/* Copyright © 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "brw_vec4.h" #include "glsl/ir_print_visitor.h" extern "C" { #include "brw_eu.h" #include "main/macros.h" #include "program/prog_print.h" #include "program/prog_parameter.h" }; using namespace brw; namespace brw { int vec4_visitor::setup_attributes(int payload_reg) { int nr_attributes; int attribute_map[VERT_ATTRIB_MAX + 1]; nr_attributes = 0; for (int i = 0; i < VERT_ATTRIB_MAX; i++) { if (prog_data->inputs_read & BITFIELD64_BIT(i)) { attribute_map[i] = payload_reg + nr_attributes; nr_attributes++; } } /* VertexID is stored by the VF as the last vertex element, but we * don't represent it with a flag in inputs_read, so we call it * VERT_ATTRIB_MAX. */ if (prog_data->uses_vertexid) { attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes; nr_attributes++; } foreach_list(node, &this->instructions) { vec4_instruction *inst = (vec4_instruction *)node; /* We have to support ATTR as a destination for GL_FIXED fixup. */ if (inst->dst.file == ATTR) { int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset]; struct brw_reg reg = brw_vec8_grf(grf, 0); reg.type = inst->dst.type; reg.dw1.bits.writemask = inst->dst.writemask; inst->dst.file = HW_REG; inst->dst.fixed_hw_reg = reg; } for (int i = 0; i < 3; i++) { if (inst->src[i].file != ATTR) continue; int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset]; struct brw_reg reg = brw_vec8_grf(grf, 0); reg.dw1.bits.swizzle = inst->src[i].swizzle; reg.type = inst->src[i].type; if (inst->src[i].abs) reg = brw_abs(reg); if (inst->src[i].negate) reg = negate(reg); inst->src[i].file = HW_REG; inst->src[i].fixed_hw_reg = reg; } } /* The BSpec says we always have to read at least one thing from * the VF, and it appears that the hardware wedges otherwise. */ if (nr_attributes == 0) nr_attributes = 1; prog_data->urb_read_length = (nr_attributes + 1) / 2; unsigned vue_entries = MAX2(nr_attributes, c->prog_data.vue_map.num_slots); if (intel->gen == 6) c->prog_data.urb_entry_size = ALIGN(vue_entries, 8) / 8; else c->prog_data.urb_entry_size = ALIGN(vue_entries, 4) / 4; return payload_reg + nr_attributes; } int vec4_visitor::setup_uniforms(int reg) { /* The pre-gen6 VS requires that some push constants get loaded no * matter what, or the GPU would hang. */ if (intel->gen < 6 && this->uniforms == 0) { this->uniform_vector_size[this->uniforms] = 1; for (unsigned int i = 0; i < 4; i++) { unsigned int slot = this->uniforms * 4 + i; static float zero = 0.0; c->prog_data.param[slot] = &zero; } this->uniforms++; reg++; } else { reg += ALIGN(uniforms, 2) / 2; } c->prog_data.nr_params = this->uniforms * 4; c->prog_data.curb_read_length = reg - 1; return reg; } void vec4_visitor::setup_payload(void) { int reg = 0; /* The payload always contains important data in g0, which contains * the URB handles that are passed on to the URB write at the end * of the thread. So, we always start push constants at g1. */ reg++; reg = setup_uniforms(reg); reg = setup_attributes(reg); this->first_non_payload_grf = reg; } struct brw_reg vec4_instruction::get_dst(void) { struct brw_reg brw_reg; switch (dst.file) { case GRF: brw_reg = brw_vec8_grf(dst.reg + dst.reg_offset, 0); brw_reg = retype(brw_reg, dst.type); brw_reg.dw1.bits.writemask = dst.writemask; break; case MRF: brw_reg = brw_message_reg(dst.reg + dst.reg_offset); brw_reg = retype(brw_reg, dst.type); brw_reg.dw1.bits.writemask = dst.writemask; break; case HW_REG: brw_reg = dst.fixed_hw_reg; break; case BAD_FILE: brw_reg = brw_null_reg(); break; default: assert(!"not reached"); brw_reg = brw_null_reg(); break; } return brw_reg; } struct brw_reg vec4_instruction::get_src(int i) { struct brw_reg brw_reg; switch (src[i].file) { case GRF: brw_reg = brw_vec8_grf(src[i].reg + src[i].reg_offset, 0); brw_reg = retype(brw_reg, src[i].type); brw_reg.dw1.bits.swizzle = src[i].swizzle; if (src[i].abs) brw_reg = brw_abs(brw_reg); if (src[i].negate) brw_reg = negate(brw_reg); break; case IMM: switch (src[i].type) { case BRW_REGISTER_TYPE_F: brw_reg = brw_imm_f(src[i].imm.f); break; case BRW_REGISTER_TYPE_D: brw_reg = brw_imm_d(src[i].imm.i); break; case BRW_REGISTER_TYPE_UD: brw_reg = brw_imm_ud(src[i].imm.u); break; default: assert(!"not reached"); brw_reg = brw_null_reg(); break; } break; case UNIFORM: brw_reg = stride(brw_vec4_grf(1 + (src[i].reg + src[i].reg_offset) / 2, ((src[i].reg + src[i].reg_offset) % 2) * 4), 0, 4, 1); brw_reg = retype(brw_reg, src[i].type); brw_reg.dw1.bits.swizzle = src[i].swizzle; if (src[i].abs) brw_reg = brw_abs(brw_reg); if (src[i].negate) brw_reg = negate(brw_reg); /* This should have been moved to pull constants. */ assert(!src[i].reladdr); break; case HW_REG: brw_reg = src[i].fixed_hw_reg; break; case BAD_FILE: /* Probably unused. */ brw_reg = brw_null_reg(); break; case ATTR: default: assert(!"not reached"); brw_reg = brw_null_reg(); break; } return brw_reg; } void vec4_visitor::generate_math1_gen4(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src) { brw_math(p, dst, brw_math_function(inst->opcode), inst->base_mrf, src, BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); } static void check_gen6_math_src_arg(struct brw_reg src) { /* Source swizzles are ignored. */ assert(!src.abs); assert(!src.negate); assert(src.dw1.bits.swizzle == BRW_SWIZZLE_XYZW); } void vec4_visitor::generate_math1_gen6(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src) { /* Can't do writemask because math can't be align16. */ assert(dst.dw1.bits.writemask == WRITEMASK_XYZW); check_gen6_math_src_arg(src); brw_set_access_mode(p, BRW_ALIGN_1); brw_math(p, dst, brw_math_function(inst->opcode), inst->base_mrf, src, BRW_MATH_DATA_SCALAR, BRW_MATH_PRECISION_FULL); brw_set_access_mode(p, BRW_ALIGN_16); } void vec4_visitor::generate_math2_gen7(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { brw_math2(p, dst, brw_math_function(inst->opcode), src0, src1); } void vec4_visitor::generate_math2_gen6(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { /* Can't do writemask because math can't be align16. */ assert(dst.dw1.bits.writemask == WRITEMASK_XYZW); /* Source swizzles are ignored. */ check_gen6_math_src_arg(src0); check_gen6_math_src_arg(src1); brw_set_access_mode(p, BRW_ALIGN_1); brw_math2(p, dst, brw_math_function(inst->opcode), src0, src1); brw_set_access_mode(p, BRW_ALIGN_16); } void vec4_visitor::generate_math2_gen4(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13 * "Message Payload": * * "Operand0[7]. For the INT DIV functions, this operand is the * denominator." * ... * "Operand1[7]. For the INT DIV functions, this operand is the * numerator." */ bool is_int_div = inst->opcode != SHADER_OPCODE_POW; struct brw_reg &op0 = is_int_div ? src1 : src0; struct brw_reg &op1 = is_int_div ? src0 : src1; brw_push_insn_state(p); brw_set_saturate(p, false); brw_set_predicate_control(p, BRW_PREDICATE_NONE); brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), op1.type), op1); brw_pop_insn_state(p); brw_math(p, dst, brw_math_function(inst->opcode), inst->base_mrf, op0, BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); } void vec4_visitor::generate_tex(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src) { int msg_type = -1; if (intel->gen >= 5) { switch (inst->opcode) { case SHADER_OPCODE_TEX: case SHADER_OPCODE_TXL: if (inst->shadow_compare) { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD; } break; case SHADER_OPCODE_TXD: /* There is no sample_d_c message; comparisons are done manually. */ msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS; break; case SHADER_OPCODE_TXF: msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD; break; case SHADER_OPCODE_TXS: msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO; break; default: assert(!"should not get here: invalid VS texture opcode"); break; } } else { switch (inst->opcode) { case SHADER_OPCODE_TEX: case SHADER_OPCODE_TXL: if (inst->shadow_compare) { msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD_COMPARE; assert(inst->mlen == 3); } else { msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD; assert(inst->mlen == 2); } break; case SHADER_OPCODE_TXD: /* There is no sample_d_c message; comparisons are done manually. */ msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_GRADIENTS; assert(inst->mlen == 4); break; case SHADER_OPCODE_TXF: msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_LD; assert(inst->mlen == 2); break; case SHADER_OPCODE_TXS: msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_RESINFO; assert(inst->mlen == 2); break; default: assert(!"should not get here: invalid VS texture opcode"); break; } } assert(msg_type != -1); /* Load the message header if present. If there's a texture offset, we need * to set it up explicitly and load the offset bitfield. Otherwise, we can * use an implied move from g0 to the first message register. */ if (inst->texture_offset) { /* Explicitly set up the message header by copying g0 to the MRF. */ brw_MOV(p, retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD), retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); /* Then set the offset bits in DWord 2. */ brw_set_access_mode(p, BRW_ALIGN_1); brw_MOV(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, inst->base_mrf, 2), BRW_REGISTER_TYPE_UD), brw_imm_uw(inst->texture_offset)); brw_set_access_mode(p, BRW_ALIGN_16); } else if (inst->header_present) { /* Set up an implied move from g0 to the MRF. */ src = brw_vec8_grf(0, 0); } uint32_t return_format; switch (dst.type) { case BRW_REGISTER_TYPE_D: return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32; break; case BRW_REGISTER_TYPE_UD: return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32; break; default: return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32; break; } brw_SAMPLE(p, dst, inst->base_mrf, src, SURF_INDEX_VS_TEXTURE(inst->sampler), inst->sampler, WRITEMASK_XYZW, msg_type, 1, /* response length */ inst->mlen, inst->header_present, BRW_SAMPLER_SIMD_MODE_SIMD4X2, return_format); } void vec4_visitor::generate_urb_write(vec4_instruction *inst) { brw_urb_WRITE(p, brw_null_reg(), /* dest */ inst->base_mrf, /* starting mrf reg nr */ brw_vec8_grf(0, 0), /* src */ false, /* allocate */ true, /* used */ inst->mlen, 0, /* response len */ inst->eot, /* eot */ inst->eot, /* writes complete */ inst->offset, /* urb destination offset */ BRW_URB_SWIZZLE_INTERLEAVE); } void vec4_visitor::generate_oword_dual_block_offsets(struct brw_reg m1, struct brw_reg index) { int second_vertex_offset; if (intel->gen >= 6) second_vertex_offset = 1; else second_vertex_offset = 16; m1 = retype(m1, BRW_REGISTER_TYPE_D); /* Set up M1 (message payload). Only the block offsets in M1.0 and * M1.4 are used, and the rest are ignored. */ struct brw_reg m1_0 = suboffset(vec1(m1), 0); struct brw_reg m1_4 = suboffset(vec1(m1), 4); struct brw_reg index_0 = suboffset(vec1(index), 0); struct brw_reg index_4 = suboffset(vec1(index), 4); brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_set_access_mode(p, BRW_ALIGN_1); brw_MOV(p, m1_0, index_0); if (index.file == BRW_IMMEDIATE_VALUE) { index_4.dw1.ud += second_vertex_offset; brw_MOV(p, m1_4, index_4); } else { brw_ADD(p, m1_4, index_4, brw_imm_d(second_vertex_offset)); } brw_pop_insn_state(p); } void vec4_visitor::generate_scratch_read(vec4_instruction *inst, struct brw_reg dst, struct brw_reg index) { struct brw_reg header = brw_vec8_grf(0, 0); gen6_resolve_implied_move(p, &header, inst->base_mrf); generate_oword_dual_block_offsets(brw_message_reg(inst->base_mrf + 1), index); uint32_t msg_type; if (intel->gen >= 6) msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; else if (intel->gen == 5 || intel->is_g4x) msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; else msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; /* Each of the 8 channel enables is considered for whether each * dword is written. */ struct brw_instruction *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, dst); brw_set_src0(p, send, header); if (intel->gen < 6) send->header.destreg__conditionalmod = inst->base_mrf; brw_set_dp_read_message(p, send, 255, /* binding table index: stateless access */ BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD, msg_type, BRW_DATAPORT_READ_TARGET_RENDER_CACHE, 2, /* mlen */ 1 /* rlen */); } void vec4_visitor::generate_scratch_write(vec4_instruction *inst, struct brw_reg dst, struct brw_reg src, struct brw_reg index) { struct brw_reg header = brw_vec8_grf(0, 0); bool write_commit; /* If the instruction is predicated, we'll predicate the send, not * the header setup. */ brw_set_predicate_control(p, false); gen6_resolve_implied_move(p, &header, inst->base_mrf); generate_oword_dual_block_offsets(brw_message_reg(inst->base_mrf + 1), index); brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 2), BRW_REGISTER_TYPE_D), retype(src, BRW_REGISTER_TYPE_D)); uint32_t msg_type; if (intel->gen >= 7) msg_type = GEN7_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE; else if (intel->gen == 6) msg_type = GEN6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE; else msg_type = BRW_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE; brw_set_predicate_control(p, inst->predicate); /* Pre-gen6, we have to specify write commits to ensure ordering * between reads and writes within a thread. Afterwards, that's * guaranteed and write commits only matter for inter-thread * synchronization. */ if (intel->gen >= 6) { write_commit = false; } else { /* The visitor set up our destination register to be g0. This * means that when the next read comes along, we will end up * reading from g0 and causing a block on the write commit. For * write-after-read, we are relying on the value of the previous * read being used (and thus blocking on completion) before our * write is executed. This means we have to be careful in * instruction scheduling to not violate this assumption. */ write_commit = true; } /* Each of the 8 channel enables is considered for whether each * dword is written. */ struct brw_instruction *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, dst); brw_set_src0(p, send, header); if (intel->gen < 6) send->header.destreg__conditionalmod = inst->base_mrf; brw_set_dp_write_message(p, send, 255, /* binding table index: stateless access */ BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD, msg_type, 3, /* mlen */ true, /* header present */ false, /* not a render target write */ write_commit, /* rlen */ false, /* eot */ write_commit); } void vec4_visitor::generate_pull_constant_load(vec4_instruction *inst, struct brw_reg dst, struct brw_reg index, struct brw_reg offset) { assert(index.file == BRW_IMMEDIATE_VALUE && index.type == BRW_REGISTER_TYPE_UD); uint32_t surf_index = index.dw1.ud; if (intel->gen == 7) { gen6_resolve_implied_move(p, &offset, inst->base_mrf); brw_instruction *insn = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, insn, dst); brw_set_src0(p, insn, offset); brw_set_sampler_message(p, insn, surf_index, 0, /* LD message ignores sampler unit */ GEN5_SAMPLER_MESSAGE_SAMPLE_LD, 1, /* rlen */ 1, /* mlen */ false, /* no header */ BRW_SAMPLER_SIMD_MODE_SIMD4X2, 0); return; } struct brw_reg header = brw_vec8_grf(0, 0); gen6_resolve_implied_move(p, &header, inst->base_mrf); brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), BRW_REGISTER_TYPE_D), offset); uint32_t msg_type; if (intel->gen >= 6) msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; else if (intel->gen == 5 || intel->is_g4x) msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; else msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; /* Each of the 8 channel enables is considered for whether each * dword is written. */ struct brw_instruction *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, dst); brw_set_src0(p, send, header); if (intel->gen < 6) send->header.destreg__conditionalmod = inst->base_mrf; brw_set_dp_read_message(p, send, surf_index, BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD, msg_type, BRW_DATAPORT_READ_TARGET_DATA_CACHE, 2, /* mlen */ 1 /* rlen */); } void vec4_visitor::generate_vs_instruction(vec4_instruction *instruction, struct brw_reg dst, struct brw_reg *src) { vec4_instruction *inst = (vec4_instruction *)instruction; switch (inst->opcode) { case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SQRT: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_SIN: case SHADER_OPCODE_COS: if (intel->gen == 6) { generate_math1_gen6(inst, dst, src[0]); } else { /* Also works for Gen7. */ generate_math1_gen4(inst, dst, src[0]); } break; case SHADER_OPCODE_POW: case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_INT_REMAINDER: if (intel->gen >= 7) { generate_math2_gen7(inst, dst, src[0], src[1]); } else if (intel->gen == 6) { generate_math2_gen6(inst, dst, src[0], src[1]); } else { generate_math2_gen4(inst, dst, src[0], src[1]); } break; case SHADER_OPCODE_TEX: case SHADER_OPCODE_TXD: case SHADER_OPCODE_TXF: case SHADER_OPCODE_TXL: case SHADER_OPCODE_TXS: generate_tex(inst, dst, src[0]); break; case VS_OPCODE_URB_WRITE: generate_urb_write(inst); break; case VS_OPCODE_SCRATCH_READ: generate_scratch_read(inst, dst, src[0]); break; case VS_OPCODE_SCRATCH_WRITE: generate_scratch_write(inst, dst, src[0], src[1]); break; case VS_OPCODE_PULL_CONSTANT_LOAD: generate_pull_constant_load(inst, dst, src[0], src[1]); break; default: if (inst->opcode < (int) ARRAY_SIZE(opcode_descs)) { fail("unsupported opcode in `%s' in VS\n", opcode_descs[inst->opcode].name); } else { fail("Unsupported opcode %d in VS", inst->opcode); } } } bool vec4_visitor::run() { /* Generate VS IR for main(). (the visitor only descends into * functions called "main"). */ if (shader) { visit_instructions(shader->ir); } else { emit_vertex_program_code(); } if (c->key.userclip_active && !c->key.uses_clip_distance) setup_uniform_clipplane_values(); emit_urb_writes(); /* Before any optimization, push array accesses out to scratch * space where we need them to be. This pass may allocate new * virtual GRFs, so we want to do it early. It also makes sure * that we have reladdr computations available for CSE, since we'll * often do repeated subexpressions for those. */ if (shader) { move_grf_array_access_to_scratch(); move_uniform_array_access_to_pull_constants(); } else { /* The ARB_vertex_program frontend emits pull constant loads directly * rather than using reladdr, so we don't need to walk through all the * instructions looking for things to move. There isn't anything. * * We do still need to split things to vec4 size. */ split_uniform_registers(); } pack_uniform_registers(); move_push_constants_to_pull_constants(); split_virtual_grfs(); bool progress; do { progress = false; progress = dead_code_eliminate() || progress; progress = opt_copy_propagation() || progress; progress = opt_algebraic() || progress; progress = opt_compute_to_mrf() || progress; } while (progress); if (failed) return false; setup_payload(); if (false) { /* Debug of register spilling: Go spill everything. */ const int grf_count = virtual_grf_count; float spill_costs[virtual_grf_count]; bool no_spill[virtual_grf_count]; evaluate_spill_costs(spill_costs, no_spill); for (int i = 0; i < grf_count; i++) { if (no_spill[i]) continue; spill_reg(i); } } while (!reg_allocate()) { if (failed) break; } if (failed) return false; brw_set_access_mode(p, BRW_ALIGN_16); generate_code(); return !failed; } void vec4_visitor::generate_code() { int last_native_insn_offset = 0; const char *last_annotation_string = NULL; const void *last_annotation_ir = NULL; if (unlikely(INTEL_DEBUG & DEBUG_VS)) { if (shader) { printf("Native code for vertex shader %d:\n", prog->Name); } else { printf("Native code for vertex program %d:\n", c->vp->program.Base.Id); } } foreach_list(node, &this->instructions) { vec4_instruction *inst = (vec4_instruction *)node; struct brw_reg src[3], dst; if (unlikely(INTEL_DEBUG & DEBUG_VS)) { if (last_annotation_ir != inst->ir) { last_annotation_ir = inst->ir; if (last_annotation_ir) { printf(" "); if (shader) { ((ir_instruction *) last_annotation_ir)->print(); } else { const prog_instruction *vpi; vpi = (const prog_instruction *) inst->ir; printf("%d: ", (int)(vpi - vp->Base.Instructions)); _mesa_fprint_instruction_opt(stdout, vpi, 0, PROG_PRINT_DEBUG, NULL); } printf("\n"); } } if (last_annotation_string != inst->annotation) { last_annotation_string = inst->annotation; if (last_annotation_string) printf(" %s\n", last_annotation_string); } } for (unsigned int i = 0; i < 3; i++) { src[i] = inst->get_src(i); } dst = inst->get_dst(); brw_set_conditionalmod(p, inst->conditional_mod); brw_set_predicate_control(p, inst->predicate); brw_set_predicate_inverse(p, inst->predicate_inverse); brw_set_saturate(p, inst->saturate); switch (inst->opcode) { case BRW_OPCODE_MOV: brw_MOV(p, dst, src[0]); break; case BRW_OPCODE_ADD: brw_ADD(p, dst, src[0], src[1]); break; case BRW_OPCODE_MUL: brw_MUL(p, dst, src[0], src[1]); break; case BRW_OPCODE_MACH: brw_set_acc_write_control(p, 1); brw_MACH(p, dst, src[0], src[1]); brw_set_acc_write_control(p, 0); break; case BRW_OPCODE_FRC: brw_FRC(p, dst, src[0]); break; case BRW_OPCODE_RNDD: brw_RNDD(p, dst, src[0]); break; case BRW_OPCODE_RNDE: brw_RNDE(p, dst, src[0]); break; case BRW_OPCODE_RNDZ: brw_RNDZ(p, dst, src[0]); break; case BRW_OPCODE_AND: brw_AND(p, dst, src[0], src[1]); break; case BRW_OPCODE_OR: brw_OR(p, dst, src[0], src[1]); break; case BRW_OPCODE_XOR: brw_XOR(p, dst, src[0], src[1]); break; case BRW_OPCODE_NOT: brw_NOT(p, dst, src[0]); break; case BRW_OPCODE_ASR: brw_ASR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHR: brw_SHR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHL: brw_SHL(p, dst, src[0], src[1]); break; case BRW_OPCODE_CMP: brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]); break; case BRW_OPCODE_SEL: brw_SEL(p, dst, src[0], src[1]); break; case BRW_OPCODE_DPH: brw_DPH(p, dst, src[0], src[1]); break; case BRW_OPCODE_DP4: brw_DP4(p, dst, src[0], src[1]); break; case BRW_OPCODE_DP3: brw_DP3(p, dst, src[0], src[1]); break; case BRW_OPCODE_DP2: brw_DP2(p, dst, src[0], src[1]); break; case BRW_OPCODE_IF: if (inst->src[0].file != BAD_FILE) { /* The instruction has an embedded compare (only allowed on gen6) */ assert(intel->gen == 6); gen6_IF(p, inst->conditional_mod, src[0], src[1]); } else { struct brw_instruction *brw_inst = brw_IF(p, BRW_EXECUTE_8); brw_inst->header.predicate_control = inst->predicate; } break; case BRW_OPCODE_ELSE: brw_ELSE(p); break; case BRW_OPCODE_ENDIF: brw_ENDIF(p); break; case BRW_OPCODE_DO: brw_DO(p, BRW_EXECUTE_8); break; case BRW_OPCODE_BREAK: brw_BREAK(p); brw_set_predicate_control(p, BRW_PREDICATE_NONE); break; case BRW_OPCODE_CONTINUE: /* FINISHME: We need to write the loop instruction support still. */ if (intel->gen >= 6) gen6_CONT(p); else brw_CONT(p); brw_set_predicate_control(p, BRW_PREDICATE_NONE); break; case BRW_OPCODE_WHILE: brw_WHILE(p); break; default: generate_vs_instruction(inst, dst, src); break; } if (unlikely(INTEL_DEBUG & DEBUG_VS)) { brw_dump_compile(p, stdout, last_native_insn_offset, p->next_insn_offset); } last_native_insn_offset = p->next_insn_offset; } if (unlikely(INTEL_DEBUG & DEBUG_VS)) { printf("\n"); } brw_set_uip_jip(p); /* OK, while the INTEL_DEBUG=vs above is very nice for debugging VS * emit issues, it doesn't get the jump distances into the output, * which is often something we want to debug. So this is here in * case you're doing that. */ if (0 && unlikely(INTEL_DEBUG & DEBUG_VS)) { brw_dump_compile(p, stdout, 0, p->next_insn_offset); } } extern "C" { bool brw_vs_emit(struct gl_shader_program *prog, struct brw_vs_compile *c) { struct brw_context *brw = c->func.brw; struct intel_context *intel = &c->func.brw->intel; bool start_busy = false; float start_time = 0; if (unlikely(INTEL_DEBUG & DEBUG_PERF)) { start_busy = (intel->batch.last_bo && drm_intel_bo_busy(intel->batch.last_bo)); start_time = get_time(); } struct brw_shader *shader = NULL; if (prog) shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX]; if (unlikely(INTEL_DEBUG & DEBUG_VS)) { if (shader) { printf("GLSL IR for native vertex shader %d:\n", prog->Name); _mesa_print_ir(shader->ir, NULL); printf("\n\n"); } else { printf("ARB_vertex_program %d for native vertex shader\n", c->vp->program.Base.Id); _mesa_print_program(&c->vp->program.Base); } } if (unlikely(INTEL_DEBUG & DEBUG_PERF) && shader) { if (shader->compiled_once) { brw_vs_debug_recompile(brw, prog, &c->key); } if (start_busy && !drm_intel_bo_busy(intel->batch.last_bo)) { perf_debug("VS compile took %.03f ms and stalled the GPU\n", (get_time() - start_time) * 1000); } shader->compiled_once = true; } vec4_visitor v(c, prog, shader); if (!v.run()) { prog->LinkStatus = false; ralloc_strcat(&prog->InfoLog, v.fail_msg); return false; } return true; } } /* extern "C" */ } /* namespace brw */