/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ /** @file brw_queryobj.c * * Support for query objects (GL_ARB_occlusion_query, GL_ARB_timer_query, * GL_EXT_transform_feedback, and friends). * * The hardware provides a PIPE_CONTROL command that can report the number of * fragments that passed the depth test, or the hardware timer. They are * appropriately synced with the stage of the pipeline for our extensions' * needs. * * To avoid getting samples from another context's rendering in our results, * we capture the counts at the start and end of every batchbuffer while the * query is active, and sum up the differences. (We should do so for * GL_TIME_ELAPSED as well, but don't). */ #include "main/imports.h" #include "brw_context.h" #include "brw_defines.h" #include "brw_state.h" #include "intel_batchbuffer.h" #include "intel_reg.h" static void write_timestamp(struct intel_context *intel, drm_intel_bo *query_bo, int idx) { if (intel->gen >= 6) { /* Emit workaround flushes: */ if (intel->gen == 6) { /* The timestamp write below is a non-zero post-sync op, which on * Gen6 necessitates a CS stall. CS stalls need stall at scoreboard * set. See the comments for intel_emit_post_sync_nonzero_flush(). */ BEGIN_BATCH(4); OUT_BATCH(_3DSTATE_PIPE_CONTROL | (4 - 2)); OUT_BATCH(PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD); OUT_BATCH(0); OUT_BATCH(0); ADVANCE_BATCH(); } BEGIN_BATCH(5); OUT_BATCH(_3DSTATE_PIPE_CONTROL | (5 - 2)); OUT_BATCH(PIPE_CONTROL_WRITE_TIMESTAMP); OUT_RELOC(query_bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION, PIPE_CONTROL_GLOBAL_GTT_WRITE | idx * sizeof(uint64_t)); OUT_BATCH(0); OUT_BATCH(0); ADVANCE_BATCH(); } else { BEGIN_BATCH(4); OUT_BATCH(_3DSTATE_PIPE_CONTROL | (4 - 2) | PIPE_CONTROL_WRITE_TIMESTAMP); OUT_RELOC(query_bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION, PIPE_CONTROL_GLOBAL_GTT_WRITE | idx * sizeof(uint64_t)); OUT_BATCH(0); OUT_BATCH(0); ADVANCE_BATCH(); } } static void write_depth_count(struct intel_context *intel, drm_intel_bo *query_bo, int idx) { if (intel->gen >= 6) { /* Emit Sandybridge workaround flush: */ if (intel->gen == 6) intel_emit_post_sync_nonzero_flush(intel); BEGIN_BATCH(5); OUT_BATCH(_3DSTATE_PIPE_CONTROL | (5 - 2)); OUT_BATCH(PIPE_CONTROL_DEPTH_STALL | PIPE_CONTROL_WRITE_DEPTH_COUNT); OUT_RELOC(query_bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION, PIPE_CONTROL_GLOBAL_GTT_WRITE | (idx * sizeof(uint64_t))); OUT_BATCH(0); OUT_BATCH(0); ADVANCE_BATCH(); } else { BEGIN_BATCH(4); OUT_BATCH(_3DSTATE_PIPE_CONTROL | (4 - 2) | PIPE_CONTROL_DEPTH_STALL | PIPE_CONTROL_WRITE_DEPTH_COUNT); /* This object could be mapped cacheable, but we don't have an exposed * mechanism to support that. Since it's going uncached, tell GEM that * we're writing to it. The usual clflush should be all that's required * to pick up the results. */ OUT_RELOC(query_bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION, PIPE_CONTROL_GLOBAL_GTT_WRITE | (idx * sizeof(uint64_t))); OUT_BATCH(0); OUT_BATCH(0); ADVANCE_BATCH(); } } /** Waits on the query object's BO and totals the results for this query */ static void brw_queryobj_get_results(struct gl_context *ctx, struct brw_query_object *query) { struct intel_context *intel = intel_context(ctx); int i; uint64_t *results; if (query->bo == NULL) return; if (drm_intel_bo_references(intel->batch.bo, query->bo)) intel_batchbuffer_flush(intel); if (unlikely(INTEL_DEBUG & DEBUG_PERF)) { if (drm_intel_bo_busy(query->bo)) { perf_debug("Stalling on the GPU waiting for a query object.\n"); } } drm_intel_bo_map(query->bo, false); results = query->bo->virtual; switch (query->Base.Target) { case GL_TIME_ELAPSED_EXT: if (intel->gen >= 6) query->Base.Result += 80 * (results[1] - results[0]); else query->Base.Result += 1000 * ((results[1] >> 32) - (results[0] >> 32)); break; case GL_TIMESTAMP: if (intel->gen >= 6) { /* Our timer is a clock that increments every 80ns (regardless of * other clock scaling in the system). The timestamp register we can * read for glGetTimestamp() masks out the top 32 bits, so we do that * here too to let the two counters be compared against each other. * * If we just multiplied that 32 bits of data by 80, it would roll * over at a non-power-of-two, so an application couldn't use * GL_QUERY_COUNTER_BITS to handle rollover correctly. Instead, we * report 36 bits and truncate at that (rolling over 5 times as often * as the HW counter), and when the 32-bit counter rolls over, it * happens to also be at a rollover in the reported value from near * (1<<36) to 0. * * The low 32 bits rolls over in ~343 seconds. Our 36-bit result * rolls over every ~69 seconds. */ query->Base.Result = 80 * (results[1] & 0xffffffff); query->Base.Result &= (1ull << 36) - 1; } else { query->Base.Result = 1000 * (results[1] >> 32); } break; case GL_SAMPLES_PASSED_ARB: /* Map and count the pixels from the current query BO */ for (i = query->first_index; i <= query->last_index; i++) { query->Base.Result += results[i * 2 + 1] - results[i * 2]; } break; case GL_ANY_SAMPLES_PASSED: /* Set true if any of the sub-queries passed. */ for (i = query->first_index; i <= query->last_index; i++) { if (results[i * 2 + 1] != results[i * 2]) { query->Base.Result = GL_TRUE; break; } } break; case GL_PRIMITIVES_GENERATED: case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN: /* We don't actually query the hardware for this value, so query->bo * should always be NULL and execution should never reach here. */ assert(!"Unreachable"); break; default: assert(!"Unrecognized query target in brw_queryobj_get_results()"); break; } drm_intel_bo_unmap(query->bo); drm_intel_bo_unreference(query->bo); query->bo = NULL; } static struct gl_query_object * brw_new_query_object(struct gl_context *ctx, GLuint id) { struct brw_query_object *query; query = calloc(1, sizeof(struct brw_query_object)); query->Base.Id = id; query->Base.Result = 0; query->Base.Active = false; query->Base.Ready = true; return &query->Base; } static void brw_delete_query(struct gl_context *ctx, struct gl_query_object *q) { struct brw_query_object *query = (struct brw_query_object *)q; drm_intel_bo_unreference(query->bo); free(query); } static void brw_begin_query(struct gl_context *ctx, struct gl_query_object *q) { struct brw_context *brw = brw_context(ctx); struct intel_context *intel = intel_context(ctx); struct brw_query_object *query = (struct brw_query_object *)q; switch (query->Base.Target) { case GL_TIME_ELAPSED_EXT: drm_intel_bo_unreference(query->bo); query->bo = drm_intel_bo_alloc(intel->bufmgr, "timer query", 4096, 4096); write_timestamp(intel, query->bo, 0); break; case GL_ANY_SAMPLES_PASSED: case GL_SAMPLES_PASSED_ARB: /* Reset our driver's tracking of query state. */ drm_intel_bo_unreference(query->bo); query->bo = NULL; query->first_index = -1; query->last_index = -1; brw->query.obj = query; intel->stats_wm++; break; case GL_PRIMITIVES_GENERATED: /* We don't actually query the hardware for this value; we keep track of * it a software counter. So just reset the counter. */ brw->sol.primitives_generated = 0; brw->sol.counting_primitives_generated = true; break; case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN: /* We don't actually query the hardware for this value; we keep track of * it a software counter. So just reset the counter. */ brw->sol.primitives_written = 0; brw->sol.counting_primitives_written = true; break; default: assert(!"Unrecognized query target in brw_begin_query()"); break; } } /** * Begin the ARB_occlusion_query query on a query object. */ static void brw_end_query(struct gl_context *ctx, struct gl_query_object *q) { struct brw_context *brw = brw_context(ctx); struct intel_context *intel = intel_context(ctx); struct brw_query_object *query = (struct brw_query_object *)q; switch (query->Base.Target) { case GL_TIMESTAMP: drm_intel_bo_unreference(query->bo); query->bo = drm_intel_bo_alloc(intel->bufmgr, "timer query", 4096, 4096); /* FALLTHROUGH */ case GL_TIME_ELAPSED_EXT: write_timestamp(intel, query->bo, 1); break; case GL_ANY_SAMPLES_PASSED: case GL_SAMPLES_PASSED_ARB: if (query->bo) { brw_emit_query_end(brw); drm_intel_bo_unreference(brw->query.bo); brw->query.bo = NULL; } brw->query.obj = NULL; intel->stats_wm--; break; case GL_PRIMITIVES_GENERATED: /* We don't actually query the hardware for this value; we keep track of * it in a software counter. So just read the counter and store it in * the query object. */ query->Base.Result = brw->sol.primitives_generated; brw->sol.counting_primitives_generated = false; /* And set brw->query.obj to NULL so that this query won't try to wait * for any rendering to complete. */ query->bo = NULL; break; case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN: /* We don't actually query the hardware for this value; we keep track of * it in a software counter. So just read the counter and store it in * the query object. */ query->Base.Result = brw->sol.primitives_written; brw->sol.counting_primitives_written = false; /* And set brw->query.obj to NULL so that this query won't try to wait * for any rendering to complete. */ query->bo = NULL; break; default: assert(!"Unrecognized query target in brw_end_query()"); break; } } static void brw_wait_query(struct gl_context *ctx, struct gl_query_object *q) { struct brw_query_object *query = (struct brw_query_object *)q; brw_queryobj_get_results(ctx, query); query->Base.Ready = true; } static void brw_check_query(struct gl_context *ctx, struct gl_query_object *q) { struct intel_context *intel = intel_context(ctx); struct brw_query_object *query = (struct brw_query_object *)q; /* From the GL_ARB_occlusion_query spec: * * "Instead of allowing for an infinite loop, performing a * QUERY_RESULT_AVAILABLE_ARB will perform a flush if the result is * not ready yet on the first time it is queried. This ensures that * the async query will return true in finite time. */ if (query->bo && drm_intel_bo_references(intel->batch.bo, query->bo)) intel_batchbuffer_flush(intel); if (query->bo == NULL || !drm_intel_bo_busy(query->bo)) { brw_queryobj_get_results(ctx, query); query->Base.Ready = true; } } /** Called just before primitive drawing to get a beginning PS_DEPTH_COUNT. */ void brw_emit_query_begin(struct brw_context *brw) { struct intel_context *intel = &brw->intel; struct gl_context *ctx = &intel->ctx; struct brw_query_object *query = brw->query.obj; /* Skip if we're not doing any queries, or we've emitted the start. */ if (!query || brw->query.begin_emitted) return; /* Get a new query BO if we're going to need it. */ if (brw->query.bo == NULL || brw->query.index * 2 + 1 >= 4096 / sizeof(uint64_t)) { drm_intel_bo_unreference(brw->query.bo); brw->query.bo = NULL; brw->query.bo = drm_intel_bo_alloc(intel->bufmgr, "query", 4096, 1); /* clear target buffer */ drm_intel_bo_map(brw->query.bo, true); memset((char *)brw->query.bo->virtual, 0, 4096); drm_intel_bo_unmap(brw->query.bo); brw->query.index = 0; } write_depth_count(intel, brw->query.bo, brw->query.index * 2); if (query->bo != brw->query.bo) { if (query->bo != NULL) brw_queryobj_get_results(ctx, query); drm_intel_bo_reference(brw->query.bo); query->bo = brw->query.bo; query->first_index = brw->query.index; } query->last_index = brw->query.index; brw->query.begin_emitted = true; } /** Called at batchbuffer flush to get an ending PS_DEPTH_COUNT */ void brw_emit_query_end(struct brw_context *brw) { struct intel_context *intel = &brw->intel; if (!brw->query.begin_emitted) return; write_depth_count(intel, brw->query.bo, brw->query.index * 2 + 1); brw->query.begin_emitted = false; brw->query.index++; } static uint64_t brw_get_timestamp(struct gl_context *ctx) { struct intel_context *intel = intel_context(ctx); uint64_t result = 0; drm_intel_reg_read(intel->bufmgr, TIMESTAMP, &result); /* See logic in brw_queryobj_get_results() */ result = result >> 32; result *= 80; result &= (1ull << 36) - 1; return result; } void brw_init_queryobj_functions(struct dd_function_table *functions) { functions->NewQueryObject = brw_new_query_object; functions->DeleteQuery = brw_delete_query; functions->BeginQuery = brw_begin_query; functions->EndQuery = brw_end_query; functions->CheckQuery = brw_check_query; functions->WaitQuery = brw_wait_query; functions->GetTimestamp = brw_get_timestamp; }