/* * Copyright © 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "util/register_allocate.h" #include "brw_vec4.h" #include "brw_cfg.h" using namespace brw; namespace brw { static void assign(unsigned int *reg_hw_locations, backend_reg *reg) { if (reg->file == VGRF) { reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE; reg->offset %= REG_SIZE; } } bool vec4_visitor::reg_allocate_trivial() { unsigned int hw_reg_mapping[this->alloc.count]; bool virtual_grf_used[this->alloc.count]; int next; /* Calculate which virtual GRFs are actually in use after whatever * optimization passes have occurred. */ for (unsigned i = 0; i < this->alloc.count; i++) { virtual_grf_used[i] = false; } foreach_block_and_inst(block, vec4_instruction, inst, cfg) { if (inst->dst.file == VGRF) virtual_grf_used[inst->dst.nr] = true; for (unsigned i = 0; i < 3; i++) { if (inst->src[i].file == VGRF) virtual_grf_used[inst->src[i].nr] = true; } } hw_reg_mapping[0] = this->first_non_payload_grf; next = hw_reg_mapping[0] + this->alloc.sizes[0]; for (unsigned i = 1; i < this->alloc.count; i++) { if (virtual_grf_used[i]) { hw_reg_mapping[i] = next; next += this->alloc.sizes[i]; } } prog_data->total_grf = next; foreach_block_and_inst(block, vec4_instruction, inst, cfg) { assign(hw_reg_mapping, &inst->dst); assign(hw_reg_mapping, &inst->src[0]); assign(hw_reg_mapping, &inst->src[1]); assign(hw_reg_mapping, &inst->src[2]); } if (prog_data->total_grf > max_grf) { fail("Ran out of regs on trivial allocator (%d/%d)\n", prog_data->total_grf, max_grf); return false; } return true; } extern "C" void brw_vec4_alloc_reg_set(struct brw_compiler *compiler) { int base_reg_count = compiler->devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF; /* After running split_virtual_grfs(), almost all VGRFs will be of size 1. * SEND-from-GRF sources cannot be split, so we also need classes for each * potential message length. */ const int class_count = MAX_VGRF_SIZE; int class_sizes[MAX_VGRF_SIZE]; for (int i = 0; i < class_count; i++) class_sizes[i] = i + 1; /* Compute the total number of registers across all classes. */ int ra_reg_count = 0; for (int i = 0; i < class_count; i++) { ra_reg_count += base_reg_count - (class_sizes[i] - 1); } ralloc_free(compiler->vec4_reg_set.ra_reg_to_grf); compiler->vec4_reg_set.ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count); ralloc_free(compiler->vec4_reg_set.regs); compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, ra_reg_count, false); if (compiler->devinfo->gen >= 6) ra_set_allocate_round_robin(compiler->vec4_reg_set.regs); ralloc_free(compiler->vec4_reg_set.classes); compiler->vec4_reg_set.classes = ralloc_array(compiler, int, class_count); /* Now, add the registers to their classes, and add the conflicts * between them and the base GRF registers (and also each other). */ int reg = 0; unsigned *q_values[MAX_VGRF_SIZE]; for (int i = 0; i < class_count; i++) { int class_reg_count = base_reg_count - (class_sizes[i] - 1); compiler->vec4_reg_set.classes[i] = ra_alloc_reg_class(compiler->vec4_reg_set.regs); q_values[i] = new unsigned[MAX_VGRF_SIZE]; for (int j = 0; j < class_reg_count; j++) { ra_class_add_reg(compiler->vec4_reg_set.regs, compiler->vec4_reg_set.classes[i], reg); compiler->vec4_reg_set.ra_reg_to_grf[reg] = j; for (int base_reg = j; base_reg < j + class_sizes[i]; base_reg++) { ra_add_reg_conflict(compiler->vec4_reg_set.regs, base_reg, reg); } reg++; } for (int j = 0; j < class_count; j++) { /* Calculate the q values manually because the algorithm used by * ra_set_finalize() to do it has higher complexity affecting the * start-up time of some applications. q(i, j) is just the maximum * number of registers from class i a register from class j can * conflict with. */ q_values[i][j] = class_sizes[i] + class_sizes[j] - 1; } } assert(reg == ra_reg_count); for (int reg = 0; reg < base_reg_count; reg++) ra_make_reg_conflicts_transitive(compiler->vec4_reg_set.regs, reg); ra_set_finalize(compiler->vec4_reg_set.regs, q_values); for (int i = 0; i < MAX_VGRF_SIZE; i++) delete[] q_values[i]; } void vec4_visitor::setup_payload_interference(struct ra_graph *g, int first_payload_node, int reg_node_count) { int payload_node_count = this->first_non_payload_grf; for (int i = 0; i < payload_node_count; i++) { /* Mark each payload reg node as being allocated to its physical register. * * The alternative would be to have per-physical register classes, which * would just be silly. */ ra_set_node_reg(g, first_payload_node + i, i); /* For now, just mark each payload node as interfering with every other * node to be allocated. */ for (int j = 0; j < reg_node_count; j++) { ra_add_node_interference(g, first_payload_node + i, j); } } } bool vec4_visitor::reg_allocate() { unsigned int hw_reg_mapping[alloc.count]; int payload_reg_count = this->first_non_payload_grf; /* Using the trivial allocator can be useful in debugging undefined * register access as a result of broken optimization passes. */ if (0) return reg_allocate_trivial(); calculate_live_intervals(); int node_count = alloc.count; int first_payload_node = node_count; node_count += payload_reg_count; struct ra_graph *g = ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count); for (unsigned i = 0; i < alloc.count; i++) { int size = this->alloc.sizes[i]; assert(size >= 1 && size <= MAX_VGRF_SIZE); ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]); for (unsigned j = 0; j < i; j++) { if (virtual_grf_interferes(i, j)) { ra_add_node_interference(g, i, j); } } } /* Certain instructions can't safely use the same register for their * sources and destination. Add interference. */ foreach_block_and_inst(block, vec4_instruction, inst, cfg) { if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) { for (unsigned i = 0; i < 3; i++) { if (inst->src[i].file == VGRF) { ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr); } } } } setup_payload_interference(g, first_payload_node, node_count); if (!ra_allocate(g)) { /* Failed to allocate registers. Spill a reg, and the caller will * loop back into here to try again. */ int reg = choose_spill_reg(g); if (this->no_spills) { fail("Failure to register allocate. Reduce number of live " "values to avoid this."); } else if (reg == -1) { fail("no register to spill\n"); } else { spill_reg(reg); } ralloc_free(g); return false; } /* Get the chosen virtual registers for each node, and map virtual * regs in the register classes back down to real hardware reg * numbers. */ prog_data->total_grf = payload_reg_count; for (unsigned i = 0; i < alloc.count; i++) { int reg = ra_get_node_reg(g, i); hw_reg_mapping[i] = compiler->vec4_reg_set.ra_reg_to_grf[reg]; prog_data->total_grf = MAX2(prog_data->total_grf, hw_reg_mapping[i] + alloc.sizes[i]); } foreach_block_and_inst(block, vec4_instruction, inst, cfg) { assign(hw_reg_mapping, &inst->dst); assign(hw_reg_mapping, &inst->src[0]); assign(hw_reg_mapping, &inst->src[1]); assign(hw_reg_mapping, &inst->src[2]); } ralloc_free(g); return true; } /** * When we decide to spill a register, instead of blindly spilling every use, * save unspills when the spill register is used (read) in consecutive * instructions. This can potentially save a bunch of unspills that would * have very little impact in register allocation anyway. * * Notice that we need to account for this behavior when spilling a register * and when evaluating spilling costs. This function is designed so it can * be called from both places and avoid repeating the logic. * * - When we call this function from spill_reg(), we pass in scratch_reg the * actual unspill/spill register that we want to reuse in the current * instruction. * * - When we call this from evaluate_spill_costs(), we pass the register for * which we are evaluating spilling costs. * * In either case, we check if the previous instructions read scratch_reg until * we find one that writes to it with a compatible mask or does not read/write * scratch_reg at all. */ static bool can_use_scratch_for_source(const vec4_instruction *inst, unsigned i, unsigned scratch_reg) { assert(inst->src[i].file == VGRF); bool prev_inst_read_scratch_reg = false; /* See if any previous source in the same instructions reads scratch_reg */ for (unsigned n = 0; n < i; n++) { if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg) prev_inst_read_scratch_reg = true; } /* Now check if previous instructions read/write scratch_reg */ for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev; !prev_inst->is_head_sentinel(); prev_inst = (vec4_instruction *) prev_inst->prev) { /* If the previous instruction writes to scratch_reg then we can reuse * it if the write is not conditional and the channels we write are * compatible with our read mask */ if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) { return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) && (brw_mask_for_swizzle(inst->src[i].swizzle) & ~prev_inst->dst.writemask) == 0; } /* Skip scratch read/writes so that instructions generated by spilling * other registers (that won't read/write scratch_reg) do not stop us from * reusing scratch_reg for this instruction. */ if (prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE || prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ) continue; /* If the previous instruction does not write to scratch_reg, then check * if it reads it */ int n; for (n = 0; n < 3; n++) { if (prev_inst->src[n].file == VGRF && prev_inst->src[n].nr == scratch_reg) { prev_inst_read_scratch_reg = true; break; } } if (n == 3) { /* The previous instruction does not read scratch_reg. At this point, * if no previous instruction has read scratch_reg it means that we * will need to unspill it here and we can't reuse it (so we return * false). Otherwise, if we found at least one consecutive instruction * that read scratch_reg, then we know that we got here from * evaluate_spill_costs (since for the spill_reg path any block of * consecutive instructions using scratch_reg must start with a write * to that register, so we would've exited the loop in the check for * the write that we have at the start of this loop), and in that case * it means that we found the point at which the scratch_reg would be * unspilled. Since we always unspill a full vec4, it means that we * have all the channels available and we can just return true to * signal that we can reuse the register in the current instruction * too. */ return prev_inst_read_scratch_reg; } } return prev_inst_read_scratch_reg; } static inline unsigned spill_cost_for_type(enum brw_reg_type type) { /* Spilling of a 64-bit register involves emitting 2 32-bit scratch * messages plus the 64b/32b shuffling code. */ return type_sz(type) == 8 ? 2.25f : 1.0f; } void vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill) { float loop_scale = 1.0; unsigned *reg_type_size = (unsigned *) ralloc_size(NULL, this->alloc.count * sizeof(unsigned)); for (unsigned i = 0; i < this->alloc.count; i++) { spill_costs[i] = 0.0; no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2; reg_type_size[i] = 0; } /* Calculate costs for spilling nodes. Call it a cost of 1 per * spill/unspill we'll have to do, and guess that the insides of * loops run 10 times. */ foreach_block_and_inst(block, vec4_instruction, inst, cfg) { for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) { /* We will only unspill src[i] it it wasn't unspilled for the * previous instruction, in which case we'll just reuse the scratch * reg for this instruction. */ if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) { spill_costs[inst->src[i].nr] += loop_scale * spill_cost_for_type(inst->src[i].type); if (inst->src[i].reladdr || inst->src[i].offset >= REG_SIZE) no_spill[inst->src[i].nr] = true; /* We don't support unspills of partial DF reads. * * Our 64-bit unspills are implemented with two 32-bit scratch * messages, each one reading that for both SIMD4x2 threads that * we need to shuffle into correct 64-bit data. Ensure that we * are reading data for both threads. */ if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8) no_spill[inst->src[i].nr] = true; } /* We can't spill registers that mix 32-bit and 64-bit access (that * contain 64-bit data that is operated on via 32-bit instructions) */ unsigned type_size = type_sz(inst->src[i].type); if (reg_type_size[inst->src[i].nr] == 0) reg_type_size[inst->src[i].nr] = type_size; else if (reg_type_size[inst->src[i].nr] != type_size) no_spill[inst->src[i].nr] = true; } } if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) { spill_costs[inst->dst.nr] += loop_scale * spill_cost_for_type(inst->dst.type); if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE) no_spill[inst->dst.nr] = true; /* We don't support spills of partial DF writes. * * Our 64-bit spills are implemented with two 32-bit scratch messages, * each one writing that for both SIMD4x2 threads. Ensure that we * are writing data for both threads. */ if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8) no_spill[inst->dst.nr] = true; /* FROM_DOUBLE opcodes are setup so that they use a dst register * with a size of 2 even if they only produce a single-precison * result (this is so that the opcode can use the larger register to * produce a 64-bit aligned intermediary result as required by the * hardware during the conversion process). This creates a problem for * spilling though, because when we attempt to emit a spill for the * dst we see a 32-bit destination and emit a scratch write that * allocates a single spill register. */ if (inst->opcode == VEC4_OPCODE_FROM_DOUBLE) no_spill[inst->dst.nr] = true; /* We can't spill registers that mix 32-bit and 64-bit access (that * contain 64-bit data that is operated on via 32-bit instructions) */ unsigned type_size = type_sz(inst->dst.type); if (reg_type_size[inst->dst.nr] == 0) reg_type_size[inst->dst.nr] = type_size; else if (reg_type_size[inst->dst.nr] != type_size) no_spill[inst->dst.nr] = true; } switch (inst->opcode) { case BRW_OPCODE_DO: loop_scale *= 10; break; case BRW_OPCODE_WHILE: loop_scale /= 10; break; case SHADER_OPCODE_GEN4_SCRATCH_READ: case SHADER_OPCODE_GEN4_SCRATCH_WRITE: for (int i = 0; i < 3; i++) { if (inst->src[i].file == VGRF) no_spill[inst->src[i].nr] = true; } if (inst->dst.file == VGRF) no_spill[inst->dst.nr] = true; break; default: break; } } ralloc_free(reg_type_size); } int vec4_visitor::choose_spill_reg(struct ra_graph *g) { float spill_costs[this->alloc.count]; bool no_spill[this->alloc.count]; evaluate_spill_costs(spill_costs, no_spill); for (unsigned i = 0; i < this->alloc.count; i++) { if (!no_spill[i]) ra_set_node_spill_cost(g, i, spill_costs[i]); } return ra_get_best_spill_node(g); } void vec4_visitor::spill_reg(int spill_reg_nr) { assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2); unsigned int spill_offset = last_scratch; last_scratch += alloc.sizes[spill_reg_nr]; /* Generate spill/unspill instructions for the objects being spilled. */ int scratch_reg = -1; foreach_block_and_inst(block, vec4_instruction, inst, cfg) { for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) { if (scratch_reg == -1 || !can_use_scratch_for_source(inst, i, scratch_reg)) { /* We need to unspill anyway so make sure we read the full vec4 * in any case. This way, the cached register can be reused * for consecutive instructions that read different channels of * the same vec4. */ scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]); src_reg temp = inst->src[i]; temp.nr = scratch_reg; temp.offset = 0; temp.swizzle = BRW_SWIZZLE_XYZW; emit_scratch_read(block, inst, dst_reg(temp), inst->src[i], spill_offset); temp.offset = inst->src[i].offset; } assert(scratch_reg != -1); inst->src[i].nr = scratch_reg; } } if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) { emit_scratch_write(block, inst, spill_offset); scratch_reg = inst->dst.nr; } } invalidate_live_intervals(); } } /* namespace brw */