE + 1; format < MESA_FORMAT_COUNT; format++) { uint32_t texture, render; const struct surface_format_info *rinfo, *tinfo; bool is_integer = _mesa_is_format_integer_color(format); render = texture = brw_format_for_mesa_format(format); tinfo = &surface_formats[texture]; /* The value of BRW_SURFACEFORMAT_R32G32B32A32_FLOAT is 0, so don't skip * it. */ if (texture == 0 && format != MESA_FORMAT_RGBA_FLOAT32) continue; if (gen >= tinfo->sampling && (gen >= tinfo->filtering || is_integer)) ctx->TextureFormatSupported[format] = true; /* Re-map some render target formats to make them supported when they * wouldn't be using their format for texturing. */ switch (render) { /* For these formats, we just need to read/write the first * channel into R, which is to say that we just treat them as * GL_RED. */ case BRW_SURFACEFORMAT_I32_FLOAT: case BRW_SURFACEFORMAT_L32_FLOAT: render = BRW_SURFACEFORMAT_R32_FLOAT; break; case BRW_SURFACEFORMAT_I16_FLOAT: case BRW_SURFACEFORMAT_L16_FLOAT: render = BRW_SURFACEFORMAT_R16_FLOAT; break; case BRW_SURFACEFORMAT_B8G8R8X8_UNORM: /* XRGB is handled as ARGB because the chips in this family * cannot render to XRGB targets. This means that we have to * mask writes to alpha (ala glColorMask) and reconfigure the * alpha blending hardware to use GL_ONE (or GL_ZERO) for * cases where GL_DST_ALPHA (or GL_ONE_MINUS_DST_ALPHA) is * used. */ render = BRW_SURFACEFORMAT_B8G8R8A8_UNORM; break; } rinfo = &surface_formats[render]; /* Note that GL_EXT_texture_integer says that blending doesn't occur for * integer, so we don't need hardware support for blending on it. Other * than that, GL in general requires alpha blending for render targets, * even though we don't support it for some formats. */ if (gen >= rinfo->render_target && (gen >= rinfo->alpha_blend || is_integer)) { brw->render_target_format[format] = render; brw->format_supported_as_render_target[format] = true; } } /* We will check this table for FBO completeness, but the surface format * table above only covered color rendering. */ brw->format_supported_as_render_target[MESA_FORMAT_S8_Z24] = true; brw->format_supported_as_render_target[MESA_FORMAT_X8_Z24] = true; brw->format_supported_as_render_target[MESA_FORMAT_S8] = true; brw->format_supported_as_render_target[MESA_FORMAT_Z16] = true; brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT] = true; brw->format_supported_as_render_target[MESA_FORMAT_Z32_FLOAT_X24S8] = true; /* We remap depth formats to a supported texturing format in * translate_tex_format(). */ ctx->TextureFormatSupported[MESA_FORMAT_S8_Z24] = true; ctx->TextureFormatSupported[MESA_FORMAT_X8_Z24] = true; ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT] = true; ctx->TextureFormatSupported[MESA_FORMAT_Z32_FLOAT_X24S8] = true; ctx->TextureFormatSupported[MESA_FORMAT_Z16] = true; /* On hardware that lacks support for ETC1, we map ETC1 to RGBX * during glCompressedTexImage2D(). See intel_mipmap_tree::wraps_etc1. */ ctx->TextureFormatSupported[MESA_FORMAT_ETC1_RGB8] = true; /* On hardware that lacks support for ETC2, we map ETC2 to a suitable * MESA_FORMAT during glCompressedTexImage2D(). * See intel_mipmap_tree::wraps_etc2. */ ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGB8] = true; ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8] = true; ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGBA8_EAC] = true; ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC] = true; ctx->TextureFormatSupported[MESA_FORMAT_ETC2_R11_EAC] = true; ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RG11_EAC] = true; ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SIGNED_R11_EAC] = true; ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SIGNED_RG11_EAC] = true; ctx->TextureFormatSupported[MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1] = true; ctx->TextureFormatSupported[MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1] = true; } bool brw_render_target_supported(struct intel_context *intel, struct gl_renderbuffer *rb) { struct brw_context *brw = brw_context(&intel->ctx); gl_format format = rb->Format; /* Many integer formats are promoted to RGBA (like XRGB8888 is), which means * we would consider them renderable even though we don't have surface * support for their alpha behavior and don't have the blending unit * available to fake it like we do for XRGB8888. Force them to being * unsupported. */ if ((rb->_BaseFormat != GL_RGBA && rb->_BaseFormat != GL_RG && rb->_BaseFormat != GL_RED) && _mesa_is_format_integer_color(format)) return false; /* Under some conditions, MSAA is not supported for formats whose width is * more than 64 bits. */ if (rb->NumSamples > 0 && _mesa_get_format_bytes(format) > 8) { /* Gen6: MSAA on >64 bit formats is unsupported. */ if (intel->gen <= 6) return false; /* Gen7: 8x MSAA on >64 bit formats is unsupported. */ if (rb->NumSamples >= 8) return false; } return brw->format_supported_as_render_target[format]; } GLuint translate_tex_format(gl_format mesa_format, GLenum internal_format, GLenum depth_mode, GLenum srgb_decode) { if (srgb_decode == GL_SKIP_DECODE_EXT) mesa_format = _mesa_get_srgb_format_linear(mesa_format); switch( mesa_format ) { case MESA_FORMAT_Z16: return BRW_SURFACEFORMAT_I16_UNORM; case MESA_FORMAT_S8_Z24: case MESA_FORMAT_X8_Z24: return BRW_SURFACEFORMAT_I24X8_UNORM; case MESA_FORMAT_Z32_FLOAT: return BRW_SURFACEFORMAT_I32_FLOAT; case MESA_FORMAT_Z32_FLOAT_X24S8: return BRW_SURFACEFORMAT_R32G32_FLOAT; case MESA_FORMAT_RGBA_FLOAT32: /* The value of this BRW_SURFACEFORMAT is 0, which tricks the * assertion below. */ return BRW_SURFACEFORMAT_R32G32B32A32_FLOAT; default: assert(brw_format_for_mesa_format(mesa_format) != 0); return brw_format_for_mesa_format(mesa_format); } } uint32_t brw_get_surface_tiling_bits(uint32_t tiling) { switch (tiling) { case I915_TILING_X: return BRW_SURFACE_TILED; case I915_TILING_Y: return BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y; default: return 0; } } uint32_t brw_get_surface_num_multisamples(unsigned num_samples) { if (num_samples > 1) return BRW_SURFACE_MULTISAMPLECOUNT_4; else return BRW_SURFACE_MULTISAMPLECOUNT_1; } /** * Compute the combination of DEPTH_TEXTURE_MODE and EXT_texture_swizzle * swizzling. */ int brw_get_texture_swizzle(const struct gl_texture_object *t) { const struct gl_texture_image *img = t->Image[0][t->BaseLevel]; int swizzles[SWIZZLE_NIL + 1] = { SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE, SWIZZLE_NIL }; if (img->_BaseFormat == GL_DEPTH_COMPONENT || img->_BaseFormat == GL_DEPTH_STENCIL) { switch (t->DepthMode) { case GL_ALPHA: swizzles[0] = SWIZZLE_ZERO; swizzles[1] = SWIZZLE_ZERO; swizzles[2] = SWIZZLE_ZERO; swizzles[3] = SWIZZLE_X; break; case GL_LUMINANCE: swizzles[0] = SWIZZLE_X; swizzles[1] = SWIZZLE_X; swizzles[2] = SWIZZLE_X; swizzles[3] = SWIZZLE_ONE; break; case GL_INTENSITY: swizzles[0] = SWIZZLE_X; swizzles[1] = SWIZZLE_X; swizzles[2] = SWIZZLE_X; swizzles[3] = SWIZZLE_X; break; case GL_RED: swizzles[0] = SWIZZLE_X; swizzles[1] = SWIZZLE_ZERO; swizzles[2] = SWIZZLE_ZERO; swizzles[3] = SWIZZLE_ONE; break; } } return MAKE_SWIZZLE4(swizzles[GET_SWZ(t->_Swizzle, 0)], swizzles[GET_SWZ(t->_Swizzle, 1)], swizzles[GET_SWZ(t->_Swizzle, 2)], swizzles[GET_SWZ(t->_Swizzle, 3)]); } static void brw_update_buffer_texture_surface(struct gl_context *ctx, unsigned unit, uint32_t *binding_table, unsigned surf_index) { struct brw_context *brw = brw_context(ctx); struct intel_context *intel = &brw->intel; struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current; uint32_t *surf; struct intel_buffer_object *intel_obj = intel_buffer_object(tObj->BufferObject); drm_intel_bo *bo = intel_obj ? intel_obj->buffer : NULL; gl_format format = tObj->_BufferObjectFormat; uint32_t brw_format = brw_format_for_mesa_format(format); int texel_size = _mesa_get_format_bytes(format); if (brw_format == 0 && format != MESA_FORMAT_RGBA_FLOAT32) { _mesa_problem(NULL, "bad format %s for texture buffer\n", _mesa_get_format_name(format)); } surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32, &binding_table[surf_index]); surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT | (brw_format_for_mesa_format(format) << BRW_SURFACE_FORMAT_SHIFT)); if (intel->gen >= 6) surf[0] |= BRW_SURFACE_RC_READ_WRITE; if (bo) { surf[1] = bo->offset; /* reloc */ /* Emit relocation to surface contents. */ drm_intel_bo_emit_reloc(brw->intel.batch.bo, binding_table[surf_index] + 4, bo, 0, I915_GEM_DOMAIN_SAMPLER, 0); int w = intel_obj->Base.Size / texel_size; surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT | ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT); surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT | (texel_size - 1) << BRW_SURFACE_PITCH_SHIFT); } else { surf[1] = 0; surf[2] = 0; surf[3] = 0; } surf[4] = 0; surf[5] = 0; } static void brw_update_texture_surface(struct gl_context *ctx, unsigned unit, uint32_t *binding_table, unsigned surf_index) { struct brw_context *brw = brw_context(ctx); struct gl_texture_object *tObj = ctx->Texture.Unit[unit]._Current; struct intel_texture_object *intelObj = intel_texture_object(tObj); struct intel_mipmap_tree *mt = intelObj->mt; struct gl_texture_image *firstImage = tObj->Image[0][tObj->BaseLevel]; struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit); uint32_t *surf; int width, height, depth; if (tObj->Target == GL_TEXTURE_BUFFER) { brw_update_buffer_texture_surface(ctx, unit, binding_table, surf_index); return; } intel_miptree_get_dimensions_for_image(firstImage, &width, &height, &depth); surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32, &binding_table[surf_index]); surf[0] = (translate_tex_target(tObj->Target) << BRW_SURFACE_TYPE_SHIFT | BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT | BRW_SURFACE_CUBEFACE_ENABLES | (translate_tex_format(mt->format, firstImage->InternalFormat, tObj->DepthMode, sampler->sRGBDecode) << BRW_SURFACE_FORMAT_SHIFT)); surf[1] = intelObj->mt->region->bo->offset + intelObj->mt->offset; /* reloc */ surf[2] = ((intelObj->_MaxLevel - tObj->BaseLevel) << BRW_SURFACE_LOD_SHIFT | (width - 1) << BRW_SURFACE_WIDTH_SHIFT | (height - 1) << BRW_SURFACE_HEIGHT_SHIFT); surf[3] = (brw_get_surface_tiling_bits(intelObj->mt->region->tiling) | (depth - 1) << BRW_SURFACE_DEPTH_SHIFT | ((intelObj->mt->region->pitch * intelObj->mt->cpp) - 1) << BRW_SURFACE_PITCH_SHIFT); surf[4] = 0; surf[5] = (mt->align_h == 4) ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0; /* Emit relocation to surface contents */ drm_intel_bo_emit_reloc(brw->intel.batch.bo, binding_table[surf_index] + 4, intelObj->mt->region->bo, intelObj->mt->offset, I915_GEM_DOMAIN_SAMPLER, 0); } /** * Create the constant buffer surface. Vertex/fragment shader constants will be * read from this buffer with Data Port Read instructions/messages. */ void brw_create_constant_surface(struct brw_context *brw, drm_intel_bo *bo, uint32_t offset, int width, uint32_t *out_offset) { struct intel_context *intel = &brw->intel; const GLint w = width - 1; uint32_t *surf; surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32, out_offset); surf[0] = (BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT | BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT | BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_SURFACE_FORMAT_SHIFT); if (intel->gen >= 6) surf[0] |= BRW_SURFACE_RC_READ_WRITE; surf[1] = bo->offset + offset; /* reloc */ surf[2] = ((w & 0x7f) << BRW_SURFACE_WIDTH_SHIFT | ((w >> 7) & 0x1fff) << BRW_SURFACE_HEIGHT_SHIFT); surf[3] = (((w >> 20) & 0x7f) << BRW_SURFACE_DEPTH_SHIFT | (16 - 1) << BRW_SURFACE_PITCH_SHIFT); /* ignored */ surf[4] = 0; surf[5] = 0; /* Emit relocation to surface contents. Section 5.1.1 of the gen4 * bspec ("Data Cache") says that the data cache does not exist as * a separate cache and is just the sampler cache. */ drm_intel_bo_emit_reloc(brw->intel.batch.bo, *out_offset + 4, bo, offset, I915_GEM_DOMAIN_SAMPLER, 0); } /** * Set up a binding table entry for use by stream output logic (transform * feedback). * * buffer_size_minus_1 must me less than BRW_MAX_NUM_BUFFER_ENTRIES. */ void brw_update_sol_surface(struct brw_context *brw, struct gl_buffer_object *buffer_obj, uint32_t *out_offset, unsigned num_vector_components, unsigned stride_dwords, unsigned offset_dwords) { struct intel_context *intel = &brw->intel; struct intel_buffer_object *intel_bo = intel_buffer_object(buffer_obj); drm_intel_bo *bo = intel_bufferobj_buffer(intel, intel_bo, INTEL_WRITE_PART); uint32_t *surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32, out_offset); uint32_t pitch_minus_1 = 4*stride_dwords - 1; uint32_t offset_bytes = 4 * offset_dwords; size_t size_dwords = buffer_obj->Size / 4; uint32_t buffer_size_minus_1, width, height, depth, surface_format; /* FIXME: can we rely on core Mesa to ensure that the buffer isn't * too big to map using a single binding table entry? */ assert((size_dwords - offset_dwords) / stride_dwords <= BRW_MAX_NUM_BUFFER_ENTRIES); if (size_dwords > offset_dwords + num_vector_components) { /* There is room for at least 1 transform feedback output in the buffer. * Compute the number of additional transform feedback outputs the * buffer has room for. */ buffer_size_minus_1 = (size_dwords - offset_dwords - num_vector_components) / stride_dwords; } else { /* There isn't even room for a single transform feedback output in the * buffer. We can't configure the binding table entry to prevent output * entirely; we'll have to rely on the geometry shader to detect * overflow. But to minimize the damage in case of a bug, set up the * binding table entry to just allow a single output. */ buffer_size_minus_1 = 0; } width = buffer_size_minus_1 & 0x7f; height = (buffer_size_minus_1 & 0xfff80) >> 7; depth = (buffer_size_minus_1 & 0x7f00000) >> 20; switch (num_vector_components) { case 1: surface_format = BRW_SURFACEFORMAT_R32_FLOAT; break; case 2: surface_format = BRW_SURFACEFORMAT_R32G32_FLOAT; break; case 3: surface_format = BRW_SURFACEFORMAT_R32G32B32_FLOAT; break; case 4: surface_format = BRW_SURFACEFORMAT_R32G32B32A32_FLOAT; break; default: assert(!"Invalid vector size for transform feedback output"); surface_format = BRW_SURFACEFORMAT_R32_FLOAT; break; } surf[0] = BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT | BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT | surface_format << BRW_SURFACE_FORMAT_SHIFT | BRW_SURFACE_RC_READ_WRITE; surf[1] = bo->offset + offset_bytes; /* reloc */ surf[2] = (width << BRW_SURFACE_WIDTH_SHIFT | height << BRW_SURFACE_HEIGHT_SHIFT); surf[3] = (depth << BRW_SURFACE_DEPTH_SHIFT | pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT); surf[4] = 0; surf[5] = 0; /* Emit relocation to surface contents. */ drm_intel_bo_emit_reloc(brw->intel.batch.bo, *out_offset + 4, bo, offset_bytes, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER); } /* Creates a new WM constant buffer reflecting the current fragment program's * constants, if needed by the fragment program. * * Otherwise, constants go through the CURBEs using the brw_constant_buffer * state atom. */ static void brw_upload_wm_pull_constants(struct brw_context *brw) { struct gl_context *ctx = &brw->intel.ctx; struct intel_context *intel = &brw->intel; /* BRW_NEW_FRAGMENT_PROGRAM */ struct brw_fragment_program *fp = (struct brw_fragment_program *) brw->fragment_program; struct gl_program_parameter_list *params = fp->program.Base.Parameters; const int size = brw->wm.prog_data->nr_pull_params * sizeof(float); const int surf_index = SURF_INDEX_FRAG_CONST_BUFFER; float *constants; unsigned int i; _mesa_load_state_parameters(ctx, params); /* CACHE_NEW_WM_PROG */ if (brw->wm.prog_data->nr_pull_params == 0) { if (brw->wm.const_bo) { drm_intel_bo_unreference(brw->wm.const_bo); brw->wm.const_bo = NULL; brw->wm.surf_offset[surf_index] = 0; brw->state.dirty.brw |= BRW_NEW_SURFACES; } return; } drm_intel_bo_unreference(brw->wm.const_bo); brw->wm.const_bo = drm_intel_bo_alloc(intel->bufmgr, "WM const bo", size, 64); /* _NEW_PROGRAM_CONSTANTS */ drm_intel_gem_bo_map_gtt(brw->wm.const_bo); constants = brw->wm.const_bo->virtual; for (i = 0; i < brw->wm.prog_data->nr_pull_params; i++) { constants[i] = *brw->wm.prog_data->pull_param[i]; } drm_intel_gem_bo_unmap_gtt(brw->wm.const_bo); intel->vtbl.create_constant_surface(brw, brw->wm.const_bo, 0, params->NumParameters, &brw->wm.surf_offset[surf_index]); brw->state.dirty.brw |= BRW_NEW_SURFACES; } const struct brw_tracked_state brw_wm_pull_constants = { .dirty = { .mesa = (_NEW_PROGRAM_CONSTANTS), .brw = (BRW_NEW_BATCH | BRW_NEW_FRAGMENT_PROGRAM), .cache = CACHE_NEW_WM_PROG, }, .emit = brw_upload_wm_pull_constants, }; static void brw_update_null_renderbuffer_surface(struct brw_context *brw, unsigned int unit) { /* From the Sandy bridge PRM, Vol4 Part1 p71 (Surface Type: Programming * Notes): * * A null surface will be used in instances where an actual surface is * not bound. When a write message is generated to a null surface, no * actual surface is written to. When a read message (including any * sampling engine message) is generated to a null surface, the result * is all zeros. Note that a null surface type is allowed to be used * with all messages, even if it is not specificially indicated as * supported. All of the remaining fields in surface state are ignored * for null surfaces, with the following exceptions: * * - [DevSNB+]: Width, Height, Depth, and LOD fields must match the * depth buffer’s corresponding state for all render target surfaces, * including null. * * - Surface Format must be R8G8B8A8_UNORM. */ struct intel_context *intel = &brw->intel; struct gl_context *ctx = &intel->ctx; uint32_t *surf; unsigned surface_type = BRW_SURFACE_NULL; drm_intel_bo *bo = NULL; unsigned pitch_minus_1 = 0; uint32_t multisampling_state = 0; /* _NEW_BUFFERS */ const struct gl_framebuffer *fb = ctx->DrawBuffer; surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32, &brw->wm.surf_offset[unit]); if (fb->Visual.samples > 1) { /* On Gen6, null render targets seem to cause GPU hangs when * multisampling. So work around this problem by rendering into dummy * color buffer. * * To decrease the amount of memory needed by the workaround buffer, we * set its pitch to 128 bytes (the width of a Y tile). This means that * the amount of memory needed for the workaround buffer is * (width_in_tiles + height_in_tiles - 1) tiles. * * Note that since the workaround buffer will be interpreted by the * hardware as an interleaved multisampled buffer, we need to compute * width_in_tiles and height_in_tiles by dividing the width and height * by 16 rather than the normal Y-tile size of 32. */ unsigned width_in_tiles = ALIGN(fb->Width, 16) / 16; unsigned height_in_tiles = ALIGN(fb->Height, 16) / 16; unsigned size_needed = (width_in_tiles + height_in_tiles - 1) * 4096; brw_get_scratch_bo(intel, &brw->wm.multisampled_null_render_target_bo, size_needed); bo = brw->wm.multisampled_null_render_target_bo; surface_type = BRW_SURFACE_2D; pitch_minus_1 = 127; multisampling_state = brw_get_surface_num_multisamples(fb->Visual.samples); } surf[0] = (surface_type << BRW_SURFACE_TYPE_SHIFT | BRW_SURFACEFORMAT_B8G8R8A8_UNORM << BRW_SURFACE_FORMAT_SHIFT); if (intel->gen < 6) { surf[0] |= (1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT | 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT | 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT | 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT); } surf[1] = bo ? bo->offset : 0; surf[2] = ((fb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT | (fb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT); /* From Sandy bridge PRM, Vol4 Part1 p82 (Tiled Surface: Programming * Notes): * * If Surface Type is SURFTYPE_NULL, this field must be TRUE */ surf[3] = (BRW_SURFACE_TILED | BRW_SURFACE_TILED_Y | pitch_minus_1 << BRW_SURFACE_PITCH_SHIFT); surf[4] = multisampling_state; surf[5] = 0; if (bo) { drm_intel_bo_emit_reloc(brw->intel.batch.bo, brw->wm.surf_offset[unit] + 4, bo, 0, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER); } } /** * Sets up a surface state structure to point at the given region. * While it is only used for the front/back buffer currently, it should be * usable for further buffers when doing ARB_draw_buffer support. */ static void brw_update_renderbuffer_surface(struct brw_context *brw, struct gl_renderbuffer *rb, unsigned int unit) { struct intel_context *intel = &brw->intel; struct gl_context *ctx = &intel->ctx; struct intel_renderbuffer *irb = intel_renderbuffer(rb); struct intel_mipmap_tree *mt = irb->mt; struct intel_region *region; uint32_t *surf; uint32_t tile_x, tile_y; uint32_t format = 0; gl_format rb_format = intel_rb_format(irb); if (irb->tex_image && !brw->has_surface_tile_offset) { intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y); if (tile_x != 0 || tile_y != 0) { /* Original gen4 hardware couldn't draw to a non-tile-aligned * destination in a miptree unless you actually setup your renderbuffer * as a miptree and used the fragile lod/array_index/etc. controls to * select the image. So, instead, we just make a new single-level * miptree and render into that. */ intel_renderbuffer_move_to_temp(intel, irb); mt = irb->mt; } } region = irb->mt->region; surf = brw_state_batch(brw, AUB_TRACE_SURFACE_STATE, 6 * 4, 32, &brw->wm.surf_offset[unit]); switch (rb_format) { case MESA_FORMAT_SARGB8: /* _NEW_BUFFERS * * Without GL_EXT_framebuffer_sRGB we shouldn't bind sRGB surfaces to the * blend/update as sRGB. */ if (ctx->Color.sRGBEnabled) format = brw_format_for_mesa_format(rb_format); else format = BRW_SURFACEFORMAT_B8G8R8A8_UNORM; break; default: format = brw->render_target_format[rb_format]; if (unlikely(!brw->format_supported_as_render_target[rb_format])) { _mesa_problem(ctx, "%s: renderbuffer format %s unsupported\n", __FUNCTION__, _mesa_get_format_name(rb_format)); } break; } surf[0] = (BRW_SURFACE_2D << BRW_SURFACE_TYPE_SHIFT | format << BRW_SURFACE_FORMAT_SHIFT); /* reloc */ surf[1] = (intel_renderbuffer_tile_offsets(irb, &tile_x, &tile_y) + region->bo->offset); surf[2] = ((rb->Width - 1) << BRW_SURFACE_WIDTH_SHIFT | (rb->Height - 1) << BRW_SURFACE_HEIGHT_SHIFT); surf[3] = (brw_get_surface_tiling_bits(region->tiling) | ((region->pitch * region->cpp) - 1) << BRW_SURFACE_PITCH_SHIFT); surf[4] = brw_get_surface_num_multisamples(mt->num_samples); assert(brw->has_surface_tile_offset || (tile_x == 0 && tile_y == 0)); /* Note that the low bits of these fields are missing, so * there's the possibility of getting in trouble. */ assert(tile_x % 4 == 0); assert(tile_y % 2 == 0); surf[5] = ((tile_x / 4) << BRW_SURFACE_X_OFFSET_SHIFT | (tile_y / 2) << BRW_SURFACE_Y_OFFSET_SHIFT | (mt->align_h == 4 ? BRW_SURFACE_VERTICAL_ALIGN_ENABLE : 0)); if (intel->gen < 6) { /* _NEW_COLOR */ if (!ctx->Color.ColorLogicOpEnabled && (ctx->Color.BlendEnabled & (1 << unit))) surf[0] |= BRW_SURFACE_BLEND_ENABLED; if (!ctx->Color.ColorMask[unit][0]) surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_R_SHIFT; if (!ctx->Color.ColorMask[unit][1]) surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_G_SHIFT; if (!ctx->Color.ColorMask[unit][2]) surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_B_SHIFT; /* As mentioned above, disable writes to the alpha component when the * renderbuffer is XRGB. */ if (ctx->DrawBuffer->Visual.alphaBits == 0 || !ctx->Color.ColorMask[unit][3]) { surf[0] |= 1 << BRW_SURFACE_WRITEDISABLE_A_SHIFT; } } drm_intel_bo_emit_reloc(brw->intel.batch.bo, brw->wm.surf_offset[unit] + 4, region->bo, surf[1] - region->bo->offset, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER); } /** * Construct SURFACE_STATE objects for renderbuffers/draw buffers. */ static void brw_update_renderbuffer_surfaces(struct brw_context *brw) { struct intel_context *intel = &brw->intel; struct gl_context *ctx = &brw->intel.ctx; GLuint i; /* _NEW_BUFFERS | _NEW_COLOR */ /* Update surfaces for drawing buffers */ if (ctx->DrawBuffer->_NumColorDrawBuffers >= 1) { for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) { if (intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i])) { intel->vtbl.update_renderbuffer_surface(brw, ctx->DrawBuffer->_ColorDrawBuffers[i], i); } else { intel->vtbl.update_null_renderbuffer_surface(brw, i); } } } else { intel->vtbl.update_null_renderbuffer_surface(brw, 0); } brw->state.dirty.brw |= BRW_NEW_SURFACES; } const struct brw_tracked_state brw_renderbuffer_surfaces = { .dirty = { .mesa = (_NEW_COLOR | _NEW_BUFFERS), .brw = BRW_NEW_BATCH, .cache = 0 }, .emit = brw_update_renderbuffer_surfaces, }; const struct brw_tracked_state gen6_renderbuffer_surfaces = { .dirty = { .mesa = _NEW_BUFFERS, .brw = BRW_NEW_BATCH, .cache = 0 }, .emit = brw_update_renderbuffer_surfaces, }; /** * Construct SURFACE_STATE objects for enabled textures. */ static void brw_update_texture_surfaces(struct brw_context *brw) { struct intel_context *intel = &brw->intel; struct gl_context *ctx = &intel->ctx; /* BRW_NEW_VERTEX_PROGRAM and BRW_NEW_FRAGMENT_PROGRAM: * Unfortunately, we're stuck using the gl_program structs until the * ARB_fragment_program front-end gets converted to GLSL IR. These * have the downside that SamplerUnits is split and only contains the * mappings for samplers active in that stage. */ struct gl_program *vs = (struct gl_program *) brw->vertex_program; struct gl_program *fs = (struct gl_program *) brw->fragment_program; unsigned num_samplers = _mesa_fls(vs->SamplersUsed | fs->SamplersUsed); for (unsigned s = 0; s < num_samplers; s++) { brw->vs.surf_offset[SURF_INDEX_VS_TEXTURE(s)] = 0; brw->wm.surf_offset[SURF_INDEX_TEXTURE(s)] = 0; if (vs->SamplersUsed & (1 << s)) { const unsigned unit = vs->SamplerUnits[s]; /* _NEW_TEXTURE */ if (ctx->Texture.Unit[unit]._ReallyEnabled) { intel->vtbl.update_texture_surface(ctx, unit, brw->vs.surf_offset, SURF_INDEX_VS_TEXTURE(s)); } } if (fs->SamplersUsed & (1 << s)) { const unsigned unit = fs->SamplerUnits[s]; /* _NEW_TEXTURE */ if (ctx->Texture.Unit[unit]._ReallyEnabled) { intel->vtbl.update_texture_surface(ctx, unit, brw->wm.surf_offset, SURF_INDEX_TEXTURE(s)); } } } brw->state.dirty.brw |= BRW_NEW_SURFACES; } const struct brw_tracked_state brw_texture_surfaces = { .dirty = { .mesa = _NEW_TEXTURE, .brw = BRW_NEW_BATCH | BRW_NEW_VERTEX_PROGRAM | BRW_NEW_FRAGMENT_PROGRAM, .cache = 0 }, .emit = brw_update_texture_surfaces, }; void brw_upload_ubo_surfaces(struct brw_context *brw, struct gl_shader *shader, uint32_t *surf_offsets) { struct gl_context *ctx = &brw->intel.ctx; struct intel_context *intel = &brw->intel; if (!shader) return; for (int i = 0; i < shader->NumUniformBlocks; i++) { struct gl_uniform_buffer_binding *binding; struct intel_buffer_object *intel_bo; binding = &ctx->UniformBufferBindings[shader->UniformBlocks[i].Binding]; intel_bo = intel_buffer_object(binding->BufferObject); drm_intel_bo *bo = intel_bufferobj_buffer(intel, intel_bo, INTEL_READ); /* Because behavior for referencing outside of the binding's size in the * glBindBufferRange case is undefined, we can just bind the whole buffer * glBindBufferBase wants and be a correct implementation. */ int size = bo->size - binding->Offset; size = ALIGN(size, 16) / 16; /* The interface takes a number of vec4s */ intel->vtbl.create_constant_surface(brw, bo, binding->Offset, size, &surf_offsets[i]); } if (shader->NumUniformBlocks) brw->state.dirty.brw |= BRW_NEW_SURFACES; } static void brw_upload_wm_ubo_surfaces(struct brw_context *brw) { struct gl_context *ctx = &brw->intel.ctx; /* _NEW_PROGRAM */ struct gl_shader_program *prog = ctx->Shader._CurrentFragmentProgram; if (!prog) return; brw_upload_ubo_surfaces(brw, prog->_LinkedShaders[MESA_SHADER_FRAGMENT], &brw->wm.surf_offset[SURF_INDEX_WM_UBO(0)]); } const struct brw_tracked_state brw_wm_ubo_surfaces = { .dirty = { .mesa = (_NEW_PROGRAM | _NEW_BUFFER_OBJECT), .brw = BRW_NEW_BATCH, .cache = 0, }, .emit = brw_upload_wm_ubo_surfaces, }; /** * Constructs the binding table for the WM surface state, which maps unit * numbers to surface state objects. */ static void brw_upload_wm_binding_table(struct brw_context *brw) { struct intel_context *intel = &brw->intel; uint32_t *bind; int i; if (INTEL_DEBUG & DEBUG_SHADER_TIME) { intel->vtbl.create_constant_surface(brw, brw->shader_time.bo, 0, brw->shader_time.bo->size, &brw->wm.surf_offset[SURF_INDEX_WM_SHADER_TIME]); } /* Might want to calculate nr_surfaces first, to avoid taking up so much * space for the binding table. */ bind = brw_state_batch(brw, AUB_TRACE_BINDING_TABLE, sizeof(uint32_t) * BRW_MAX_WM_SURFACES, 32, &brw->wm.bind_bo_offset); /* BRW_NEW_SURFACES */ for (i = 0; i < BRW_MAX_WM_SURFACES; i++) { bind[i] = brw->wm.surf_offset[i]; } brw->state.dirty.brw |= BRW_NEW_PS_BINDING_TABLE; } const struct brw_tracked_state brw_wm_binding_table = { .dirty = { .mesa = 0, .brw = (BRW_NEW_BATCH | BRW_NEW_SURFACES), .cache = 0 }, .emit = brw_upload_wm_binding_table, }; void gen4_init_vtable_surface_functions(struct brw_context *brw) { struct intel_context *intel = &brw->intel; intel->vtbl.update_texture_surface = brw_update_texture_surface; intel->vtbl.update_renderbuffer_surface = brw_update_renderbuffer_surface; intel->vtbl.update_null_renderbuffer_surface = brw_update_null_renderbuffer_surface; intel->vtbl.create_constant_surface = brw_create_constant_surface; }