/* * Copyright © 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ extern "C" { #include "main/macros.h" #include "program/register_allocate.h" } /* extern "C" */ #include "brw_vec4.h" #include "brw_vs.h" using namespace brw; namespace brw { static void assign(unsigned int *reg_hw_locations, reg *reg) { if (reg->file == GRF) { reg->reg = reg_hw_locations[reg->reg]; } } bool vec4_visitor::reg_allocate_trivial() { unsigned int hw_reg_mapping[this->virtual_grf_count]; bool virtual_grf_used[this->virtual_grf_count]; int i; int next; /* Calculate which virtual GRFs are actually in use after whatever * optimization passes have occurred. */ for (int i = 0; i < this->virtual_grf_count; i++) { virtual_grf_used[i] = false; } foreach_list(node, &this->instructions) { vec4_instruction *inst = (vec4_instruction *) node; if (inst->dst.file == GRF) virtual_grf_used[inst->dst.reg] = true; for (int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) virtual_grf_used[inst->src[i].reg] = true; } } hw_reg_mapping[0] = this->first_non_payload_grf; next = hw_reg_mapping[0] + this->virtual_grf_sizes[0]; for (i = 1; i < this->virtual_grf_count; i++) { if (virtual_grf_used[i]) { hw_reg_mapping[i] = next; next += this->virtual_grf_sizes[i]; } } prog_data->total_grf = next; foreach_list(node, &this->instructions) { vec4_instruction *inst = (vec4_instruction *) node; assign(hw_reg_mapping, &inst->dst); assign(hw_reg_mapping, &inst->src[0]); assign(hw_reg_mapping, &inst->src[1]); assign(hw_reg_mapping, &inst->src[2]); } if (prog_data->total_grf > max_grf) { fail("Ran out of regs on trivial allocator (%d/%d)\n", prog_data->total_grf, max_grf); return false; } return true; } extern "C" void brw_vec4_alloc_reg_set(struct intel_screen *screen) { int base_reg_count = screen->devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF; /* After running split_virtual_grfs(), almost all VGRFs will be of size 1. * SEND-from-GRF sources cannot be split, so we also need classes for each * potential message length. */ const int class_count = 2; const int class_sizes[class_count] = {1, 2}; /* Compute the total number of registers across all classes. */ int ra_reg_count = 0; for (int i = 0; i < class_count; i++) { ra_reg_count += base_reg_count - (class_sizes[i] - 1); } ralloc_free(screen->vec4_reg_set.ra_reg_to_grf); screen->vec4_reg_set.ra_reg_to_grf = ralloc_array(screen, uint8_t, ra_reg_count); ralloc_free(screen->vec4_reg_set.regs); screen->vec4_reg_set.regs = ra_alloc_reg_set(screen, ra_reg_count); if (screen->devinfo->gen >= 6) ra_set_allocate_round_robin(screen->vec4_reg_set.regs); ralloc_free(screen->vec4_reg_set.classes); screen->vec4_reg_set.classes = ralloc_array(screen, int, class_count); /* Now, add the registers to their classes, and add the conflicts * between them and the base GRF registers (and also each other). */ int reg = 0; for (int i = 0; i < class_count; i++) { int class_reg_count = base_reg_count - (class_sizes[i] - 1); screen->vec4_reg_set.classes[i] = ra_alloc_reg_class(screen->vec4_reg_set.regs); for (int j = 0; j < class_reg_count; j++) { ra_class_add_reg(screen->vec4_reg_set.regs, screen->vec4_reg_set.classes[i], reg); screen->vec4_reg_set.ra_reg_to_grf[reg] = j; for (int base_reg = j; base_reg < j + class_sizes[i]; base_reg++) { ra_add_transitive_reg_conflict(screen->vec4_reg_set.regs, base_reg, reg); } reg++; } } assert(reg == ra_reg_count); ra_set_finalize(screen->vec4_reg_set.regs, NULL); } void vec4_visitor::setup_payload_interference(struct ra_graph *g, int first_payload_node, int reg_node_count) { int payload_node_count = this->first_non_payload_grf; for (int i = 0; i < payload_node_count; i++) { /* Mark each payload reg node as being allocated to its physical register. * * The alternative would be to have per-physical register classes, which * would just be silly. */ ra_set_node_reg(g, first_payload_node + i, i); /* For now, just mark each payload node as interfering with every other * node to be allocated. */ for (int j = 0; j < reg_node_count; j++) { ra_add_node_interference(g, first_payload_node + i, j); } } } bool vec4_visitor::reg_allocate() { struct intel_screen *screen = brw->intelScreen; unsigned int hw_reg_mapping[virtual_grf_count]; int payload_reg_count = this->first_non_payload_grf; /* Using the trivial allocator can be useful in debugging undefined * register access as a result of broken optimization passes. */ if (0) return reg_allocate_trivial(); calculate_live_intervals(); int node_count = virtual_grf_count; int first_payload_node = node_count; node_count += payload_reg_count; struct ra_graph *g = ra_alloc_interference_graph(screen->vec4_reg_set.regs, node_count); for (int i = 0; i < virtual_grf_count; i++) { int size = this->virtual_grf_sizes[i]; assert(size >= 1 && size <= 2 && "Register allocation relies on split_virtual_grfs()."); ra_set_node_class(g, i, screen->vec4_reg_set.classes[size - 1]); for (int j = 0; j < i; j++) { if (virtual_grf_interferes(i, j)) { ra_add_node_interference(g, i, j); } } } setup_payload_interference(g, first_payload_node, node_count); if (!ra_allocate_no_spills(g)) { /* Failed to allocate registers. Spill a reg, and the caller will * loop back into here to try again. */ int reg = choose_spill_reg(g); if (this->no_spills) { fail("Failure to register allocate. Reduce number of live " "values to avoid this."); } else if (reg == -1) { fail("no register to spill\n"); } else { spill_reg(reg); } ralloc_free(g); return false; } /* Get the chosen virtual registers for each node, and map virtual * regs in the register classes back down to real hardware reg * numbers. */ prog_data->total_grf = payload_reg_count; for (int i = 0; i < virtual_grf_count; i++) { int reg = ra_get_node_reg(g, i); hw_reg_mapping[i] = screen->vec4_reg_set.ra_reg_to_grf[reg]; prog_data->total_grf = MAX2(prog_data->total_grf, hw_reg_mapping[i] + virtual_grf_sizes[i]); } foreach_list(node, &this->instructions) { vec4_instruction *inst = (vec4_instruction *)node; assign(hw_reg_mapping, &inst->dst); assign(hw_reg_mapping, &inst->src[0]); assign(hw_reg_mapping, &inst->src[1]); assign(hw_reg_mapping, &inst->src[2]); } ralloc_free(g); return true; } void vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill) { float loop_scale = 1.0; for (int i = 0; i < this->virtual_grf_count; i++) { spill_costs[i] = 0.0; no_spill[i] = virtual_grf_sizes[i] != 1; } /* Calculate costs for spilling nodes. Call it a cost of 1 per * spill/unspill we'll have to do, and guess that the insides of * loops run 10 times. */ foreach_list(node, &this->instructions) { vec4_instruction *inst = (vec4_instruction *) node; for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) { spill_costs[inst->src[i].reg] += loop_scale; if (inst->src[i].reladdr) no_spill[inst->src[i].reg] = true; } } if (inst->dst.file == GRF) { spill_costs[inst->dst.reg] += loop_scale; if (inst->dst.reladdr) no_spill[inst->dst.reg] = true; } switch (inst->opcode) { case BRW_OPCODE_DO: loop_scale *= 10; break; case BRW_OPCODE_WHILE: loop_scale /= 10; break; case SHADER_OPCODE_GEN4_SCRATCH_READ: case SHADER_OPCODE_GEN4_SCRATCH_WRITE: for (int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) no_spill[inst->src[i].reg] = true; } if (inst->dst.file == GRF) no_spill[inst->dst.reg] = true; break; default: break; } } } int vec4_visitor::choose_spill_reg(struct ra_graph *g) { float spill_costs[this->virtual_grf_count]; bool no_spill[this->virtual_grf_count]; evaluate_spill_costs(spill_costs, no_spill); for (int i = 0; i < this->virtual_grf_count; i++) { if (!no_spill[i]) ra_set_node_spill_cost(g, i, spill_costs[i]); } return ra_get_best_spill_node(g); } void vec4_visitor::spill_reg(int spill_reg_nr) { assert(virtual_grf_sizes[spill_reg_nr] == 1); unsigned int spill_offset = c->last_scratch++; /* Generate spill/unspill instructions for the objects being spilled. */ foreach_list(node, &this->instructions) { vec4_instruction *inst = (vec4_instruction *) node; for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == GRF && inst->src[i].reg == spill_reg_nr) { src_reg spill_reg = inst->src[i]; inst->src[i].reg = virtual_grf_alloc(1); dst_reg temp = dst_reg(inst->src[i]); /* Only read the necessary channels, to avoid overwriting the rest * with data that may not have been written to scratch. */ temp.writemask = 0; for (int c = 0; c < 4; c++) temp.writemask |= (1 << BRW_GET_SWZ(inst->src[i].swizzle, c)); assert(temp.writemask != 0); emit_scratch_read(inst, temp, spill_reg, spill_offset); } } if (inst->dst.file == GRF && inst->dst.reg == spill_reg_nr) { emit_scratch_write(inst, spill_offset); } } invalidate_live_intervals(); } } /* namespace brw */