/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "main/macros.h" #include "brw_context.h" #include "brw_vs.h" #include "brw_gs.h" #include "brw_fs.h" #include "brw_cfg.h" #include "brw_nir.h" #include "glsl/ir_optimization.h" #include "glsl/glsl_parser_extras.h" #include "main/shaderapi.h" static void shader_debug_log_mesa(void *data, const char *fmt, ...) { struct brw_context *brw = (struct brw_context *)data; va_list args; va_start(args, fmt); GLuint msg_id = 0; _mesa_gl_vdebug(&brw->ctx, &msg_id, MESA_DEBUG_SOURCE_SHADER_COMPILER, MESA_DEBUG_TYPE_OTHER, MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args); va_end(args); } static void shader_perf_log_mesa(void *data, const char *fmt, ...) { struct brw_context *brw = (struct brw_context *)data; va_list args; va_start(args, fmt); if (unlikely(INTEL_DEBUG & DEBUG_PERF)) { va_list args_copy; va_copy(args_copy, args); vfprintf(stderr, fmt, args_copy); va_end(args_copy); } if (brw->perf_debug) { GLuint msg_id = 0; _mesa_gl_vdebug(&brw->ctx, &msg_id, MESA_DEBUG_SOURCE_SHADER_COMPILER, MESA_DEBUG_TYPE_PERFORMANCE, MESA_DEBUG_SEVERITY_MEDIUM, fmt, args); } va_end(args); } struct brw_compiler * brw_compiler_create(void *mem_ctx, const struct brw_device_info *devinfo) { struct brw_compiler *compiler = rzalloc(mem_ctx, struct brw_compiler); compiler->devinfo = devinfo; compiler->shader_debug_log = shader_debug_log_mesa; compiler->shader_perf_log = shader_perf_log_mesa; brw_fs_alloc_reg_sets(compiler); brw_vec4_alloc_reg_set(compiler); if (devinfo->gen >= 8 && !(INTEL_DEBUG & DEBUG_VEC4VS)) compiler->scalar_vs = true; nir_shader_compiler_options *nir_options = rzalloc(compiler, nir_shader_compiler_options); nir_options->native_integers = true; /* In order to help allow for better CSE at the NIR level we tell NIR * to split all ffma instructions during opt_algebraic and we then * re-combine them as a later step. */ nir_options->lower_ffma = true; nir_options->lower_sub = true; /* We want the GLSL compiler to emit code that uses condition codes */ for (int i = 0; i < MESA_SHADER_STAGES; i++) { compiler->glsl_compiler_options[i].MaxUnrollIterations = 32; compiler->glsl_compiler_options[i].MaxIfDepth = devinfo->gen < 6 ? 16 : UINT_MAX; compiler->glsl_compiler_options[i].EmitCondCodes = true; compiler->glsl_compiler_options[i].EmitNoNoise = true; compiler->glsl_compiler_options[i].EmitNoMainReturn = true; compiler->glsl_compiler_options[i].EmitNoIndirectInput = true; compiler->glsl_compiler_options[i].EmitNoIndirectOutput = (i == MESA_SHADER_FRAGMENT); compiler->glsl_compiler_options[i].EmitNoIndirectTemp = (i == MESA_SHADER_FRAGMENT); compiler->glsl_compiler_options[i].EmitNoIndirectUniform = false; compiler->glsl_compiler_options[i].LowerClipDistance = true; /* !ARB_gpu_shader5 */ if (devinfo->gen < 7) compiler->glsl_compiler_options[i].EmitNoIndirectSampler = true; } compiler->glsl_compiler_options[MESA_SHADER_VERTEX].OptimizeForAOS = true; compiler->glsl_compiler_options[MESA_SHADER_GEOMETRY].OptimizeForAOS = true; if (compiler->scalar_vs) { /* If we're using the scalar backend for vertex shaders, we need to * configure these accordingly. */ compiler->glsl_compiler_options[MESA_SHADER_VERTEX].EmitNoIndirectOutput = true; compiler->glsl_compiler_options[MESA_SHADER_VERTEX].EmitNoIndirectTemp = true; compiler->glsl_compiler_options[MESA_SHADER_VERTEX].OptimizeForAOS = false; compiler->glsl_compiler_options[MESA_SHADER_VERTEX].NirOptions = nir_options; } compiler->glsl_compiler_options[MESA_SHADER_FRAGMENT].NirOptions = nir_options; compiler->glsl_compiler_options[MESA_SHADER_COMPUTE].NirOptions = nir_options; return compiler; } struct gl_shader * brw_new_shader(struct gl_context *ctx, GLuint name, GLuint type) { struct brw_shader *shader; shader = rzalloc(NULL, struct brw_shader); if (shader) { shader->base.Type = type; shader->base.Stage = _mesa_shader_enum_to_shader_stage(type); shader->base.Name = name; _mesa_init_shader(ctx, &shader->base); } return &shader->base; } /** * Performs a compile of the shader stages even when we don't know * what non-orthogonal state will be set, in the hope that it reflects * the eventual NOS used, and thus allows us to produce link failures. */ static bool brw_shader_precompile(struct gl_context *ctx, struct gl_shader_program *sh_prog) { struct gl_shader *vs = sh_prog->_LinkedShaders[MESA_SHADER_VERTEX]; struct gl_shader *gs = sh_prog->_LinkedShaders[MESA_SHADER_GEOMETRY]; struct gl_shader *fs = sh_prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; struct gl_shader *cs = sh_prog->_LinkedShaders[MESA_SHADER_COMPUTE]; if (fs && !brw_fs_precompile(ctx, sh_prog, fs->Program)) return false; if (gs && !brw_gs_precompile(ctx, sh_prog, gs->Program)) return false; if (vs && !brw_vs_precompile(ctx, sh_prog, vs->Program)) return false; if (cs && !brw_cs_precompile(ctx, sh_prog, cs->Program)) return false; return true; } static inline bool is_scalar_shader_stage(struct brw_context *brw, int stage) { switch (stage) { case MESA_SHADER_FRAGMENT: return true; case MESA_SHADER_VERTEX: return brw->intelScreen->compiler->scalar_vs; default: return false; } } static void brw_lower_packing_builtins(struct brw_context *brw, gl_shader_stage shader_type, exec_list *ir) { int ops = LOWER_PACK_SNORM_2x16 | LOWER_UNPACK_SNORM_2x16 | LOWER_PACK_UNORM_2x16 | LOWER_UNPACK_UNORM_2x16; if (is_scalar_shader_stage(brw, shader_type)) { ops |= LOWER_UNPACK_UNORM_4x8 | LOWER_UNPACK_SNORM_4x8 | LOWER_PACK_UNORM_4x8 | LOWER_PACK_SNORM_4x8; } if (brw->gen >= 7) { /* Gen7 introduced the f32to16 and f16to32 instructions, which can be * used to execute packHalf2x16 and unpackHalf2x16. For AOS code, no * lowering is needed. For SOA code, the Half2x16 ops must be * scalarized. */ if (is_scalar_shader_stage(brw, shader_type)) { ops |= LOWER_PACK_HALF_2x16_TO_SPLIT | LOWER_UNPACK_HALF_2x16_TO_SPLIT; } } else { ops |= LOWER_PACK_HALF_2x16 | LOWER_UNPACK_HALF_2x16; } lower_packing_builtins(ir, ops); } static void process_glsl_ir(gl_shader_stage stage, struct brw_context *brw, struct gl_shader_program *shader_prog, struct gl_shader *shader) { struct gl_context *ctx = &brw->ctx; const struct gl_shader_compiler_options *options = &ctx->Const.ShaderCompilerOptions[shader->Stage]; /* Temporary memory context for any new IR. */ void *mem_ctx = ralloc_context(NULL); ralloc_adopt(mem_ctx, shader->ir); /* lower_packing_builtins() inserts arithmetic instructions, so it * must precede lower_instructions(). */ brw_lower_packing_builtins(brw, shader->Stage, shader->ir); do_mat_op_to_vec(shader->ir); const int bitfield_insert = brw->gen >= 7 ? BITFIELD_INSERT_TO_BFM_BFI : 0; lower_instructions(shader->ir, MOD_TO_FLOOR | DIV_TO_MUL_RCP | SUB_TO_ADD_NEG | EXP_TO_EXP2 | LOG_TO_LOG2 | bitfield_insert | LDEXP_TO_ARITH | CARRY_TO_ARITH | BORROW_TO_ARITH); /* Pre-gen6 HW can only nest if-statements 16 deep. Beyond this, * if-statements need to be flattened. */ if (brw->gen < 6) lower_if_to_cond_assign(shader->ir, 16); do_lower_texture_projection(shader->ir); brw_lower_texture_gradients(brw, shader->ir); do_vec_index_to_cond_assign(shader->ir); lower_vector_insert(shader->ir, true); if (options->NirOptions == NULL) brw_do_cubemap_normalize(shader->ir); lower_offset_arrays(shader->ir); brw_do_lower_unnormalized_offset(shader->ir); lower_noise(shader->ir); lower_quadop_vector(shader->ir, false); bool lowered_variable_indexing = lower_variable_index_to_cond_assign((gl_shader_stage)stage, shader->ir, options->EmitNoIndirectInput, options->EmitNoIndirectOutput, options->EmitNoIndirectTemp, options->EmitNoIndirectUniform); if (unlikely(brw->perf_debug && lowered_variable_indexing)) { perf_debug("Unsupported form of variable indexing in %s; falling " "back to very inefficient code generation\n", _mesa_shader_stage_to_abbrev(shader->Stage)); } lower_ubo_reference(shader, shader->ir); bool progress; do { progress = false; if (is_scalar_shader_stage(brw, shader->Stage)) { brw_do_channel_expressions(shader->ir); brw_do_vector_splitting(shader->ir); } progress = do_lower_jumps(shader->ir, true, true, true, /* main return */ false, /* continue */ false /* loops */ ) || progress; progress = do_common_optimization(shader->ir, true, true, options, ctx->Const.NativeIntegers) || progress; } while (progress); if (options->NirOptions != NULL) lower_output_reads(stage, shader->ir); validate_ir_tree(shader->ir); /* Now that we've finished altering the linked IR, reparent any live IR back * to the permanent memory context, and free the temporary one (discarding any * junk we optimized away). */ reparent_ir(shader->ir, shader->ir); ralloc_free(mem_ctx); if (ctx->_Shader->Flags & GLSL_DUMP) { fprintf(stderr, "\n"); fprintf(stderr, "GLSL IR for linked %s program %d:\n", _mesa_shader_stage_to_string(shader->Stage), shader_prog->Name); _mesa_print_ir(stderr, shader->ir, NULL); fprintf(stderr, "\n"); } } GLboolean brw_link_shader(struct gl_context *ctx, struct gl_shader_program *shProg) { struct brw_context *brw = brw_context(ctx); unsigned int stage; for (stage = 0; stage < ARRAY_SIZE(shProg->_LinkedShaders); stage++) { struct gl_shader *shader = shProg->_LinkedShaders[stage]; const struct gl_shader_compiler_options *options = &ctx->Const.ShaderCompilerOptions[stage]; if (!shader) continue; struct gl_program *prog = ctx->Driver.NewProgram(ctx, _mesa_shader_stage_to_program(stage), shader->Name); if (!prog) return false; prog->Parameters = _mesa_new_parameter_list(); _mesa_copy_linked_program_data((gl_shader_stage) stage, shProg, prog); process_glsl_ir((gl_shader_stage) stage, brw, shProg, shader); /* Make a pass over the IR to add state references for any built-in * uniforms that are used. This has to be done now (during linking). * Code generation doesn't happen until the first time this shader is * used for rendering. Waiting until then to generate the parameters is * too late. At that point, the values for the built-in uniforms won't * get sent to the shader. */ foreach_in_list(ir_instruction, node, shader->ir) { ir_variable *var = node->as_variable(); if ((var == NULL) || (var->data.mode != ir_var_uniform) || (strncmp(var->name, "gl_", 3) != 0)) continue; const ir_state_slot *const slots = var->get_state_slots(); assert(slots != NULL); for (unsigned int i = 0; i < var->get_num_state_slots(); i++) { _mesa_add_state_reference(prog->Parameters, (gl_state_index *) slots[i].tokens); } } do_set_program_inouts(shader->ir, prog, shader->Stage); prog->SamplersUsed = shader->active_samplers; prog->ShadowSamplers = shader->shadow_samplers; _mesa_update_shader_textures_used(shProg, prog); _mesa_reference_program(ctx, &shader->Program, prog); brw_add_texrect_params(prog); if (options->NirOptions) prog->nir = brw_create_nir(brw, shProg, prog, (gl_shader_stage) stage); _mesa_reference_program(ctx, &prog, NULL); } if ((ctx->_Shader->Flags & GLSL_DUMP) && shProg->Name != 0) { for (unsigned i = 0; i < shProg->NumShaders; i++) { const struct gl_shader *sh = shProg->Shaders[i]; if (!sh) continue; fprintf(stderr, "GLSL %s shader %d source for linked program %d:\n", _mesa_shader_stage_to_string(sh->Stage), i, shProg->Name); fprintf(stderr, "%s", sh->Source); fprintf(stderr, "\n"); } } if (brw->precompile && !brw_shader_precompile(ctx, shProg)) return false; return true; } enum brw_reg_type brw_type_for_base_type(const struct glsl_type *type) { switch (type->base_type) { case GLSL_TYPE_FLOAT: return BRW_REGISTER_TYPE_F; case GLSL_TYPE_INT: case GLSL_TYPE_BOOL: case GLSL_TYPE_SUBROUTINE: return BRW_REGISTER_TYPE_D; case GLSL_TYPE_UINT: return BRW_REGISTER_TYPE_UD; case GLSL_TYPE_ARRAY: return brw_type_for_base_type(type->fields.array); case GLSL_TYPE_STRUCT: case GLSL_TYPE_SAMPLER: case GLSL_TYPE_ATOMIC_UINT: /* These should be overridden with the type of the member when * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely * way to trip up if we don't. */ return BRW_REGISTER_TYPE_UD; case GLSL_TYPE_IMAGE: return BRW_REGISTER_TYPE_UD; case GLSL_TYPE_VOID: case GLSL_TYPE_ERROR: case GLSL_TYPE_INTERFACE: case GLSL_TYPE_DOUBLE: unreachable("not reached"); } return BRW_REGISTER_TYPE_F; } enum brw_conditional_mod brw_conditional_for_comparison(unsigned int op) { switch (op) { case ir_binop_less: return BRW_CONDITIONAL_L; case ir_binop_greater: return BRW_CONDITIONAL_G; case ir_binop_lequal: return BRW_CONDITIONAL_LE; case ir_binop_gequal: return BRW_CONDITIONAL_GE; case ir_binop_equal: case ir_binop_all_equal: /* same as equal for scalars */ return BRW_CONDITIONAL_Z; case ir_binop_nequal: case ir_binop_any_nequal: /* same as nequal for scalars */ return BRW_CONDITIONAL_NZ; default: unreachable("not reached: bad operation for comparison"); } } uint32_t brw_math_function(enum opcode op) { switch (op) { case SHADER_OPCODE_RCP: return BRW_MATH_FUNCTION_INV; case SHADER_OPCODE_RSQ: return BRW_MATH_FUNCTION_RSQ; case SHADER_OPCODE_SQRT: return BRW_MATH_FUNCTION_SQRT; case SHADER_OPCODE_EXP2: return BRW_MATH_FUNCTION_EXP; case SHADER_OPCODE_LOG2: return BRW_MATH_FUNCTION_LOG; case SHADER_OPCODE_POW: return BRW_MATH_FUNCTION_POW; case SHADER_OPCODE_SIN: return BRW_MATH_FUNCTION_SIN; case SHADER_OPCODE_COS: return BRW_MATH_FUNCTION_COS; case SHADER_OPCODE_INT_QUOTIENT: return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT; case SHADER_OPCODE_INT_REMAINDER: return BRW_MATH_FUNCTION_INT_DIV_REMAINDER; default: unreachable("not reached: unknown math function"); } } uint32_t brw_texture_offset(int *offsets, unsigned num_components) { if (!offsets) return 0; /* nonconstant offset; caller will handle it. */ /* Combine all three offsets into a single unsigned dword: * * bits 11:8 - U Offset (X component) * bits 7:4 - V Offset (Y component) * bits 3:0 - R Offset (Z component) */ unsigned offset_bits = 0; for (unsigned i = 0; i < num_components; i++) { const unsigned shift = 4 * (2 - i); offset_bits |= (offsets[i] << shift) & (0xF << shift); } return offset_bits; } const char * brw_instruction_name(enum opcode op) { switch (op) { case BRW_OPCODE_MOV ... BRW_OPCODE_NOP: assert(opcode_descs[op].name); return opcode_descs[op].name; case FS_OPCODE_FB_WRITE: return "fb_write"; case FS_OPCODE_FB_WRITE_LOGICAL: return "fb_write_logical"; case FS_OPCODE_BLORP_FB_WRITE: return "blorp_fb_write"; case FS_OPCODE_REP_FB_WRITE: return "rep_fb_write"; case SHADER_OPCODE_RCP: return "rcp"; case SHADER_OPCODE_RSQ: return "rsq"; case SHADER_OPCODE_SQRT: return "sqrt"; case SHADER_OPCODE_EXP2: return "exp2"; case SHADER_OPCODE_LOG2: return "log2"; case SHADER_OPCODE_POW: return "pow"; case SHADER_OPCODE_INT_QUOTIENT: return "int_quot"; case SHADER_OPCODE_INT_REMAINDER: return "int_rem"; case SHADER_OPCODE_SIN: return "sin"; case SHADER_OPCODE_COS: return "cos"; case SHADER_OPCODE_TEX: return "tex"; case SHADER_OPCODE_TXD: return "txd"; case SHADER_OPCODE_TXF: return "txf"; case SHADER_OPCODE_TXL: return "txl"; case SHADER_OPCODE_TXS: return "txs"; case FS_OPCODE_TXB: return "txb"; case SHADER_OPCODE_TXF_CMS: return "txf_cms"; case SHADER_OPCODE_TXF_UMS: return "txf_ums"; case SHADER_OPCODE_TXF_MCS: return "txf_mcs"; case SHADER_OPCODE_LOD: return "lod"; case SHADER_OPCODE_TG4: return "tg4"; case SHADER_OPCODE_TG4_OFFSET: return "tg4_offset"; case SHADER_OPCODE_SHADER_TIME_ADD: return "shader_time_add"; case SHADER_OPCODE_UNTYPED_ATOMIC: return "untyped_atomic"; case SHADER_OPCODE_UNTYPED_SURFACE_READ: return "untyped_surface_read"; case SHADER_OPCODE_UNTYPED_SURFACE_WRITE: return "untyped_surface_write"; case SHADER_OPCODE_TYPED_ATOMIC: return "typed_atomic"; case SHADER_OPCODE_TYPED_SURFACE_READ: return "typed_surface_read"; case SHADER_OPCODE_TYPED_SURFACE_WRITE: return "typed_surface_write"; case SHADER_OPCODE_MEMORY_FENCE: return "memory_fence"; case SHADER_OPCODE_LOAD_PAYLOAD: return "load_payload"; case SHADER_OPCODE_GEN4_SCRATCH_READ: return "gen4_scratch_read"; case SHADER_OPCODE_GEN4_SCRATCH_WRITE: return "gen4_scratch_write"; case SHADER_OPCODE_GEN7_SCRATCH_READ: return "gen7_scratch_read"; case SHADER_OPCODE_URB_WRITE_SIMD8: return "gen8_urb_write_simd8"; case SHADER_OPCODE_FIND_LIVE_CHANNEL: return "find_live_channel"; case SHADER_OPCODE_BROADCAST: return "broadcast"; case VEC4_OPCODE_MOV_BYTES: return "mov_bytes"; case VEC4_OPCODE_PACK_BYTES: return "pack_bytes"; case VEC4_OPCODE_UNPACK_UNIFORM: return "unpack_uniform"; case FS_OPCODE_DDX_COARSE: return "ddx_coarse"; case FS_OPCODE_DDX_FINE: return "ddx_fine"; case FS_OPCODE_DDY_COARSE: return "ddy_coarse"; case FS_OPCODE_DDY_FINE: return "ddy_fine"; case FS_OPCODE_CINTERP: return "cinterp"; case FS_OPCODE_LINTERP: return "linterp"; case FS_OPCODE_PIXEL_X: return "pixel_x"; case FS_OPCODE_PIXEL_Y: return "pixel_y"; case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: return "uniform_pull_const"; case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7: return "uniform_pull_const_gen7"; case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD: return "varying_pull_const"; case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7: return "varying_pull_const_gen7"; case FS_OPCODE_MOV_DISPATCH_TO_FLAGS: return "mov_dispatch_to_flags"; case FS_OPCODE_DISCARD_JUMP: return "discard_jump"; case FS_OPCODE_SET_SAMPLE_ID: return "set_sample_id"; case FS_OPCODE_SET_SIMD4X2_OFFSET: return "set_simd4x2_offset"; case FS_OPCODE_PACK_HALF_2x16_SPLIT: return "pack_half_2x16_split"; case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X: return "unpack_half_2x16_split_x"; case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y: return "unpack_half_2x16_split_y"; case FS_OPCODE_PLACEHOLDER_HALT: return "placeholder_halt"; case FS_OPCODE_INTERPOLATE_AT_CENTROID: return "interp_centroid"; case FS_OPCODE_INTERPOLATE_AT_SAMPLE: return "interp_sample"; case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: return "interp_shared_offset"; case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: return "interp_per_slot_offset"; case VS_OPCODE_URB_WRITE: return "vs_urb_write"; case VS_OPCODE_PULL_CONSTANT_LOAD: return "pull_constant_load"; case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: return "pull_constant_load_gen7"; case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9: return "set_simd4x2_header_gen9"; case VS_OPCODE_UNPACK_FLAGS_SIMD4X2: return "unpack_flags_simd4x2"; case GS_OPCODE_URB_WRITE: return "gs_urb_write"; case GS_OPCODE_URB_WRITE_ALLOCATE: return "gs_urb_write_allocate"; case GS_OPCODE_THREAD_END: return "gs_thread_end"; case GS_OPCODE_SET_WRITE_OFFSET: return "set_write_offset"; case GS_OPCODE_SET_VERTEX_COUNT: return "set_vertex_count"; case GS_OPCODE_SET_DWORD_2: return "set_dword_2"; case GS_OPCODE_PREPARE_CHANNEL_MASKS: return "prepare_channel_masks"; case GS_OPCODE_SET_CHANNEL_MASKS: return "set_channel_masks"; case GS_OPCODE_GET_INSTANCE_ID: return "get_instance_id"; case GS_OPCODE_FF_SYNC: return "ff_sync"; case GS_OPCODE_SET_PRIMITIVE_ID: return "set_primitive_id"; case GS_OPCODE_SVB_WRITE: return "gs_svb_write"; case GS_OPCODE_SVB_SET_DST_INDEX: return "gs_svb_set_dst_index"; case GS_OPCODE_FF_SYNC_SET_PRIMITIVES: return "gs_ff_sync_set_primitives"; case CS_OPCODE_CS_TERMINATE: return "cs_terminate"; case SHADER_OPCODE_BARRIER: return "barrier"; } unreachable("not reached"); } bool brw_saturate_immediate(enum brw_reg_type type, struct brw_reg *reg) { union { unsigned ud; int d; float f; } imm = { reg->dw1.ud }, sat_imm = { 0 }; switch (type) { case BRW_REGISTER_TYPE_UD: case BRW_REGISTER_TYPE_D: case BRW_REGISTER_TYPE_UQ: case BRW_REGISTER_TYPE_Q: /* Nothing to do. */ return false; case BRW_REGISTER_TYPE_UW: sat_imm.ud = CLAMP(imm.ud, 0, USHRT_MAX); break; case BRW_REGISTER_TYPE_W: sat_imm.d = CLAMP(imm.d, SHRT_MIN, SHRT_MAX); break; case BRW_REGISTER_TYPE_F: sat_imm.f = CLAMP(imm.f, 0.0f, 1.0f); break; case BRW_REGISTER_TYPE_UB: case BRW_REGISTER_TYPE_B: unreachable("no UB/B immediates"); case BRW_REGISTER_TYPE_V: case BRW_REGISTER_TYPE_UV: case BRW_REGISTER_TYPE_VF: unreachable("unimplemented: saturate vector immediate"); case BRW_REGISTER_TYPE_DF: case BRW_REGISTER_TYPE_HF: unreachable("unimplemented: saturate DF/HF immediate"); } if (imm.ud != sat_imm.ud) { reg->dw1.ud = sat_imm.ud; return true; } return false; } bool brw_negate_immediate(enum brw_reg_type type, struct brw_reg *reg) { switch (type) { case BRW_REGISTER_TYPE_D: case BRW_REGISTER_TYPE_UD: reg->dw1.d = -reg->dw1.d; return true; case BRW_REGISTER_TYPE_W: case BRW_REGISTER_TYPE_UW: reg->dw1.d = -(int16_t)reg->dw1.ud; return true; case BRW_REGISTER_TYPE_F: reg->dw1.f = -reg->dw1.f; return true; case BRW_REGISTER_TYPE_VF: reg->dw1.ud ^= 0x80808080; return true; case BRW_REGISTER_TYPE_UB: case BRW_REGISTER_TYPE_B: unreachable("no UB/B immediates"); case BRW_REGISTER_TYPE_UV: case BRW_REGISTER_TYPE_V: assert(!"unimplemented: negate UV/V immediate"); case BRW_REGISTER_TYPE_UQ: case BRW_REGISTER_TYPE_Q: assert(!"unimplemented: negate UQ/Q immediate"); case BRW_REGISTER_TYPE_DF: case BRW_REGISTER_TYPE_HF: assert(!"unimplemented: negate DF/HF immediate"); } return false; } bool brw_abs_immediate(enum brw_reg_type type, struct brw_reg *reg) { switch (type) { case BRW_REGISTER_TYPE_D: reg->dw1.d = abs(reg->dw1.d); return true; case BRW_REGISTER_TYPE_W: reg->dw1.d = abs((int16_t)reg->dw1.ud); return true; case BRW_REGISTER_TYPE_F: reg->dw1.f = fabsf(reg->dw1.f); return true; case BRW_REGISTER_TYPE_VF: reg->dw1.ud &= ~0x80808080; return true; case BRW_REGISTER_TYPE_UB: case BRW_REGISTER_TYPE_B: unreachable("no UB/B immediates"); case BRW_REGISTER_TYPE_UQ: case BRW_REGISTER_TYPE_UD: case BRW_REGISTER_TYPE_UW: case BRW_REGISTER_TYPE_UV: /* Presumably the absolute value modifier on an unsigned source is a * nop, but it would be nice to confirm. */ assert(!"unimplemented: abs unsigned immediate"); case BRW_REGISTER_TYPE_V: assert(!"unimplemented: abs V immediate"); case BRW_REGISTER_TYPE_Q: assert(!"unimplemented: abs Q immediate"); case BRW_REGISTER_TYPE_DF: case BRW_REGISTER_TYPE_HF: assert(!"unimplemented: abs DF/HF immediate"); } return false; } backend_shader::backend_shader(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, struct gl_shader_program *shader_prog, struct gl_program *prog, struct brw_stage_prog_data *stage_prog_data, gl_shader_stage stage) : compiler(compiler), log_data(log_data), devinfo(compiler->devinfo), shader(shader_prog ? (struct brw_shader *)shader_prog->_LinkedShaders[stage] : NULL), shader_prog(shader_prog), prog(prog), stage_prog_data(stage_prog_data), mem_ctx(mem_ctx), cfg(NULL), stage(stage) { debug_enabled = INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage); stage_name = _mesa_shader_stage_to_string(stage); stage_abbrev = _mesa_shader_stage_to_abbrev(stage); } bool backend_reg::is_zero() const { if (file != IMM) return false; return fixed_hw_reg.dw1.d == 0; } bool backend_reg::is_one() const { if (file != IMM) return false; return type == BRW_REGISTER_TYPE_F ? fixed_hw_reg.dw1.f == 1.0 : fixed_hw_reg.dw1.d == 1; } bool backend_reg::is_negative_one() const { if (file != IMM) return false; switch (type) { case BRW_REGISTER_TYPE_F: return fixed_hw_reg.dw1.f == -1.0; case BRW_REGISTER_TYPE_D: return fixed_hw_reg.dw1.d == -1; default: return false; } } bool backend_reg::is_null() const { return file == HW_REG && fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE && fixed_hw_reg.nr == BRW_ARF_NULL; } bool backend_reg::is_accumulator() const { return file == HW_REG && fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE && fixed_hw_reg.nr == BRW_ARF_ACCUMULATOR; } bool backend_reg::in_range(const backend_reg &r, unsigned n) const { return (file == r.file && reg == r.reg && reg_offset >= r.reg_offset && reg_offset < r.reg_offset + n); } bool backend_instruction::is_commutative() const { switch (opcode) { case BRW_OPCODE_AND: case BRW_OPCODE_OR: case BRW_OPCODE_XOR: case BRW_OPCODE_ADD: case BRW_OPCODE_MUL: return true; case BRW_OPCODE_SEL: /* MIN and MAX are commutative. */ if (conditional_mod == BRW_CONDITIONAL_GE || conditional_mod == BRW_CONDITIONAL_L) { return true; } /* fallthrough */ default: return false; } } bool backend_instruction::is_3src() const { return opcode < ARRAY_SIZE(opcode_descs) && opcode_descs[opcode].nsrc == 3; } bool backend_instruction::is_tex() const { return (opcode == SHADER_OPCODE_TEX || opcode == FS_OPCODE_TXB || opcode == SHADER_OPCODE_TXD || opcode == SHADER_OPCODE_TXF || opcode == SHADER_OPCODE_TXF_CMS || opcode == SHADER_OPCODE_TXF_UMS || opcode == SHADER_OPCODE_TXF_MCS || opcode == SHADER_OPCODE_TXL || opcode == SHADER_OPCODE_TXS || opcode == SHADER_OPCODE_LOD || opcode == SHADER_OPCODE_TG4 || opcode == SHADER_OPCODE_TG4_OFFSET); } bool backend_instruction::is_math() const { return (opcode == SHADER_OPCODE_RCP || opcode == SHADER_OPCODE_RSQ || opcode == SHADER_OPCODE_SQRT || opcode == SHADER_OPCODE_EXP2 || opcode == SHADER_OPCODE_LOG2 || opcode == SHADER_OPCODE_SIN || opcode == SHADER_OPCODE_COS || opcode == SHADER_OPCODE_INT_QUOTIENT || opcode == SHADER_OPCODE_INT_REMAINDER || opcode == SHADER_OPCODE_POW); } bool backend_instruction::is_control_flow() const { switch (opcode) { case BRW_OPCODE_DO: case BRW_OPCODE_WHILE: case BRW_OPCODE_IF: case BRW_OPCODE_ELSE: case BRW_OPCODE_ENDIF: case BRW_OPCODE_BREAK: case BRW_OPCODE_CONTINUE: return true; default: return false; } } bool backend_instruction::can_do_source_mods() const { switch (opcode) { case BRW_OPCODE_ADDC: case BRW_OPCODE_BFE: case BRW_OPCODE_BFI1: case BRW_OPCODE_BFI2: case BRW_OPCODE_BFREV: case BRW_OPCODE_CBIT: case BRW_OPCODE_FBH: case BRW_OPCODE_FBL: case BRW_OPCODE_SUBB: return false; default: return true; } } bool backend_instruction::can_do_saturate() const { switch (opcode) { case BRW_OPCODE_ADD: case BRW_OPCODE_ASR: case BRW_OPCODE_AVG: case BRW_OPCODE_DP2: case BRW_OPCODE_DP3: case BRW_OPCODE_DP4: case BRW_OPCODE_DPH: case BRW_OPCODE_F16TO32: case BRW_OPCODE_F32TO16: case BRW_OPCODE_LINE: case BRW_OPCODE_LRP: case BRW_OPCODE_MAC: case BRW_OPCODE_MAD: case BRW_OPCODE_MATH: case BRW_OPCODE_MOV: case BRW_OPCODE_MUL: case BRW_OPCODE_PLN: case BRW_OPCODE_RNDD: case BRW_OPCODE_RNDE: case BRW_OPCODE_RNDU: case BRW_OPCODE_RNDZ: case BRW_OPCODE_SEL: case BRW_OPCODE_SHL: case BRW_OPCODE_SHR: case FS_OPCODE_LINTERP: case SHADER_OPCODE_COS: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_POW: case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SIN: case SHADER_OPCODE_SQRT: return true; default: return false; } } bool backend_instruction::can_do_cmod() const { switch (opcode) { case BRW_OPCODE_ADD: case BRW_OPCODE_ADDC: case BRW_OPCODE_AND: case BRW_OPCODE_ASR: case BRW_OPCODE_AVG: case BRW_OPCODE_CMP: case BRW_OPCODE_CMPN: case BRW_OPCODE_DP2: case BRW_OPCODE_DP3: case BRW_OPCODE_DP4: case BRW_OPCODE_DPH: case BRW_OPCODE_F16TO32: case BRW_OPCODE_F32TO16: case BRW_OPCODE_FRC: case BRW_OPCODE_LINE: case BRW_OPCODE_LRP: case BRW_OPCODE_LZD: case BRW_OPCODE_MAC: case BRW_OPCODE_MACH: case BRW_OPCODE_MAD: case BRW_OPCODE_MOV: case BRW_OPCODE_MUL: case BRW_OPCODE_NOT: case BRW_OPCODE_OR: case BRW_OPCODE_PLN: case BRW_OPCODE_RNDD: case BRW_OPCODE_RNDE: case BRW_OPCODE_RNDU: case BRW_OPCODE_RNDZ: case BRW_OPCODE_SAD2: case BRW_OPCODE_SADA2: case BRW_OPCODE_SHL: case BRW_OPCODE_SHR: case BRW_OPCODE_SUBB: case BRW_OPCODE_XOR: case FS_OPCODE_CINTERP: case FS_OPCODE_LINTERP: return true; default: return false; } } bool backend_instruction::reads_accumulator_implicitly() const { switch (opcode) { case BRW_OPCODE_MAC: case BRW_OPCODE_MACH: case BRW_OPCODE_SADA2: return true; default: return false; } } bool backend_instruction::writes_accumulator_implicitly(const struct brw_device_info *devinfo) const { return writes_accumulator || (devinfo->gen < 6 && ((opcode >= BRW_OPCODE_ADD && opcode < BRW_OPCODE_NOP) || (opcode >= FS_OPCODE_DDX_COARSE && opcode <= FS_OPCODE_LINTERP && opcode != FS_OPCODE_CINTERP))); } bool backend_instruction::has_side_effects() const { switch (opcode) { case SHADER_OPCODE_UNTYPED_ATOMIC: case SHADER_OPCODE_GEN4_SCRATCH_WRITE: case SHADER_OPCODE_UNTYPED_SURFACE_WRITE: case SHADER_OPCODE_TYPED_ATOMIC: case SHADER_OPCODE_TYPED_SURFACE_WRITE: case SHADER_OPCODE_MEMORY_FENCE: case SHADER_OPCODE_URB_WRITE_SIMD8: case FS_OPCODE_FB_WRITE: case SHADER_OPCODE_BARRIER: return true; default: return false; } } #ifndef NDEBUG static bool inst_is_in_block(const bblock_t *block, const backend_instruction *inst) { bool found = false; foreach_inst_in_block (backend_instruction, i, block) { if (inst == i) { found = true; } } return found; } #endif static void adjust_later_block_ips(bblock_t *start_block, int ip_adjustment) { for (bblock_t *block_iter = start_block->next(); !block_iter->link.is_tail_sentinel(); block_iter = block_iter->next()) { block_iter->start_ip += ip_adjustment; block_iter->end_ip += ip_adjustment; } } void backend_instruction::insert_after(bblock_t *block, backend_instruction *inst) { if (!this->is_head_sentinel()) assert(inst_is_in_block(block, this) || !"Instruction not in block"); block->end_ip++; adjust_later_block_ips(block, 1); exec_node::insert_after(inst); } void backend_instruction::insert_before(bblock_t *block, backend_instruction *inst) { if (!this->is_tail_sentinel()) assert(inst_is_in_block(block, this) || !"Instruction not in block"); block->end_ip++; adjust_later_block_ips(block, 1); exec_node::insert_before(inst); } void backend_instruction::insert_before(bblock_t *block, exec_list *list) { assert(inst_is_in_block(block, this) || !"Instruction not in block"); unsigned num_inst = list->length(); block->end_ip += num_inst; adjust_later_block_ips(block, num_inst); exec_node::insert_before(list); } void backend_instruction::remove(bblock_t *block) { assert(inst_is_in_block(block, this) || !"Instruction not in block"); adjust_later_block_ips(block, -1); if (block->start_ip == block->end_ip) { block->cfg->remove_block(block); } else { block->end_ip--; } exec_node::remove(); } void backend_shader::dump_instructions() { dump_instructions(NULL); } void backend_shader::dump_instructions(const char *name) { FILE *file = stderr; if (name && geteuid() != 0) { file = fopen(name, "w"); if (!file) file = stderr; } if (cfg) { int ip = 0; foreach_block_and_inst(block, backend_instruction, inst, cfg) { fprintf(file, "%4d: ", ip++); dump_instruction(inst, file); } } else { int ip = 0; foreach_in_list(backend_instruction, inst, &instructions) { fprintf(file, "%4d: ", ip++); dump_instruction(inst, file); } } if (file != stderr) { fclose(file); } } void backend_shader::calculate_cfg() { if (this->cfg) return; cfg = new(mem_ctx) cfg_t(&this->instructions); } void backend_shader::invalidate_cfg() { ralloc_free(this->cfg); this->cfg = NULL; } /** * Sets up the starting offsets for the groups of binding table entries * commong to all pipeline stages. * * Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're * unused but also make sure that addition of small offsets to them will * trigger some of our asserts that surface indices are < BRW_MAX_SURFACES. */ void backend_shader::assign_common_binding_table_offsets(uint32_t next_binding_table_offset) { int num_textures = _mesa_fls(prog->SamplersUsed); stage_prog_data->binding_table.texture_start = next_binding_table_offset; next_binding_table_offset += num_textures; if (shader) { stage_prog_data->binding_table.ubo_start = next_binding_table_offset; next_binding_table_offset += shader->base.NumUniformBlocks; } else { stage_prog_data->binding_table.ubo_start = 0xd0d0d0d0; } if (INTEL_DEBUG & DEBUG_SHADER_TIME) { stage_prog_data->binding_table.shader_time_start = next_binding_table_offset; next_binding_table_offset++; } else { stage_prog_data->binding_table.shader_time_start = 0xd0d0d0d0; } if (prog->UsesGather) { if (devinfo->gen >= 8) { stage_prog_data->binding_table.gather_texture_start = stage_prog_data->binding_table.texture_start; } else { stage_prog_data->binding_table.gather_texture_start = next_binding_table_offset; next_binding_table_offset += num_textures; } } else { stage_prog_data->binding_table.gather_texture_start = 0xd0d0d0d0; } if (shader_prog && shader_prog->NumAtomicBuffers) { stage_prog_data->binding_table.abo_start = next_binding_table_offset; next_binding_table_offset += shader_prog->NumAtomicBuffers; } else { stage_prog_data->binding_table.abo_start = 0xd0d0d0d0; } if (shader && shader->base.NumImages) { stage_prog_data->binding_table.image_start = next_binding_table_offset; next_binding_table_offset += shader->base.NumImages; } else { stage_prog_data->binding_table.image_start = 0xd0d0d0d0; } /* This may or may not be used depending on how the compile goes. */ stage_prog_data->binding_table.pull_constants_start = next_binding_table_offset; next_binding_table_offset++; assert(next_binding_table_offset <= BRW_MAX_SURFACES); /* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */ }