/* Copyright © 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "brw_vec4.h" extern "C" { #include "brw_eu.h" #include "main/macros.h" #include "program/prog_print.h" #include "program/prog_parameter.h" }; namespace brw { struct brw_reg vec4_instruction::get_dst(void) { struct brw_reg brw_reg; switch (dst.file) { case GRF: brw_reg = brw_vec8_grf(dst.reg + dst.reg_offset, 0); brw_reg = retype(brw_reg, dst.type); brw_reg.dw1.bits.writemask = dst.writemask; break; case MRF: brw_reg = brw_message_reg(dst.reg + dst.reg_offset); brw_reg = retype(brw_reg, dst.type); brw_reg.dw1.bits.writemask = dst.writemask; break; case HW_REG: brw_reg = dst.fixed_hw_reg; break; case BAD_FILE: brw_reg = brw_null_reg(); break; default: assert(!"not reached"); brw_reg = brw_null_reg(); break; } return brw_reg; } struct brw_reg vec4_instruction::get_src(const struct brw_vec4_prog_data *prog_data, int i) { struct brw_reg brw_reg; switch (src[i].file) { case GRF: brw_reg = brw_vec8_grf(src[i].reg + src[i].reg_offset, 0); brw_reg = retype(brw_reg, src[i].type); brw_reg.dw1.bits.swizzle = src[i].swizzle; if (src[i].abs) brw_reg = brw_abs(brw_reg); if (src[i].negate) brw_reg = negate(brw_reg); break; case IMM: switch (src[i].type) { case BRW_REGISTER_TYPE_F: brw_reg = brw_imm_f(src[i].imm.f); break; case BRW_REGISTER_TYPE_D: brw_reg = brw_imm_d(src[i].imm.i); break; case BRW_REGISTER_TYPE_UD: brw_reg = brw_imm_ud(src[i].imm.u); break; default: assert(!"not reached"); brw_reg = brw_null_reg(); break; } break; case UNIFORM: brw_reg = stride(brw_vec4_grf(prog_data->dispatch_grf_start_reg + (src[i].reg + src[i].reg_offset) / 2, ((src[i].reg + src[i].reg_offset) % 2) * 4), 0, 4, 1); brw_reg = retype(brw_reg, src[i].type); brw_reg.dw1.bits.swizzle = src[i].swizzle; if (src[i].abs) brw_reg = brw_abs(brw_reg); if (src[i].negate) brw_reg = negate(brw_reg); /* This should have been moved to pull constants. */ assert(!src[i].reladdr); break; case HW_REG: brw_reg = src[i].fixed_hw_reg; break; case BAD_FILE: /* Probably unused. */ brw_reg = brw_null_reg(); break; case ATTR: default: assert(!"not reached"); brw_reg = brw_null_reg(); break; } return brw_reg; } vec4_generator::vec4_generator(struct brw_context *brw, struct gl_shader_program *shader_prog, struct gl_program *prog, struct brw_vec4_prog_data *prog_data, void *mem_ctx, bool debug_flag) : brw(brw), shader_prog(shader_prog), prog(prog), prog_data(prog_data), mem_ctx(mem_ctx), debug_flag(debug_flag) { p = rzalloc(mem_ctx, struct brw_compile); brw_init_compile(brw, p, mem_ctx); } vec4_generator::~vec4_generator() { } void vec4_generator::mark_surface_used(unsigned surf_index) { assert(surf_index < BRW_MAX_SURFACES); prog_data->base.binding_table.size_bytes = MAX2(prog_data->base.binding_table.size_bytes, (surf_index + 1) * 4); } void vec4_generator::generate_math1_gen4(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src) { brw_math(p, dst, brw_math_function(inst->opcode), inst->base_mrf, src, BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); } static void check_gen6_math_src_arg(struct brw_reg src) { /* Source swizzles are ignored. */ assert(!src.abs); assert(!src.negate); assert(src.dw1.bits.swizzle == BRW_SWIZZLE_XYZW); } void vec4_generator::generate_math1_gen6(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src) { /* Can't do writemask because math can't be align16. */ assert(dst.dw1.bits.writemask == WRITEMASK_XYZW); check_gen6_math_src_arg(src); brw_set_access_mode(p, BRW_ALIGN_1); brw_math(p, dst, brw_math_function(inst->opcode), inst->base_mrf, src, BRW_MATH_DATA_SCALAR, BRW_MATH_PRECISION_FULL); brw_set_access_mode(p, BRW_ALIGN_16); } void vec4_generator::generate_math2_gen7(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { brw_math2(p, dst, brw_math_function(inst->opcode), src0, src1); } void vec4_generator::generate_math2_gen6(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { /* Can't do writemask because math can't be align16. */ assert(dst.dw1.bits.writemask == WRITEMASK_XYZW); /* Source swizzles are ignored. */ check_gen6_math_src_arg(src0); check_gen6_math_src_arg(src1); brw_set_access_mode(p, BRW_ALIGN_1); brw_math2(p, dst, brw_math_function(inst->opcode), src0, src1); brw_set_access_mode(p, BRW_ALIGN_16); } void vec4_generator::generate_math2_gen4(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13 * "Message Payload": * * "Operand0[7]. For the INT DIV functions, this operand is the * denominator." * ... * "Operand1[7]. For the INT DIV functions, this operand is the * numerator." */ bool is_int_div = inst->opcode != SHADER_OPCODE_POW; struct brw_reg &op0 = is_int_div ? src1 : src0; struct brw_reg &op1 = is_int_div ? src0 : src1; brw_push_insn_state(p); brw_set_saturate(p, false); brw_set_predicate_control(p, BRW_PREDICATE_NONE); brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), op1.type), op1); brw_pop_insn_state(p); brw_math(p, dst, brw_math_function(inst->opcode), inst->base_mrf, op0, BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); } void vec4_generator::generate_tex(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src) { int msg_type = -1; if (brw->gen >= 5) { switch (inst->opcode) { case SHADER_OPCODE_TEX: case SHADER_OPCODE_TXL: if (inst->shadow_compare) { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD; } break; case SHADER_OPCODE_TXD: if (inst->shadow_compare) { /* Gen7.5+. Otherwise, lowered by brw_lower_texture_gradients(). */ assert(brw->is_haswell); msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS; } break; case SHADER_OPCODE_TXF: msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD; break; case SHADER_OPCODE_TXF_CMS: if (brw->gen >= 7) msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS; else msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD; break; case SHADER_OPCODE_TXF_MCS: assert(brw->gen >= 7); msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS; break; case SHADER_OPCODE_TXS: msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO; break; case SHADER_OPCODE_TG4: if (inst->shadow_compare) { msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C; } else { msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4; } break; case SHADER_OPCODE_TG4_OFFSET: if (inst->shadow_compare) { msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C; } else { msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO; } break; default: assert(!"should not get here: invalid vec4 texture opcode"); break; } } else { switch (inst->opcode) { case SHADER_OPCODE_TEX: case SHADER_OPCODE_TXL: if (inst->shadow_compare) { msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD_COMPARE; assert(inst->mlen == 3); } else { msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD; assert(inst->mlen == 2); } break; case SHADER_OPCODE_TXD: /* There is no sample_d_c message; comparisons are done manually. */ msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_GRADIENTS; assert(inst->mlen == 4); break; case SHADER_OPCODE_TXF: msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_LD; assert(inst->mlen == 2); break; case SHADER_OPCODE_TXS: msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_RESINFO; assert(inst->mlen == 2); break; default: assert(!"should not get here: invalid vec4 texture opcode"); break; } } assert(msg_type != -1); /* Load the message header if present. If there's a texture offset, we need * to set it up explicitly and load the offset bitfield. Otherwise, we can * use an implied move from g0 to the first message register. */ if (inst->header_present) { if (brw->gen < 6 && !inst->texture_offset) { /* Set up an implied move from g0 to the MRF. */ src = brw_vec8_grf(0, 0); } else { struct brw_reg header = retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD); /* Explicitly set up the message header by copying g0 to the MRF. */ brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); brw_set_access_mode(p, BRW_ALIGN_1); if (inst->texture_offset) { /* Set the texel offset bits in DWord 2. */ brw_MOV(p, get_element_ud(header, 2), brw_imm_ud(inst->texture_offset)); } if (inst->sampler >= 16) { /* The "Sampler Index" field can only store values between 0 and 15. * However, we can add an offset to the "Sampler State Pointer" * field, effectively selecting a different set of 16 samplers. * * The "Sampler State Pointer" needs to be aligned to a 32-byte * offset, and each sampler state is only 16-bytes, so we can't * exclusively use the offset - we have to use both. */ assert(brw->is_haswell); /* field only exists on Haswell */ brw_ADD(p, get_element_ud(header, 3), get_element_ud(brw_vec8_grf(0, 0), 3), brw_imm_ud(16 * (inst->sampler / 16) * sizeof(gen7_sampler_state))); } brw_pop_insn_state(p); } } uint32_t return_format; switch (dst.type) { case BRW_REGISTER_TYPE_D: return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32; break; case BRW_REGISTER_TYPE_UD: return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32; break; default: return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32; break; } uint32_t surface_index = ((inst->opcode == SHADER_OPCODE_TG4 || inst->opcode == SHADER_OPCODE_TG4_OFFSET) ? prog_data->base.binding_table.gather_texture_start : prog_data->base.binding_table.texture_start) + inst->sampler; brw_SAMPLE(p, dst, inst->base_mrf, src, surface_index, inst->sampler % 16, msg_type, 1, /* response length */ inst->mlen, inst->header_present, BRW_SAMPLER_SIMD_MODE_SIMD4X2, return_format); mark_surface_used(surface_index); } void vec4_generator::generate_vs_urb_write(vec4_instruction *inst) { brw_urb_WRITE(p, brw_null_reg(), /* dest */ inst->base_mrf, /* starting mrf reg nr */ brw_vec8_grf(0, 0), /* src */ inst->urb_write_flags, inst->mlen, 0, /* response len */ inst->offset, /* urb destination offset */ BRW_URB_SWIZZLE_INTERLEAVE); } void vec4_generator::generate_gs_urb_write(vec4_instruction *inst) { struct brw_reg src = brw_message_reg(inst->base_mrf); brw_urb_WRITE(p, brw_null_reg(), /* dest */ inst->base_mrf, /* starting mrf reg nr */ src, inst->urb_write_flags, inst->mlen, 0, /* response len */ inst->offset, /* urb destination offset */ BRW_URB_SWIZZLE_INTERLEAVE); } void vec4_generator::generate_gs_thread_end(vec4_instruction *inst) { struct brw_reg src = brw_message_reg(inst->base_mrf); brw_urb_WRITE(p, brw_null_reg(), /* dest */ inst->base_mrf, /* starting mrf reg nr */ src, BRW_URB_WRITE_EOT, 1, /* message len */ 0, /* response len */ 0, /* urb destination offset */ BRW_URB_SWIZZLE_INTERLEAVE); } void vec4_generator::generate_gs_set_write_offset(struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { /* From p22 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message * Header: M0.3): * * Slot 0 Offset. This field, after adding to the Global Offset field * in the message descriptor, specifies the offset (in 256-bit units) * from the start of the URB entry, as referenced by URB Handle 0, at * which the data will be accessed. * * Similar text describes DWORD M0.4, which is slot 1 offset. * * Therefore, we want to multiply DWORDs 0 and 4 of src0 (the x components * of the register for geometry shader invocations 0 and 1) by the * immediate value in src1, and store the result in DWORDs 3 and 4 of dst. * * We can do this with the following EU instruction: * * mul(2) dst.3<1>UD src0<8;2,4>UD src1 { Align1 WE_all } */ brw_push_insn_state(p); brw_set_access_mode(p, BRW_ALIGN_1); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_MUL(p, suboffset(stride(dst, 2, 2, 1), 3), stride(src0, 8, 2, 4), src1); brw_set_access_mode(p, BRW_ALIGN_16); brw_pop_insn_state(p); } void vec4_generator::generate_gs_set_vertex_count(struct brw_reg dst, struct brw_reg src) { brw_push_insn_state(p); brw_set_access_mode(p, BRW_ALIGN_1); brw_set_mask_control(p, BRW_MASK_DISABLE); /* If we think of the src and dst registers as composed of 8 DWORDs each, * we want to pick up the contents of DWORDs 0 and 4 from src, truncate * them to WORDs, and then pack them into DWORD 2 of dst. * * It's easier to get the EU to do this if we think of the src and dst * registers as composed of 16 WORDS each; then, we want to pick up the * contents of WORDs 0 and 8 from src, and pack them into WORDs 4 and 5 of * dst. * * We can do that by the following EU instruction: * * mov (2) dst.4<1>:uw src<8;1,0>:uw { Align1, Q1, NoMask } */ brw_MOV(p, suboffset(stride(retype(dst, BRW_REGISTER_TYPE_UW), 2, 2, 1), 4), stride(retype(src, BRW_REGISTER_TYPE_UW), 8, 1, 0)); brw_set_access_mode(p, BRW_ALIGN_16); brw_pop_insn_state(p); } void vec4_generator::generate_gs_set_dword_2_immed(struct brw_reg dst, struct brw_reg src) { assert(src.file == BRW_IMMEDIATE_VALUE); brw_push_insn_state(p); brw_set_access_mode(p, BRW_ALIGN_1); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, suboffset(vec1(dst), 2), src); brw_set_access_mode(p, BRW_ALIGN_16); brw_pop_insn_state(p); } void vec4_generator::generate_gs_prepare_channel_masks(struct brw_reg dst) { /* We want to left shift just DWORD 4 (the x component belonging to the * second geometry shader invocation) by 4 bits. So generate the * instruction: * * shl(1) dst.4<1>UD dst.4<0,1,0>UD 4UD { align1 WE_all } */ dst = suboffset(vec1(dst), 4); brw_push_insn_state(p); brw_set_access_mode(p, BRW_ALIGN_1); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_SHL(p, dst, dst, brw_imm_ud(4)); brw_pop_insn_state(p); } void vec4_generator::generate_gs_set_channel_masks(struct brw_reg dst, struct brw_reg src) { /* From p21 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message * Header: M0.5): * * 15 Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask * * When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1 * DATA[3], when Swizzle Control = URB_NOSWIZZLE this bit controls * Vertex 0 DATA[7]. This bit is ANDed with the corresponding * channel enable to determine the final channel enable. For the * URB_READ_OWORD & URB_READ_HWORD messages, when final channel * enable is 1 it indicates that Vertex 1 DATA [3] will be included * in the writeback message. For the URB_WRITE_OWORD & * URB_WRITE_HWORD messages, when final channel enable is 1 it * indicates that Vertex 1 DATA [3] will be written to the surface. * * 0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included * 1: Vertex DATA [3] / Vertex 0 DATA[7] channel included * * 14 Vertex 1 DATA [2] Channel Mask * 13 Vertex 1 DATA [1] Channel Mask * 12 Vertex 1 DATA [0] Channel Mask * 11 Vertex 0 DATA [3] Channel Mask * 10 Vertex 0 DATA [2] Channel Mask * 9 Vertex 0 DATA [1] Channel Mask * 8 Vertex 0 DATA [0] Channel Mask * * (This is from a section of the PRM that is agnostic to the particular * type of shader being executed, so "Vertex 0" and "Vertex 1" refer to * geometry shader invocations 0 and 1, respectively). Since we have the * enable flags for geometry shader invocation 0 in bits 3:0 of DWORD 0, * and the enable flags for geometry shader invocation 1 in bits 7:0 of * DWORD 4, we just need to OR them together and store the result in bits * 15:8 of DWORD 5. * * It's easier to get the EU to do this if we think of the src and dst * registers as composed of 32 bytes each; then, we want to pick up the * contents of bytes 0 and 16 from src, OR them together, and store them in * byte 21. * * We can do that by the following EU instruction: * * or(1) dst.21<1>UB src<0,1,0>UB src.16<0,1,0>UB { align1 WE_all } * * Note: this relies on the source register having zeros in (a) bits 7:4 of * DWORD 0 and (b) bits 3:0 of DWORD 4. We can rely on (b) because the * source register was prepared by GS_OPCODE_PREPARE_CHANNEL_MASKS (which * shifts DWORD 4 left by 4 bits), and we can rely on (a) because prior to * the execution of GS_OPCODE_PREPARE_CHANNEL_MASKS, DWORDs 0 and 4 need to * contain valid channel mask values (which are in the range 0x0-0xf). */ dst = retype(dst, BRW_REGISTER_TYPE_UB); src = retype(src, BRW_REGISTER_TYPE_UB); brw_push_insn_state(p); brw_set_access_mode(p, BRW_ALIGN_1); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_OR(p, suboffset(vec1(dst), 21), vec1(src), suboffset(vec1(src), 16)); brw_pop_insn_state(p); } void vec4_generator::generate_oword_dual_block_offsets(struct brw_reg m1, struct brw_reg index) { int second_vertex_offset; if (brw->gen >= 6) second_vertex_offset = 1; else second_vertex_offset = 16; m1 = retype(m1, BRW_REGISTER_TYPE_D); /* Set up M1 (message payload). Only the block offsets in M1.0 and * M1.4 are used, and the rest are ignored. */ struct brw_reg m1_0 = suboffset(vec1(m1), 0); struct brw_reg m1_4 = suboffset(vec1(m1), 4); struct brw_reg index_0 = suboffset(vec1(index), 0); struct brw_reg index_4 = suboffset(vec1(index), 4); brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_set_access_mode(p, BRW_ALIGN_1); brw_MOV(p, m1_0, index_0); if (index.file == BRW_IMMEDIATE_VALUE) { index_4.dw1.ud += second_vertex_offset; brw_MOV(p, m1_4, index_4); } else { brw_ADD(p, m1_4, index_4, brw_imm_d(second_vertex_offset)); } brw_pop_insn_state(p); } void vec4_generator::generate_unpack_flags(vec4_instruction *inst, struct brw_reg dst) { brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_set_access_mode(p, BRW_ALIGN_1); struct brw_reg flags = brw_flag_reg(0, 0); struct brw_reg dst_0 = suboffset(vec1(dst), 0); struct brw_reg dst_4 = suboffset(vec1(dst), 4); brw_AND(p, dst_0, flags, brw_imm_ud(0x0f)); brw_AND(p, dst_4, flags, brw_imm_ud(0xf0)); brw_SHR(p, dst_4, dst_4, brw_imm_ud(4)); brw_pop_insn_state(p); } void vec4_generator::generate_scratch_read(vec4_instruction *inst, struct brw_reg dst, struct brw_reg index) { struct brw_reg header = brw_vec8_grf(0, 0); gen6_resolve_implied_move(p, &header, inst->base_mrf); generate_oword_dual_block_offsets(brw_message_reg(inst->base_mrf + 1), index); uint32_t msg_type; if (brw->gen >= 6) msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; else if (brw->gen == 5 || brw->is_g4x) msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; else msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; /* Each of the 8 channel enables is considered for whether each * dword is written. */ struct brw_instruction *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, dst); brw_set_src0(p, send, header); if (brw->gen < 6) send->header.destreg__conditionalmod = inst->base_mrf; brw_set_dp_read_message(p, send, 255, /* binding table index: stateless access */ BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD, msg_type, BRW_DATAPORT_READ_TARGET_RENDER_CACHE, 2, /* mlen */ true, /* header_present */ 1 /* rlen */); } void vec4_generator::generate_scratch_write(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src, struct brw_reg index) { struct brw_reg header = brw_vec8_grf(0, 0); bool write_commit; /* If the instruction is predicated, we'll predicate the send, not * the header setup. */ brw_set_predicate_control(p, false); gen6_resolve_implied_move(p, &header, inst->base_mrf); generate_oword_dual_block_offsets(brw_message_reg(inst->base_mrf + 1), index); brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 2), BRW_REGISTER_TYPE_D), retype(src, BRW_REGISTER_TYPE_D)); uint32_t msg_type; if (brw->gen >= 7) msg_type = GEN7_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE; else if (brw->gen == 6) msg_type = GEN6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE; else msg_type = BRW_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE; brw_set_predicate_control(p, inst->predicate); /* Pre-gen6, we have to specify write commits to ensure ordering * between reads and writes within a thread. Afterwards, that's * guaranteed and write commits only matter for inter-thread * synchronization. */ if (brw->gen >= 6) { write_commit = false; } else { /* The visitor set up our destination register to be g0. This * means that when the next read comes along, we will end up * reading from g0 and causing a block on the write commit. For * write-after-read, we are relying on the value of the previous * read being used (and thus blocking on completion) before our * write is executed. This means we have to be careful in * instruction scheduling to not violate this assumption. */ write_commit = true; } /* Each of the 8 channel enables is considered for whether each * dword is written. */ struct brw_instruction *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, dst); brw_set_src0(p, send, header); if (brw->gen < 6) send->header.destreg__conditionalmod = inst->base_mrf; brw_set_dp_write_message(p, send, 255, /* binding table index: stateless access */ BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD, msg_type, 3, /* mlen */ true, /* header present */ false, /* not a render target write */ write_commit, /* rlen */ false, /* eot */ write_commit); } void vec4_generator::generate_pull_constant_load(vec4_instruction *inst, struct brw_reg dst, struct brw_reg index, struct brw_reg offset) { assert(brw->gen <= 7); assert(index.file == BRW_IMMEDIATE_VALUE && index.type == BRW_REGISTER_TYPE_UD); uint32_t surf_index = index.dw1.ud; struct brw_reg header = brw_vec8_grf(0, 0); gen6_resolve_implied_move(p, &header, inst->base_mrf); brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), BRW_REGISTER_TYPE_D), offset); uint32_t msg_type; if (brw->gen >= 6) msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; else if (brw->gen == 5 || brw->is_g4x) msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; else msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; /* Each of the 8 channel enables is considered for whether each * dword is written. */ struct brw_instruction *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, dst); brw_set_src0(p, send, header); if (brw->gen < 6) send->header.destreg__conditionalmod = inst->base_mrf; brw_set_dp_read_message(p, send, surf_index, BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD, msg_type, BRW_DATAPORT_READ_TARGET_DATA_CACHE, 2, /* mlen */ true, /* header_present */ 1 /* rlen */); mark_surface_used(surf_index); } void vec4_generator::generate_pull_constant_load_gen7(vec4_instruction *inst, struct brw_reg dst, struct brw_reg surf_index, struct brw_reg offset) { assert(surf_index.file == BRW_IMMEDIATE_VALUE && surf_index.type == BRW_REGISTER_TYPE_UD); brw_instruction *insn = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, insn, dst); brw_set_src0(p, insn, offset); brw_set_sampler_message(p, insn, surf_index.dw1.ud, 0, /* LD message ignores sampler unit */ GEN5_SAMPLER_MESSAGE_SAMPLE_LD, 1, /* rlen */ 1, /* mlen */ false, /* no header */ BRW_SAMPLER_SIMD_MODE_SIMD4X2, 0); mark_surface_used(surf_index.dw1.ud); } void vec4_generator::generate_untyped_atomic(vec4_instruction *inst, struct brw_reg dst, struct brw_reg atomic_op, struct brw_reg surf_index) { assert(atomic_op.file == BRW_IMMEDIATE_VALUE && atomic_op.type == BRW_REGISTER_TYPE_UD && surf_index.file == BRW_IMMEDIATE_VALUE && surf_index.type == BRW_REGISTER_TYPE_UD); brw_untyped_atomic(p, dst, brw_message_reg(inst->base_mrf), atomic_op.dw1.ud, surf_index.dw1.ud, inst->mlen, 1); mark_surface_used(surf_index.dw1.ud); } void vec4_generator::generate_untyped_surface_read(vec4_instruction *inst, struct brw_reg dst, struct brw_reg surf_index) { assert(surf_index.file == BRW_IMMEDIATE_VALUE && surf_index.type == BRW_REGISTER_TYPE_UD); brw_untyped_surface_read(p, dst, brw_message_reg(inst->base_mrf), surf_index.dw1.ud, inst->mlen, 1); mark_surface_used(surf_index.dw1.ud); } /** * Generate assembly for a Vec4 IR instruction. * * \param instruction The Vec4 IR instruction to generate code for. * \param dst The destination register. * \param src An array of up to three source registers. */ void vec4_generator::generate_vec4_instruction(vec4_instruction *instruction, struct brw_reg dst, struct brw_reg *src) { vec4_instruction *inst = (vec4_instruction *) instruction; if (dst.width == BRW_WIDTH_4) { /* This happens in attribute fixups for "dual instanced" geometry * shaders, since they use attributes that are vec4's. Since the exec * width is only 4, it's essential that the caller set * force_writemask_all in order to make sure the instruction is executed * regardless of which channels are enabled. */ assert(inst->force_writemask_all); /* Fix up any <8;8,1> or <0;4,1> source registers to <4;4,1> to satisfy * the following register region restrictions (from Graphics BSpec: * 3D-Media-GPGPU Engine > EU Overview > Registers and Register Regions * > Register Region Restrictions) * * 1. ExecSize must be greater than or equal to Width. * * 2. If ExecSize = Width and HorzStride != 0, VertStride must be set * to Width * HorzStride." */ for (int i = 0; i < 3; i++) { if (src[i].file == BRW_GENERAL_REGISTER_FILE) src[i] = stride(src[i], 4, 4, 1); } } switch (inst->opcode) { case BRW_OPCODE_MOV: brw_MOV(p, dst, src[0]); break; case BRW_OPCODE_ADD: brw_ADD(p, dst, src[0], src[1]); break; case BRW_OPCODE_MUL: brw_MUL(p, dst, src[0], src[1]); break; case BRW_OPCODE_MACH: brw_set_acc_write_control(p, 1); brw_MACH(p, dst, src[0], src[1]); brw_set_acc_write_control(p, 0); break; case BRW_OPCODE_MAD: assert(brw->gen >= 6); brw_MAD(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_FRC: brw_FRC(p, dst, src[0]); break; case BRW_OPCODE_RNDD: brw_RNDD(p, dst, src[0]); break; case BRW_OPCODE_RNDE: brw_RNDE(p, dst, src[0]); break; case BRW_OPCODE_RNDZ: brw_RNDZ(p, dst, src[0]); break; case BRW_OPCODE_AND: brw_AND(p, dst, src[0], src[1]); break; case BRW_OPCODE_OR: brw_OR(p, dst, src[0], src[1]); break; case BRW_OPCODE_XOR: brw_XOR(p, dst, src[0], src[1]); break; case BRW_OPCODE_NOT: brw_NOT(p, dst, src[0]); break; case BRW_OPCODE_ASR: brw_ASR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHR: brw_SHR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHL: brw_SHL(p, dst, src[0], src[1]); break; case BRW_OPCODE_CMP: brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]); break; case BRW_OPCODE_SEL: brw_SEL(p, dst, src[0], src[1]); break; case BRW_OPCODE_DPH: brw_DPH(p, dst, src[0], src[1]); break; case BRW_OPCODE_DP4: brw_DP4(p, dst, src[0], src[1]); break; case BRW_OPCODE_DP3: brw_DP3(p, dst, src[0], src[1]); break; case BRW_OPCODE_DP2: brw_DP2(p, dst, src[0], src[1]); break; case BRW_OPCODE_F32TO16: assert(brw->gen >= 7); brw_F32TO16(p, dst, src[0]); break; case BRW_OPCODE_F16TO32: assert(brw->gen >= 7); brw_F16TO32(p, dst, src[0]); break; case BRW_OPCODE_LRP: assert(brw->gen >= 6); brw_LRP(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_BFREV: assert(brw->gen >= 7); /* BFREV only supports UD type for src and dst. */ brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD), retype(src[0], BRW_REGISTER_TYPE_UD)); break; case BRW_OPCODE_FBH: assert(brw->gen >= 7); /* FBH only supports UD type for dst. */ brw_FBH(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]); break; case BRW_OPCODE_FBL: assert(brw->gen >= 7); /* FBL only supports UD type for dst. */ brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]); break; case BRW_OPCODE_CBIT: assert(brw->gen >= 7); /* CBIT only supports UD type for dst. */ brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]); break; case BRW_OPCODE_ADDC: assert(brw->gen >= 7); brw_set_acc_write_control(p, 1); brw_ADDC(p, dst, src[0], src[1]); brw_set_acc_write_control(p, 0); break; case BRW_OPCODE_SUBB: assert(brw->gen >= 7); brw_set_acc_write_control(p, 1); brw_SUBB(p, dst, src[0], src[1]); brw_set_acc_write_control(p, 0); break; case BRW_OPCODE_BFE: assert(brw->gen >= 7); brw_BFE(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_BFI1: assert(brw->gen >= 7); brw_BFI1(p, dst, src[0], src[1]); break; case BRW_OPCODE_BFI2: assert(brw->gen >= 7); brw_BFI2(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_IF: if (inst->src[0].file != BAD_FILE) { /* The instruction has an embedded compare (only allowed on gen6) */ assert(brw->gen == 6); gen6_IF(p, inst->conditional_mod, src[0], src[1]); } else { struct brw_instruction *brw_inst = brw_IF(p, BRW_EXECUTE_8); brw_inst->header.predicate_control = inst->predicate; } break; case BRW_OPCODE_ELSE: brw_ELSE(p); break; case BRW_OPCODE_ENDIF: brw_ENDIF(p); break; case BRW_OPCODE_DO: brw_DO(p, BRW_EXECUTE_8); break; case BRW_OPCODE_BREAK: brw_BREAK(p); brw_set_predicate_control(p, BRW_PREDICATE_NONE); break; case BRW_OPCODE_CONTINUE: /* FINISHME: We need to write the loop instruction support still. */ if (brw->gen >= 6) gen6_CONT(p); else brw_CONT(p); brw_set_predicate_control(p, BRW_PREDICATE_NONE); break; case BRW_OPCODE_WHILE: brw_WHILE(p); break; case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SQRT: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_SIN: case SHADER_OPCODE_COS: if (brw->gen == 6) { generate_math1_gen6(inst, dst, src[0]); } else { /* Also works for Gen7. */ generate_math1_gen4(inst, dst, src[0]); } break; case SHADER_OPCODE_POW: case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_INT_REMAINDER: if (brw->gen >= 7) { generate_math2_gen7(inst, dst, src[0], src[1]); } else if (brw->gen == 6) { generate_math2_gen6(inst, dst, src[0], src[1]); } else { generate_math2_gen4(inst, dst, src[0], src[1]); } break; case SHADER_OPCODE_TEX: case SHADER_OPCODE_TXD: case SHADER_OPCODE_TXF: case SHADER_OPCODE_TXF_CMS: case SHADER_OPCODE_TXF_MCS: case SHADER_OPCODE_TXL: case SHADER_OPCODE_TXS: case SHADER_OPCODE_TG4: case SHADER_OPCODE_TG4_OFFSET: generate_tex(inst, dst, src[0]); break; case VS_OPCODE_URB_WRITE: generate_vs_urb_write(inst); break; case SHADER_OPCODE_GEN4_SCRATCH_READ: generate_scratch_read(inst, dst, src[0]); break; case SHADER_OPCODE_GEN4_SCRATCH_WRITE: generate_scratch_write(inst, dst, src[0], src[1]); break; case VS_OPCODE_PULL_CONSTANT_LOAD: generate_pull_constant_load(inst, dst, src[0], src[1]); break; case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: generate_pull_constant_load_gen7(inst, dst, src[0], src[1]); break; case GS_OPCODE_URB_WRITE: generate_gs_urb_write(inst); break; case GS_OPCODE_THREAD_END: generate_gs_thread_end(inst); break; case GS_OPCODE_SET_WRITE_OFFSET: generate_gs_set_write_offset(dst, src[0], src[1]); break; case GS_OPCODE_SET_VERTEX_COUNT: generate_gs_set_vertex_count(dst, src[0]); break; case GS_OPCODE_SET_DWORD_2_IMMED: generate_gs_set_dword_2_immed(dst, src[0]); break; case GS_OPCODE_PREPARE_CHANNEL_MASKS: generate_gs_prepare_channel_masks(dst); break; case GS_OPCODE_SET_CHANNEL_MASKS: generate_gs_set_channel_masks(dst, src[0]); break; case SHADER_OPCODE_SHADER_TIME_ADD: brw_shader_time_add(p, src[0], prog_data->base.binding_table.shader_time_start); mark_surface_used(prog_data->base.binding_table.shader_time_start); break; case SHADER_OPCODE_UNTYPED_ATOMIC: generate_untyped_atomic(inst, dst, src[0], src[1]); break; case SHADER_OPCODE_UNTYPED_SURFACE_READ: generate_untyped_surface_read(inst, dst, src[0]); break; case VS_OPCODE_UNPACK_FLAGS_SIMD4X2: generate_unpack_flags(inst, dst); break; default: if (inst->opcode < (int) ARRAY_SIZE(opcode_descs)) { _mesa_problem(&brw->ctx, "Unsupported opcode in `%s' in vec4\n", opcode_descs[inst->opcode].name); } else { _mesa_problem(&brw->ctx, "Unsupported opcode %d in vec4", inst->opcode); } abort(); } } void vec4_generator::generate_code(exec_list *instructions) { int last_native_insn_offset = 0; const char *last_annotation_string = NULL; const void *last_annotation_ir = NULL; if (unlikely(debug_flag)) { if (prog) { printf("Native code for vertex shader %d:\n", shader_prog->Name); } else { printf("Native code for vertex program %d:\n", prog->Id); } } foreach_list(node, instructions) { vec4_instruction *inst = (vec4_instruction *)node; struct brw_reg src[3], dst; if (unlikely(debug_flag)) { if (last_annotation_ir != inst->ir) { last_annotation_ir = inst->ir; if (last_annotation_ir) { printf(" "); if (prog) { ((ir_instruction *) last_annotation_ir)->print(); } else { const prog_instruction *vpi; vpi = (const prog_instruction *) inst->ir; printf("%d: ", (int)(vpi - prog->Instructions)); _mesa_fprint_instruction_opt(stdout, vpi, 0, PROG_PRINT_DEBUG, NULL); } printf("\n"); } } if (last_annotation_string != inst->annotation) { last_annotation_string = inst->annotation; if (last_annotation_string) printf(" %s\n", last_annotation_string); } } for (unsigned int i = 0; i < 3; i++) { src[i] = inst->get_src(this->prog_data, i); } dst = inst->get_dst(); brw_set_conditionalmod(p, inst->conditional_mod); brw_set_predicate_control(p, inst->predicate); brw_set_predicate_inverse(p, inst->predicate_inverse); brw_set_saturate(p, inst->saturate); brw_set_mask_control(p, inst->force_writemask_all); unsigned pre_emit_nr_insn = p->nr_insn; generate_vec4_instruction(inst, dst, src); if (inst->no_dd_clear || inst->no_dd_check) { assert(p->nr_insn == pre_emit_nr_insn + 1 || !"no_dd_check or no_dd_clear set for IR emitting more " "than 1 instruction"); struct brw_instruction *last = &p->store[pre_emit_nr_insn]; if (inst->no_dd_clear) last->header.dependency_control |= BRW_DEPENDENCY_NOTCLEARED; if (inst->no_dd_check) last->header.dependency_control |= BRW_DEPENDENCY_NOTCHECKED; } if (unlikely(debug_flag)) { brw_dump_compile(p, stdout, last_native_insn_offset, p->next_insn_offset); } last_native_insn_offset = p->next_insn_offset; } if (unlikely(debug_flag)) { printf("\n"); } brw_set_uip_jip(p); /* OK, while the INTEL_DEBUG=vs above is very nice for debugging VS * emit issues, it doesn't get the jump distances into the output, * which is often something we want to debug. So this is here in * case you're doing that. */ if (0 && unlikely(debug_flag)) { brw_dump_compile(p, stdout, 0, p->next_insn_offset); } } const unsigned * vec4_generator::generate_assembly(exec_list *instructions, unsigned *assembly_size) { brw_set_access_mode(p, BRW_ALIGN_16); generate_code(instructions); return brw_get_program(p, assembly_size); } } /* namespace brw */