/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ extern "C" { #include "main/macros.h" #include "brw_context.h" } #include "brw_vs.h" #include "brw_vec4_gs.h" #include "brw_fs.h" #include "glsl/ir_optimization.h" #include "glsl/glsl_parser_extras.h" #include "main/shaderapi.h" struct gl_shader * brw_new_shader(struct gl_context *ctx, GLuint name, GLuint type) { struct brw_shader *shader; shader = rzalloc(NULL, struct brw_shader); if (shader) { shader->base.Type = type; shader->base.Stage = _mesa_shader_enum_to_shader_stage(type); shader->base.Name = name; _mesa_init_shader(ctx, &shader->base); } return &shader->base; } struct gl_shader_program * brw_new_shader_program(struct gl_context *ctx, GLuint name) { struct gl_shader_program *prog = rzalloc(NULL, struct gl_shader_program); if (prog) { prog->Name = name; _mesa_init_shader_program(ctx, prog); } return prog; } /** * Performs a compile of the shader stages even when we don't know * what non-orthogonal state will be set, in the hope that it reflects * the eventual NOS used, and thus allows us to produce link failures. */ static bool brw_shader_precompile(struct gl_context *ctx, struct gl_shader_program *prog) { struct brw_context *brw = brw_context(ctx); if (brw->precompile && !brw_fs_precompile(ctx, prog)) return false; if (brw->precompile && !brw_gs_precompile(ctx, prog)) return false; if (brw->precompile && !brw_vs_precompile(ctx, prog)) return false; return true; } static void brw_lower_packing_builtins(struct brw_context *brw, gl_shader_stage shader_type, exec_list *ir) { int ops = LOWER_PACK_SNORM_2x16 | LOWER_UNPACK_SNORM_2x16 | LOWER_PACK_UNORM_2x16 | LOWER_UNPACK_UNORM_2x16 | LOWER_PACK_SNORM_4x8 | LOWER_UNPACK_SNORM_4x8 | LOWER_PACK_UNORM_4x8 | LOWER_UNPACK_UNORM_4x8; if (brw->gen >= 7) { /* Gen7 introduced the f32to16 and f16to32 instructions, which can be * used to execute packHalf2x16 and unpackHalf2x16. For AOS code, no * lowering is needed. For SOA code, the Half2x16 ops must be * scalarized. */ if (shader_type == MESA_SHADER_FRAGMENT) { ops |= LOWER_PACK_HALF_2x16_TO_SPLIT | LOWER_UNPACK_HALF_2x16_TO_SPLIT; } } else { ops |= LOWER_PACK_HALF_2x16 | LOWER_UNPACK_HALF_2x16; } lower_packing_builtins(ir, ops); } GLboolean brw_link_shader(struct gl_context *ctx, struct gl_shader_program *shProg) { struct brw_context *brw = brw_context(ctx); unsigned int stage; for (stage = 0; stage < ARRAY_SIZE(shProg->_LinkedShaders); stage++) { struct brw_shader *shader = (struct brw_shader *)shProg->_LinkedShaders[stage]; if (!shader) continue; struct gl_program *prog = ctx->Driver.NewProgram(ctx, _mesa_shader_stage_to_program(stage), shader->base.Name); if (!prog) return false; prog->Parameters = _mesa_new_parameter_list(); _mesa_copy_linked_program_data((gl_shader_stage) stage, shProg, prog); bool progress; /* lower_packing_builtins() inserts arithmetic instructions, so it * must precede lower_instructions(). */ brw_lower_packing_builtins(brw, (gl_shader_stage) stage, shader->base.ir); do_mat_op_to_vec(shader->base.ir); const int bitfield_insert = brw->gen >= 7 ? BITFIELD_INSERT_TO_BFM_BFI : 0; lower_instructions(shader->base.ir, MOD_TO_FRACT | DIV_TO_MUL_RCP | SUB_TO_ADD_NEG | EXP_TO_EXP2 | LOG_TO_LOG2 | bitfield_insert | LDEXP_TO_ARITH); /* Pre-gen6 HW can only nest if-statements 16 deep. Beyond this, * if-statements need to be flattened. */ if (brw->gen < 6) lower_if_to_cond_assign(shader->base.ir, 16); do_lower_texture_projection(shader->base.ir); brw_lower_texture_gradients(brw, shader->base.ir); do_vec_index_to_cond_assign(shader->base.ir); lower_vector_insert(shader->base.ir, true); brw_do_cubemap_normalize(shader->base.ir); lower_offset_arrays(shader->base.ir); brw_do_lower_unnormalized_offset(shader->base.ir); lower_noise(shader->base.ir); lower_quadop_vector(shader->base.ir, false); bool input = true; bool output = stage == MESA_SHADER_FRAGMENT; bool temp = stage == MESA_SHADER_FRAGMENT; bool uniform = false; bool lowered_variable_indexing = lower_variable_index_to_cond_assign(shader->base.ir, input, output, temp, uniform); if (unlikely(brw->perf_debug && lowered_variable_indexing)) { perf_debug("Unsupported form of variable indexing in FS; falling " "back to very inefficient code generation\n"); } lower_ubo_reference(&shader->base, shader->base.ir); do { progress = false; if (stage == MESA_SHADER_FRAGMENT) { brw_do_channel_expressions(shader->base.ir); brw_do_vector_splitting(shader->base.ir); } progress = do_lower_jumps(shader->base.ir, true, true, true, /* main return */ false, /* continue */ false /* loops */ ) || progress; progress = do_common_optimization(shader->base.ir, true, true, 32, &ctx->ShaderCompilerOptions[stage], ctx->Const.NativeIntegers) || progress; } while (progress); /* Make a pass over the IR to add state references for any built-in * uniforms that are used. This has to be done now (during linking). * Code generation doesn't happen until the first time this shader is * used for rendering. Waiting until then to generate the parameters is * too late. At that point, the values for the built-in uniforms won't * get sent to the shader. */ foreach_list(node, shader->base.ir) { ir_variable *var = ((ir_instruction *) node)->as_variable(); if ((var == NULL) || (var->data.mode != ir_var_uniform) || (strncmp(var->name, "gl_", 3) != 0)) continue; const ir_state_slot *const slots = var->state_slots; assert(var->state_slots != NULL); for (unsigned int i = 0; i < var->num_state_slots; i++) { _mesa_add_state_reference(prog->Parameters, (gl_state_index *) slots[i].tokens); } } validate_ir_tree(shader->base.ir); do_set_program_inouts(shader->base.ir, prog, shader->base.Stage); prog->SamplersUsed = shader->base.active_samplers; _mesa_update_shader_textures_used(shProg, prog); _mesa_reference_program(ctx, &shader->base.Program, prog); brw_add_texrect_params(prog); /* This has to be done last. Any operation that can cause * prog->ParameterValues to get reallocated (e.g., anything that adds a * program constant) has to happen before creating this linkage. */ _mesa_associate_uniform_storage(ctx, shProg, prog->Parameters); _mesa_reference_program(ctx, &prog, NULL); if (ctx->_Shader->Flags & GLSL_DUMP) { fprintf(stderr, "\n"); fprintf(stderr, "GLSL IR for linked %s program %d:\n", _mesa_shader_stage_to_string(shader->base.Stage), shProg->Name); _mesa_print_ir(stderr, shader->base.ir, NULL); fprintf(stderr, "\n"); } } if ((ctx->_Shader->Flags & GLSL_DUMP) && shProg->Name != 0) { for (unsigned i = 0; i < shProg->NumShaders; i++) { const struct gl_shader *sh = shProg->Shaders[i]; if (!sh) continue; fprintf(stderr, "GLSL %s shader %d source for linked program %d:\n", _mesa_shader_stage_to_string(sh->Stage), i, shProg->Name); fprintf(stderr, "%s", sh->Source); fprintf(stderr, "\n"); } } if (!brw_shader_precompile(ctx, shProg)) return false; return true; } int brw_type_for_base_type(const struct glsl_type *type) { switch (type->base_type) { case GLSL_TYPE_FLOAT: return BRW_REGISTER_TYPE_F; case GLSL_TYPE_INT: case GLSL_TYPE_BOOL: return BRW_REGISTER_TYPE_D; case GLSL_TYPE_UINT: return BRW_REGISTER_TYPE_UD; case GLSL_TYPE_ARRAY: return brw_type_for_base_type(type->fields.array); case GLSL_TYPE_STRUCT: case GLSL_TYPE_SAMPLER: case GLSL_TYPE_ATOMIC_UINT: /* These should be overridden with the type of the member when * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely * way to trip up if we don't. */ return BRW_REGISTER_TYPE_UD; case GLSL_TYPE_IMAGE: return BRW_REGISTER_TYPE_UD; case GLSL_TYPE_VOID: case GLSL_TYPE_ERROR: case GLSL_TYPE_INTERFACE: assert(!"not reached"); break; } return BRW_REGISTER_TYPE_F; } uint32_t brw_conditional_for_comparison(unsigned int op) { switch (op) { case ir_binop_less: return BRW_CONDITIONAL_L; case ir_binop_greater: return BRW_CONDITIONAL_G; case ir_binop_lequal: return BRW_CONDITIONAL_LE; case ir_binop_gequal: return BRW_CONDITIONAL_GE; case ir_binop_equal: case ir_binop_all_equal: /* same as equal for scalars */ return BRW_CONDITIONAL_Z; case ir_binop_nequal: case ir_binop_any_nequal: /* same as nequal for scalars */ return BRW_CONDITIONAL_NZ; default: assert(!"not reached: bad operation for comparison"); return BRW_CONDITIONAL_NZ; } } uint32_t brw_math_function(enum opcode op) { switch (op) { case SHADER_OPCODE_RCP: return BRW_MATH_FUNCTION_INV; case SHADER_OPCODE_RSQ: return BRW_MATH_FUNCTION_RSQ; case SHADER_OPCODE_SQRT: return BRW_MATH_FUNCTION_SQRT; case SHADER_OPCODE_EXP2: return BRW_MATH_FUNCTION_EXP; case SHADER_OPCODE_LOG2: return BRW_MATH_FUNCTION_LOG; case SHADER_OPCODE_POW: return BRW_MATH_FUNCTION_POW; case SHADER_OPCODE_SIN: return BRW_MATH_FUNCTION_SIN; case SHADER_OPCODE_COS: return BRW_MATH_FUNCTION_COS; case SHADER_OPCODE_INT_QUOTIENT: return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT; case SHADER_OPCODE_INT_REMAINDER: return BRW_MATH_FUNCTION_INT_DIV_REMAINDER; default: assert(!"not reached: unknown math function"); return 0; } } uint32_t brw_texture_offset(struct gl_context *ctx, ir_constant *offset) { /* If the driver does not support GL_ARB_gpu_shader5, the offset * must be constant. */ assert(offset != NULL || ctx->Extensions.ARB_gpu_shader5); if (!offset) return 0; /* nonconstant offset; caller will handle it. */ signed char offsets[3]; for (unsigned i = 0; i < offset->type->vector_elements; i++) offsets[i] = (signed char) offset->value.i[i]; /* Combine all three offsets into a single unsigned dword: * * bits 11:8 - U Offset (X component) * bits 7:4 - V Offset (Y component) * bits 3:0 - R Offset (Z component) */ unsigned offset_bits = 0; for (unsigned i = 0; i < offset->type->vector_elements; i++) { const unsigned shift = 4 * (2 - i); offset_bits |= (offsets[i] << shift) & (0xF << shift); } return offset_bits; } const char * brw_instruction_name(enum opcode op) { char *fallback; if (op < ARRAY_SIZE(opcode_descs) && opcode_descs[op].name) return opcode_descs[op].name; switch (op) { case FS_OPCODE_FB_WRITE: return "fb_write"; case FS_OPCODE_BLORP_FB_WRITE: return "blorp_fb_write"; case SHADER_OPCODE_RCP: return "rcp"; case SHADER_OPCODE_RSQ: return "rsq"; case SHADER_OPCODE_SQRT: return "sqrt"; case SHADER_OPCODE_EXP2: return "exp2"; case SHADER_OPCODE_LOG2: return "log2"; case SHADER_OPCODE_POW: return "pow"; case SHADER_OPCODE_INT_QUOTIENT: return "int_quot"; case SHADER_OPCODE_INT_REMAINDER: return "int_rem"; case SHADER_OPCODE_SIN: return "sin"; case SHADER_OPCODE_COS: return "cos"; case SHADER_OPCODE_TEX: return "tex"; case SHADER_OPCODE_TXD: return "txd"; case SHADER_OPCODE_TXF: return "txf"; case SHADER_OPCODE_TXL: return "txl"; case SHADER_OPCODE_TXS: return "txs"; case FS_OPCODE_TXB: return "txb"; case SHADER_OPCODE_TXF_CMS: return "txf_cms"; case SHADER_OPCODE_TXF_UMS: return "txf_ums"; case SHADER_OPCODE_TXF_MCS: return "txf_mcs"; case SHADER_OPCODE_TG4: return "tg4"; case SHADER_OPCODE_TG4_OFFSET: return "tg4_offset"; case SHADER_OPCODE_GEN4_SCRATCH_READ: return "gen4_scratch_read"; case SHADER_OPCODE_GEN4_SCRATCH_WRITE: return "gen4_scratch_write"; case SHADER_OPCODE_GEN7_SCRATCH_READ: return "gen7_scratch_read"; case FS_OPCODE_DDX: return "ddx"; case FS_OPCODE_DDY: return "ddy"; case FS_OPCODE_PIXEL_X: return "pixel_x"; case FS_OPCODE_PIXEL_Y: return "pixel_y"; case FS_OPCODE_CINTERP: return "cinterp"; case FS_OPCODE_LINTERP: return "linterp"; case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: return "uniform_pull_const"; case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7: return "uniform_pull_const_gen7"; case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD: return "varying_pull_const"; case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7: return "varying_pull_const_gen7"; case FS_OPCODE_MOV_DISPATCH_TO_FLAGS: return "mov_dispatch_to_flags"; case FS_OPCODE_DISCARD_JUMP: return "discard_jump"; case FS_OPCODE_SET_SIMD4X2_OFFSET: return "set_simd4x2_offset"; case FS_OPCODE_PACK_HALF_2x16_SPLIT: return "pack_half_2x16_split"; case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X: return "unpack_half_2x16_split_x"; case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y: return "unpack_half_2x16_split_y"; case FS_OPCODE_PLACEHOLDER_HALT: return "placeholder_halt"; case VS_OPCODE_URB_WRITE: return "vs_urb_write"; case VS_OPCODE_PULL_CONSTANT_LOAD: return "pull_constant_load"; case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: return "pull_constant_load_gen7"; case VS_OPCODE_UNPACK_FLAGS_SIMD4X2: return "unpack_flags_simd4x2"; case GS_OPCODE_URB_WRITE: return "gs_urb_write"; case GS_OPCODE_THREAD_END: return "gs_thread_end"; case GS_OPCODE_SET_WRITE_OFFSET: return "set_write_offset"; case GS_OPCODE_SET_VERTEX_COUNT: return "set_vertex_count"; case GS_OPCODE_SET_DWORD_2_IMMED: return "set_dword_2_immed"; case GS_OPCODE_PREPARE_CHANNEL_MASKS: return "prepare_channel_masks"; case GS_OPCODE_SET_CHANNEL_MASKS: return "set_channel_masks"; case GS_OPCODE_GET_INSTANCE_ID: return "get_instance_id"; default: /* Yes, this leaks. It's in debug code, it should never occur, and if * it does, you should just add the case to the list above. */ asprintf(&fallback, "op%d", op); return fallback; } } backend_visitor::backend_visitor(struct brw_context *brw, struct gl_shader_program *shader_prog, struct gl_program *prog, struct brw_stage_prog_data *stage_prog_data, gl_shader_stage stage) : brw(brw), ctx(&brw->ctx), shader(shader_prog ? (struct brw_shader *)shader_prog->_LinkedShaders[stage] : NULL), shader_prog(shader_prog), prog(prog), stage_prog_data(stage_prog_data) { } bool backend_instruction::is_tex() const { return (opcode == SHADER_OPCODE_TEX || opcode == FS_OPCODE_TXB || opcode == SHADER_OPCODE_TXD || opcode == SHADER_OPCODE_TXF || opcode == SHADER_OPCODE_TXF_CMS || opcode == SHADER_OPCODE_TXF_UMS || opcode == SHADER_OPCODE_TXF_MCS || opcode == SHADER_OPCODE_TXL || opcode == SHADER_OPCODE_TXS || opcode == SHADER_OPCODE_LOD || opcode == SHADER_OPCODE_TG4 || opcode == SHADER_OPCODE_TG4_OFFSET); } bool backend_instruction::is_math() const { return (opcode == SHADER_OPCODE_RCP || opcode == SHADER_OPCODE_RSQ || opcode == SHADER_OPCODE_SQRT || opcode == SHADER_OPCODE_EXP2 || opcode == SHADER_OPCODE_LOG2 || opcode == SHADER_OPCODE_SIN || opcode == SHADER_OPCODE_COS || opcode == SHADER_OPCODE_INT_QUOTIENT || opcode == SHADER_OPCODE_INT_REMAINDER || opcode == SHADER_OPCODE_POW); } bool backend_instruction::is_control_flow() const { switch (opcode) { case BRW_OPCODE_DO: case BRW_OPCODE_WHILE: case BRW_OPCODE_IF: case BRW_OPCODE_ELSE: case BRW_OPCODE_ENDIF: case BRW_OPCODE_BREAK: case BRW_OPCODE_CONTINUE: return true; default: return false; } } bool backend_instruction::can_do_source_mods() const { switch (opcode) { case BRW_OPCODE_ADDC: case BRW_OPCODE_BFE: case BRW_OPCODE_BFI1: case BRW_OPCODE_BFI2: case BRW_OPCODE_BFREV: case BRW_OPCODE_CBIT: case BRW_OPCODE_FBH: case BRW_OPCODE_FBL: case BRW_OPCODE_SUBB: return false; default: return true; } } bool backend_instruction::can_do_saturate() const { switch (opcode) { case BRW_OPCODE_ADD: case BRW_OPCODE_ASR: case BRW_OPCODE_AVG: case BRW_OPCODE_DP2: case BRW_OPCODE_DP3: case BRW_OPCODE_DP4: case BRW_OPCODE_DPH: case BRW_OPCODE_F16TO32: case BRW_OPCODE_F32TO16: case BRW_OPCODE_LINE: case BRW_OPCODE_LRP: case BRW_OPCODE_MAC: case BRW_OPCODE_MACH: case BRW_OPCODE_MAD: case BRW_OPCODE_MATH: case BRW_OPCODE_MOV: case BRW_OPCODE_MUL: case BRW_OPCODE_PLN: case BRW_OPCODE_RNDD: case BRW_OPCODE_RNDE: case BRW_OPCODE_RNDU: case BRW_OPCODE_RNDZ: case BRW_OPCODE_SEL: case BRW_OPCODE_SHL: case BRW_OPCODE_SHR: case FS_OPCODE_LINTERP: case SHADER_OPCODE_COS: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_POW: case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SIN: case SHADER_OPCODE_SQRT: return true; default: return false; } } bool backend_instruction::has_side_effects() const { switch (opcode) { case SHADER_OPCODE_UNTYPED_ATOMIC: return true; default: return false; } } void backend_visitor::dump_instructions() { int ip = 0; foreach_list(node, &this->instructions) { backend_instruction *inst = (backend_instruction *)node; fprintf(stderr, "%d: ", ip++); dump_instruction(inst); } } /** * Sets up the starting offsets for the groups of binding table entries * commong to all pipeline stages. * * Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're * unused but also make sure that addition of small offsets to them will * trigger some of our asserts that surface indices are < BRW_MAX_SURFACES. */ void backend_visitor::assign_common_binding_table_offsets(uint32_t next_binding_table_offset) { int num_textures = _mesa_fls(prog->SamplersUsed); stage_prog_data->binding_table.texture_start = next_binding_table_offset; next_binding_table_offset += num_textures; if (shader) { stage_prog_data->binding_table.ubo_start = next_binding_table_offset; next_binding_table_offset += shader->base.NumUniformBlocks; } else { stage_prog_data->binding_table.ubo_start = 0xd0d0d0d0; } if (INTEL_DEBUG & DEBUG_SHADER_TIME) { stage_prog_data->binding_table.shader_time_start = next_binding_table_offset; next_binding_table_offset++; } else { stage_prog_data->binding_table.shader_time_start = 0xd0d0d0d0; } if (prog->UsesGather) { stage_prog_data->binding_table.gather_texture_start = next_binding_table_offset; next_binding_table_offset += num_textures; } else { stage_prog_data->binding_table.gather_texture_start = 0xd0d0d0d0; } if (shader_prog && shader_prog->NumAtomicBuffers) { stage_prog_data->binding_table.abo_start = next_binding_table_offset; next_binding_table_offset += shader_prog->NumAtomicBuffers; } else { stage_prog_data->binding_table.abo_start = 0xd0d0d0d0; } /* This may or may not be used depending on how the compile goes. */ stage_prog_data->binding_table.pull_constants_start = next_binding_table_offset; next_binding_table_offset++; assert(next_binding_table_offset <= BRW_MAX_SURFACES); /* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */ }