/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file brw_performance_query.c * * Implementation of the GL_INTEL_performance_query extension. * * Currently there are two possible counter sources exposed here: * * On Gen6+ hardware we have numerous 64bit Pipeline Statistics Registers * that we can snapshot at the beginning and end of a query. * * On Gen7.5+ we have Observability Architecture counters which are * covered in separate document from the rest of the PRMs. It is available at: * https://01.org/linuxgraphics/documentation/driver-documentation-prms * => 2013 Intel Core Processor Family => Observability Performance Counters * (This one volume covers Sandybridge, Ivybridge, Baytrail, and Haswell, * though notably we currently only support OA counters for Haswell+) */ #include #include /* put before sys/types.h to silence glibc warnings */ #ifdef MAJOR_IN_MKDEV #include #endif #ifdef MAJOR_IN_SYSMACROS #include #endif #include #include #include #include #include #include #include #include "main/hash.h" #include "main/macros.h" #include "main/mtypes.h" #include "main/performance_query.h" #include "util/bitset.h" #include "util/ralloc.h" #include "util/hash_table.h" #include "util/list.h" #include "brw_context.h" #include "brw_defines.h" #include "brw_performance_query.h" #include "brw_oa_hsw.h" #include "brw_oa_bdw.h" #include "brw_oa_chv.h" #include "brw_oa_sklgt2.h" #include "brw_oa_sklgt3.h" #include "brw_oa_sklgt4.h" #include "brw_oa_bxt.h" #include "brw_oa_kblgt2.h" #include "brw_oa_kblgt3.h" #include "brw_oa_glk.h" #include "intel_batchbuffer.h" #define FILE_DEBUG_FLAG DEBUG_PERFMON /* * The largest OA formats we can use include: * For Haswell: * 1 timestamp, 45 A counters, 8 B counters and 8 C counters. * For Gen8+ * 1 timestamp, 1 clock, 36 A counters, 8 B counters and 8 C counters */ #define MAX_OA_REPORT_COUNTERS 62 #define OAREPORT_REASON_MASK 0x3f #define OAREPORT_REASON_SHIFT 19 #define OAREPORT_REASON_TIMER (1<<0) #define OAREPORT_REASON_TRIGGER1 (1<<1) #define OAREPORT_REASON_TRIGGER2 (1<<2) #define OAREPORT_REASON_CTX_SWITCH (1<<3) #define OAREPORT_REASON_GO_TRANSITION (1<<4) #define I915_PERF_OA_SAMPLE_SIZE (8 + /* drm_i915_perf_record_header */ \ 256) /* OA counter report */ /** * Periodic OA samples are read() into these buffer structures via the * i915 perf kernel interface and appended to the * brw->perfquery.sample_buffers linked list. When we process the * results of an OA metrics query we need to consider all the periodic * samples between the Begin and End MI_REPORT_PERF_COUNT command * markers. * * 'Periodic' is a simplification as there are other automatic reports * written by the hardware also buffered here. * * Considering three queries, A, B and C: * * Time ----> * ________________A_________________ * | | * | ________B_________ _____C___________ * | | | | | | * * And an illustration of sample buffers read over this time frame: * [HEAD ][ ][ ][ ][ ][ ][ ][ ][TAIL ] * * These nodes may hold samples for query A: * [ ][ ][ A ][ A ][ A ][ A ][ A ][ ][ ] * * These nodes may hold samples for query B: * [ ][ ][ B ][ B ][ B ][ ][ ][ ][ ] * * These nodes may hold samples for query C: * [ ][ ][ ][ ][ ][ C ][ C ][ C ][ ] * * The illustration assumes we have an even distribution of periodic * samples so all nodes have the same size plotted against time: * * Note, to simplify code, the list is never empty. * * With overlapping queries we can see that periodic OA reports may * relate to multiple queries and care needs to be take to keep * track of sample buffers until there are no queries that might * depend on their contents. * * We use a node ref counting system where a reference ensures that a * node and all following nodes can't be freed/recycled until the * reference drops to zero. * * E.g. with a ref of one here: * [ 0 ][ 0 ][ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ] * * These nodes could be freed or recycled ("reaped"): * [ 0 ][ 0 ] * * These must be preserved until the leading ref drops to zero: * [ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ] * * When a query starts we take a reference on the current tail of * the list, knowing that no already-buffered samples can possibly * relate to the newly-started query. A pointer to this node is * also saved in the query object's ->oa.samples_head. * * E.g. starting query A while there are two nodes in .sample_buffers: * ________________A________ * | * * [ 0 ][ 1 ] * ^_______ Add a reference and store pointer to node in * A->oa.samples_head * * Moving forward to when the B query starts with no new buffer nodes: * (for reference, i915 perf reads() are only done when queries finish) * ________________A_______ * | ________B___ * | | * * [ 0 ][ 2 ] * ^_______ Add a reference and store pointer to * node in B->oa.samples_head * * Once a query is finished, after an OA query has become 'Ready', * once the End OA report has landed and after we we have processed * all the intermediate periodic samples then we drop the * ->oa.samples_head reference we took at the start. * * So when the B query has finished we have: * ________________A________ * | ______B___________ * | | | * [ 0 ][ 1 ][ 0 ][ 0 ][ 0 ] * ^_______ Drop B->oa.samples_head reference * * We still can't free these due to the A->oa.samples_head ref: * [ 1 ][ 0 ][ 0 ][ 0 ] * * When the A query finishes: (note there's a new ref for C's samples_head) * ________________A_________________ * | | * | _____C_________ * | | | * [ 0 ][ 0 ][ 0 ][ 0 ][ 1 ][ 0 ][ 0 ] * ^_______ Drop A->oa.samples_head reference * * And we can now reap these nodes up to the C->oa.samples_head: * [ X ][ X ][ X ][ X ] * keeping -> [ 1 ][ 0 ][ 0 ] * * We reap old sample buffers each time we finish processing an OA * query by iterating the sample_buffers list from the head until we * find a referenced node and stop. * * Reaped buffers move to a perfquery.free_sample_buffers list and * when we come to read() we first look to recycle a buffer from the * free_sample_buffers list before allocating a new buffer. */ struct brw_oa_sample_buf { struct exec_node link; int refcount; int len; uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10]; uint32_t last_timestamp; }; /** * i965 representation of a performance query object. * * NB: We want to keep this structure relatively lean considering that * applications may expect to allocate enough objects to be able to * query around all draw calls in a frame. */ struct brw_perf_query_object { struct gl_perf_query_object base; const struct brw_perf_query_info *query; /* See query->kind to know which state below is in use... */ union { struct { /** * BO containing OA counter snapshots at query Begin/End time. */ struct brw_bo *bo; /** * Address of mapped of @bo */ void *map; /** * The MI_REPORT_PERF_COUNT command lets us specify a unique * ID that will be reflected in the resulting OA report * that's written by the GPU. This is the ID we're expecting * in the begin report and the the end report should be * @begin_report_id + 1. */ int begin_report_id; /** * Reference the head of the brw->perfquery.sample_buffers * list at the time that the query started (so we only need * to look at nodes after this point when looking for samples * related to this query) * * (See struct brw_oa_sample_buf description for more details) */ struct exec_node *samples_head; /** * Storage for the final accumulated OA counters. */ uint64_t accumulator[MAX_OA_REPORT_COUNTERS]; /** * false while in the unaccumulated_elements list, and set to * true when the final, end MI_RPC snapshot has been * accumulated. */ bool results_accumulated; } oa; struct { /** * BO containing starting and ending snapshots for the * statistics counters. */ struct brw_bo *bo; } pipeline_stats; }; }; /** Downcasting convenience macro. */ static inline struct brw_perf_query_object * brw_perf_query(struct gl_perf_query_object *o) { return (struct brw_perf_query_object *) o; } #define STATS_BO_SIZE 4096 #define STATS_BO_END_OFFSET_BYTES (STATS_BO_SIZE / 2) #define MAX_STAT_COUNTERS (STATS_BO_END_OFFSET_BYTES / 8) #define MI_RPC_BO_SIZE 4096 #define MI_RPC_BO_END_OFFSET_BYTES (MI_RPC_BO_SIZE / 2) /******************************************************************************/ static bool brw_is_perf_query_ready(struct gl_context *ctx, struct gl_perf_query_object *o); static void dump_perf_query_callback(GLuint id, void *query_void, void *brw_void) { struct gl_context *ctx = brw_void; struct gl_perf_query_object *o = query_void; struct brw_perf_query_object *obj = query_void; switch (obj->query->kind) { case OA_COUNTERS: DBG("%4d: %-6s %-8s BO: %-4s OA data: %-10s %-15s\n", id, o->Used ? "Dirty," : "New,", o->Active ? "Active," : (o->Ready ? "Ready," : "Pending,"), obj->oa.bo ? "yes," : "no,", brw_is_perf_query_ready(ctx, o) ? "ready," : "not ready,", obj->oa.results_accumulated ? "accumulated" : "not accumulated"); break; case PIPELINE_STATS: DBG("%4d: %-6s %-8s BO: %-4s\n", id, o->Used ? "Dirty," : "New,", o->Active ? "Active," : (o->Ready ? "Ready," : "Pending,"), obj->pipeline_stats.bo ? "yes" : "no"); break; } } static void dump_perf_queries(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; DBG("Queries: (Open queries = %d, OA users = %d)\n", brw->perfquery.n_active_oa_queries, brw->perfquery.n_oa_users); _mesa_HashWalk(ctx->PerfQuery.Objects, dump_perf_query_callback, brw); } /******************************************************************************/ static struct brw_oa_sample_buf * get_free_sample_buf(struct brw_context *brw) { struct exec_node *node = exec_list_pop_head(&brw->perfquery.free_sample_buffers); struct brw_oa_sample_buf *buf; if (node) buf = exec_node_data(struct brw_oa_sample_buf, node, link); else { buf = ralloc_size(brw, sizeof(*buf)); exec_node_init(&buf->link); buf->refcount = 0; buf->len = 0; } return buf; } static void reap_old_sample_buffers(struct brw_context *brw) { struct exec_node *tail_node = exec_list_get_tail(&brw->perfquery.sample_buffers); struct brw_oa_sample_buf *tail_buf = exec_node_data(struct brw_oa_sample_buf, tail_node, link); /* Remove all old, unreferenced sample buffers walking forward from * the head of the list, except always leave at least one node in * the list so we always have a node to reference when we Begin * a new query. */ foreach_list_typed_safe(struct brw_oa_sample_buf, buf, link, &brw->perfquery.sample_buffers) { if (buf->refcount == 0 && buf != tail_buf) { exec_node_remove(&buf->link); exec_list_push_head(&brw->perfquery.free_sample_buffers, &buf->link); } else return; } } static void free_sample_bufs(struct brw_context *brw) { foreach_list_typed_safe(struct brw_oa_sample_buf, buf, link, &brw->perfquery.free_sample_buffers) ralloc_free(buf); exec_list_make_empty(&brw->perfquery.free_sample_buffers); } /******************************************************************************/ /** * Driver hook for glGetPerfQueryInfoINTEL(). */ static void brw_get_perf_query_info(struct gl_context *ctx, unsigned query_index, const char **name, GLuint *data_size, GLuint *n_counters, GLuint *n_active) { struct brw_context *brw = brw_context(ctx); const struct brw_perf_query_info *query = &brw->perfquery.queries[query_index]; *name = query->name; *data_size = query->data_size; *n_counters = query->n_counters; switch (query->kind) { case OA_COUNTERS: *n_active = brw->perfquery.n_active_oa_queries; break; case PIPELINE_STATS: *n_active = brw->perfquery.n_active_pipeline_stats_queries; break; } } /** * Driver hook for glGetPerfCounterInfoINTEL(). */ static void brw_get_perf_counter_info(struct gl_context *ctx, unsigned query_index, unsigned counter_index, const char **name, const char **desc, GLuint *offset, GLuint *data_size, GLuint *type_enum, GLuint *data_type_enum, GLuint64 *raw_max) { struct brw_context *brw = brw_context(ctx); const struct brw_perf_query_info *query = &brw->perfquery.queries[query_index]; const struct brw_perf_query_counter *counter = &query->counters[counter_index]; *name = counter->name; *desc = counter->desc; *offset = counter->offset; *data_size = counter->size; *type_enum = counter->type; *data_type_enum = counter->data_type; *raw_max = counter->raw_max; } /******************************************************************************/ /** * Emit MI_STORE_REGISTER_MEM commands to capture all of the * pipeline statistics for the performance query object. */ static void snapshot_statistics_registers(struct brw_context *brw, struct brw_perf_query_object *obj, uint32_t offset_in_bytes) { const struct brw_perf_query_info *query = obj->query; const int n_counters = query->n_counters; for (int i = 0; i < n_counters; i++) { const struct brw_perf_query_counter *counter = &query->counters[i]; assert(counter->data_type == GL_PERFQUERY_COUNTER_DATA_UINT64_INTEL); brw_store_register_mem64(brw, obj->pipeline_stats.bo, counter->pipeline_stat.reg, offset_in_bytes + i * sizeof(uint64_t)); } } /** * Add a query to the global list of "unaccumulated queries." * * Queries are tracked here until all the associated OA reports have * been accumulated via accumulate_oa_reports() after the end * MI_REPORT_PERF_COUNT has landed in query->oa.bo. */ static void add_to_unaccumulated_query_list(struct brw_context *brw, struct brw_perf_query_object *obj) { if (brw->perfquery.unaccumulated_elements >= brw->perfquery.unaccumulated_array_size) { brw->perfquery.unaccumulated_array_size *= 1.5; brw->perfquery.unaccumulated = reralloc(brw, brw->perfquery.unaccumulated, struct brw_perf_query_object *, brw->perfquery.unaccumulated_array_size); } brw->perfquery.unaccumulated[brw->perfquery.unaccumulated_elements++] = obj; } /** * Remove a query from the global list of unaccumulated queries once * after successfully accumulating the OA reports associated with the * query in accumulate_oa_reports() or when discarding unwanted query * results. */ static void drop_from_unaccumulated_query_list(struct brw_context *brw, struct brw_perf_query_object *obj) { for (int i = 0; i < brw->perfquery.unaccumulated_elements; i++) { if (brw->perfquery.unaccumulated[i] == obj) { int last_elt = --brw->perfquery.unaccumulated_elements; if (i == last_elt) brw->perfquery.unaccumulated[i] = NULL; else { brw->perfquery.unaccumulated[i] = brw->perfquery.unaccumulated[last_elt]; } break; } } /* Drop our samples_head reference so that associated periodic * sample data buffers can potentially be reaped if they aren't * referenced by any other queries... */ struct brw_oa_sample_buf *buf = exec_node_data(struct brw_oa_sample_buf, obj->oa.samples_head, link); assert(buf->refcount > 0); buf->refcount--; obj->oa.samples_head = NULL; reap_old_sample_buffers(brw); } static uint64_t timebase_scale(struct brw_context *brw, uint32_t u32_time_delta) { const struct gen_device_info *devinfo = &brw->screen->devinfo; uint64_t tmp = ((uint64_t)u32_time_delta) * 1000000000ull; return tmp ? tmp / devinfo->timestamp_frequency : 0; } static void accumulate_uint32(const uint32_t *report0, const uint32_t *report1, uint64_t *accumulator) { *accumulator += (uint32_t)(*report1 - *report0); } static void accumulate_uint40(int a_index, const uint32_t *report0, const uint32_t *report1, uint64_t *accumulator) { const uint8_t *high_bytes0 = (uint8_t *)(report0 + 40); const uint8_t *high_bytes1 = (uint8_t *)(report1 + 40); uint64_t high0 = (uint64_t)(high_bytes0[a_index]) << 32; uint64_t high1 = (uint64_t)(high_bytes1[a_index]) << 32; uint64_t value0 = report0[a_index + 4] | high0; uint64_t value1 = report1[a_index + 4] | high1; uint64_t delta; if (value0 > value1) delta = (1ULL << 40) + value1 - value0; else delta = value1 - value0; *accumulator += delta; } /** * Given pointers to starting and ending OA snapshots, add the deltas for each * counter to the results. */ static void add_deltas(struct brw_context *brw, struct brw_perf_query_object *obj, const uint32_t *start, const uint32_t *end) { const struct brw_perf_query_info *query = obj->query; uint64_t *accumulator = obj->oa.accumulator; int idx = 0; int i; switch (query->oa_format) { case I915_OA_FORMAT_A32u40_A4u32_B8_C8: accumulate_uint32(start + 1, end + 1, accumulator + idx++); /* timestamp */ accumulate_uint32(start + 3, end + 3, accumulator + idx++); /* clock */ /* 32x 40bit A counters... */ for (i = 0; i < 32; i++) accumulate_uint40(i, start, end, accumulator + idx++); /* 4x 32bit A counters... */ for (i = 0; i < 4; i++) accumulate_uint32(start + 36 + i, end + 36 + i, accumulator + idx++); /* 8x 32bit B counters + 8x 32bit C counters... */ for (i = 0; i < 16; i++) accumulate_uint32(start + 48 + i, end + 48 + i, accumulator + idx++); break; case I915_OA_FORMAT_A45_B8_C8: accumulate_uint32(start + 1, end + 1, accumulator); /* timestamp */ for (i = 0; i < 61; i++) accumulate_uint32(start + 3 + i, end + 3 + i, accumulator + 1 + i); break; default: unreachable("Can't accumulate OA counters in unknown format"); } } static bool inc_n_oa_users(struct brw_context *brw) { if (brw->perfquery.n_oa_users == 0 && drmIoctl(brw->perfquery.oa_stream_fd, I915_PERF_IOCTL_ENABLE, 0) < 0) { return false; } ++brw->perfquery.n_oa_users; return true; } static void dec_n_oa_users(struct brw_context *brw) { /* Disabling the i915 perf stream will effectively disable the OA * counters. Note it's important to be sure there are no outstanding * MI_RPC commands at this point since they could stall the CS * indefinitely once OACONTROL is disabled. */ --brw->perfquery.n_oa_users; if (brw->perfquery.n_oa_users == 0 && drmIoctl(brw->perfquery.oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0) { DBG("WARNING: Error disabling i915 perf stream: %m\n"); } } /* In general if we see anything spurious while accumulating results, * we don't try and continue accumulating the current query, hoping * for the best, we scrap anything outstanding, and then hope for the * best with new queries. */ static void discard_all_queries(struct brw_context *brw) { while (brw->perfquery.unaccumulated_elements) { struct brw_perf_query_object *obj = brw->perfquery.unaccumulated[0]; obj->oa.results_accumulated = true; drop_from_unaccumulated_query_list(brw, brw->perfquery.unaccumulated[0]); dec_n_oa_users(brw); } } enum OaReadStatus { OA_READ_STATUS_ERROR, OA_READ_STATUS_UNFINISHED, OA_READ_STATUS_FINISHED, }; static enum OaReadStatus read_oa_samples_until(struct brw_context *brw, uint32_t start_timestamp, uint32_t end_timestamp) { struct exec_node *tail_node = exec_list_get_tail(&brw->perfquery.sample_buffers); struct brw_oa_sample_buf *tail_buf = exec_node_data(struct brw_oa_sample_buf, tail_node, link); uint32_t last_timestamp = tail_buf->last_timestamp; while (1) { struct brw_oa_sample_buf *buf = get_free_sample_buf(brw); uint32_t offset; int len; while ((len = read(brw->perfquery.oa_stream_fd, buf->buf, sizeof(buf->buf))) < 0 && errno == EINTR) ; if (len <= 0) { exec_list_push_tail(&brw->perfquery.free_sample_buffers, &buf->link); if (len < 0) { if (errno == EAGAIN) return ((last_timestamp - start_timestamp) >= (end_timestamp - start_timestamp)) ? OA_READ_STATUS_FINISHED : OA_READ_STATUS_UNFINISHED; else { DBG("Error reading i915 perf samples: %m\n"); } } else DBG("Spurious EOF reading i915 perf samples\n"); return OA_READ_STATUS_ERROR; } buf->len = len; exec_list_push_tail(&brw->perfquery.sample_buffers, &buf->link); /* Go through the reports and update the last timestamp. */ offset = 0; while (offset < buf->len) { const struct drm_i915_perf_record_header *header = (const struct drm_i915_perf_record_header *) &buf->buf[offset]; uint32_t *report = (uint32_t *) (header + 1); if (header->type == DRM_I915_PERF_RECORD_SAMPLE) last_timestamp = report[1]; offset += header->size; } buf->last_timestamp = last_timestamp; } unreachable("not reached"); return OA_READ_STATUS_ERROR; } /** * Try to read all the reports until either the delimiting timestamp * or an error arises. */ static bool read_oa_samples_for_query(struct brw_context *brw, struct brw_perf_query_object *obj) { uint32_t *start; uint32_t *last; uint32_t *end; /* We need the MI_REPORT_PERF_COUNT to land before we can start * accumulate. */ assert(!brw_batch_references(&brw->batch, obj->oa.bo) && !brw_bo_busy(obj->oa.bo)); /* Map the BO once here and let accumulate_oa_reports() unmap * it. */ if (obj->oa.map == NULL) obj->oa.map = brw_bo_map(brw, obj->oa.bo, MAP_READ); start = last = obj->oa.map; end = obj->oa.map + MI_RPC_BO_END_OFFSET_BYTES; if (start[0] != obj->oa.begin_report_id) { DBG("Spurious start report id=%"PRIu32"\n", start[0]); return true; } if (end[0] != (obj->oa.begin_report_id + 1)) { DBG("Spurious end report id=%"PRIu32"\n", end[0]); return true; } /* Read the reports until the end timestamp. */ switch (read_oa_samples_until(brw, start[1], end[1])) { case OA_READ_STATUS_ERROR: /* Fallthrough and let accumulate_oa_reports() deal with the * error. */ case OA_READ_STATUS_FINISHED: return true; case OA_READ_STATUS_UNFINISHED: return false; } unreachable("invalid read status"); return false; } /** * Accumulate raw OA counter values based on deltas between pairs of * OA reports. * * Accumulation starts from the first report captured via * MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the * last MI_RPC report requested by brw_end_perf_query(). Between these * two reports there may also some number of periodically sampled OA * reports collected via the i915 perf interface - depending on the * duration of the query. * * These periodic snapshots help to ensure we handle counter overflow * correctly by being frequent enough to ensure we don't miss multiple * overflows of a counter between snapshots. For Gen8+ the i915 perf * snapshots provide the extra context-switch reports that let us * subtract out the progress of counters associated with other * contexts running on the system. */ static void accumulate_oa_reports(struct brw_context *brw, struct brw_perf_query_object *obj) { const struct gen_device_info *devinfo = &brw->screen->devinfo; struct gl_perf_query_object *o = &obj->base; uint32_t *start; uint32_t *last; uint32_t *end; struct exec_node *first_samples_node; bool in_ctx = true; uint32_t ctx_id; int out_duration = 0; assert(o->Ready); assert(obj->oa.map != NULL); start = last = obj->oa.map; end = obj->oa.map + MI_RPC_BO_END_OFFSET_BYTES; if (start[0] != obj->oa.begin_report_id) { DBG("Spurious start report id=%"PRIu32"\n", start[0]); goto error; } if (end[0] != (obj->oa.begin_report_id + 1)) { DBG("Spurious end report id=%"PRIu32"\n", end[0]); goto error; } ctx_id = start[2]; /* See if we have any periodic reports to accumulate too... */ /* N.B. The oa.samples_head was set when the query began and * pointed to the tail of the brw->perfquery.sample_buffers list at * the time the query started. Since the buffer existed before the * first MI_REPORT_PERF_COUNT command was emitted we therefore know * that no data in this particular node's buffer can possibly be * associated with the query - so skip ahead one... */ first_samples_node = obj->oa.samples_head->next; foreach_list_typed_from(struct brw_oa_sample_buf, buf, link, &brw->perfquery.sample_buffers, first_samples_node) { int offset = 0; while (offset < buf->len) { const struct drm_i915_perf_record_header *header = (const struct drm_i915_perf_record_header *)(buf->buf + offset); assert(header->size != 0); assert(header->size <= buf->len); offset += header->size; switch (header->type) { case DRM_I915_PERF_RECORD_SAMPLE: { uint32_t *report = (uint32_t *)(header + 1); bool add = true; /* Ignore reports that come before the start marker. * (Note: takes care to allow overflow of 32bit timestamps) */ if (timebase_scale(brw, report[1] - start[1]) > 5000000000) continue; /* Ignore reports that come after the end marker. * (Note: takes care to allow overflow of 32bit timestamps) */ if (timebase_scale(brw, report[1] - end[1]) <= 5000000000) goto end; /* For Gen8+ since the counters continue while other * contexts are running we need to discount any unrelated * deltas. The hardware automatically generates a report * on context switch which gives us a new reference point * to continuing adding deltas from. * * For Haswell we can rely on the HW to stop the progress * of OA counters while any other context is acctive. */ if (devinfo->gen >= 8) { if (in_ctx && report[2] != ctx_id) { DBG("i915 perf: Switch AWAY (observed by ID change)\n"); in_ctx = false; out_duration = 0; } else if (in_ctx == false && report[2] == ctx_id) { DBG("i915 perf: Switch TO\n"); in_ctx = true; /* From experimentation in IGT, we found that the OA unit * might label some report as "idle" (using an invalid * context ID), right after a report for a given context. * Deltas generated by those reports actually belong to the * previous context, even though they're not labelled as * such. * * We didn't *really* Switch AWAY in the case that we e.g. * saw a single periodic report while idle... */ if (out_duration >= 1) add = false; } else if (in_ctx) { assert(report[2] == ctx_id); DBG("i915 perf: Continuation IN\n"); } else { assert(report[2] != ctx_id); DBG("i915 perf: Continuation OUT\n"); add = false; out_duration++; } } if (add) add_deltas(brw, obj, last, report); last = report; break; } case DRM_I915_PERF_RECORD_OA_BUFFER_LOST: DBG("i915 perf: OA error: all reports lost\n"); goto error; case DRM_I915_PERF_RECORD_OA_REPORT_LOST: DBG("i915 perf: OA report lost\n"); break; } } } end: add_deltas(brw, obj, last, end); DBG("Marking %d accumulated - results gathered\n", o->Id); brw_bo_unmap(obj->oa.bo); obj->oa.map = NULL; obj->oa.results_accumulated = true; drop_from_unaccumulated_query_list(brw, obj); dec_n_oa_users(brw); return; error: brw_bo_unmap(obj->oa.bo); obj->oa.map = NULL; discard_all_queries(brw); } /******************************************************************************/ static bool open_i915_perf_oa_stream(struct brw_context *brw, int metrics_set_id, int report_format, int period_exponent, int drm_fd, uint32_t ctx_id) { uint64_t properties[] = { /* Single context sampling */ DRM_I915_PERF_PROP_CTX_HANDLE, ctx_id, /* Include OA reports in samples */ DRM_I915_PERF_PROP_SAMPLE_OA, true, /* OA unit configuration */ DRM_I915_PERF_PROP_OA_METRICS_SET, metrics_set_id, DRM_I915_PERF_PROP_OA_FORMAT, report_format, DRM_I915_PERF_PROP_OA_EXPONENT, period_exponent, }; struct drm_i915_perf_open_param param = { .flags = I915_PERF_FLAG_FD_CLOEXEC | I915_PERF_FLAG_FD_NONBLOCK | I915_PERF_FLAG_DISABLED, .num_properties = ARRAY_SIZE(properties) / 2, .properties_ptr = (uintptr_t) properties, }; int fd = drmIoctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, ¶m); if (fd == -1) { DBG("Error opening i915 perf OA stream: %m\n"); return false; } brw->perfquery.oa_stream_fd = fd; brw->perfquery.current_oa_metrics_set_id = metrics_set_id; brw->perfquery.current_oa_format = report_format; return true; } static void close_perf(struct brw_context *brw) { if (brw->perfquery.oa_stream_fd != -1) { close(brw->perfquery.oa_stream_fd); brw->perfquery.oa_stream_fd = -1; } } /** * Driver hook for glBeginPerfQueryINTEL(). */ static bool brw_begin_perf_query(struct gl_context *ctx, struct gl_perf_query_object *o) { struct brw_context *brw = brw_context(ctx); struct brw_perf_query_object *obj = brw_perf_query(o); const struct brw_perf_query_info *query = obj->query; /* We can assume the frontend hides mistaken attempts to Begin a * query object multiple times before its End. Similarly if an * application reuses a query object before results have arrived * the frontend will wait for prior results so we don't need * to support abandoning in-flight results. */ assert(!o->Active); assert(!o->Used || o->Ready); /* no in-flight query to worry about */ DBG("Begin(%d)\n", o->Id); /* XXX: We have to consider that the command parser unit that parses batch * buffer commands and is used to capture begin/end counter snapshots isn't * implicitly synchronized with what's currently running across other GPU * units (such as the EUs running shaders) that the performance counters are * associated with. * * The intention of performance queries is to measure the work associated * with commands between the begin/end delimiters and so for that to be the * case we need to explicitly synchronize the parsing of commands to capture * Begin/End counter snapshots with what's running across other parts of the * GPU. * * When the command parser reaches a Begin marker it effectively needs to * drain everything currently running on the GPU until the hardware is idle * before capturing the first snapshot of counters - otherwise the results * would also be measuring the effects of earlier commands. * * When the command parser reaches an End marker it needs to stall until * everything currently running on the GPU has finished before capturing the * end snapshot - otherwise the results won't be a complete representation * of the work. * * Theoretically there could be opportunities to minimize how much of the * GPU pipeline is drained, or that we stall for, when we know what specific * units the performance counters being queried relate to but we don't * currently attempt to be clever here. * * Note: with our current simple approach here then for back-to-back queries * we will redundantly emit duplicate commands to synchronize the command * streamer with the rest of the GPU pipeline, but we assume that in HW the * second synchronization is effectively a NOOP. * * N.B. The final results are based on deltas of counters between (inside) * Begin/End markers so even though the total wall clock time of the * workload is stretched by larger pipeline bubbles the bubbles themselves * are generally invisible to the query results. Whether that's a good or a * bad thing depends on the use case. For a lower real-time impact while * capturing metrics then periodic sampling may be a better choice than * INTEL_performance_query. * * * This is our Begin synchronization point to drain current work on the * GPU before we capture our first counter snapshot... */ brw_emit_mi_flush(brw); switch (query->kind) { case OA_COUNTERS: /* Opening an i915 perf stream implies exclusive access to the OA unit * which will generate counter reports for a specific counter set with a * specific layout/format so we can't begin any OA based queries that * require a different counter set or format unless we get an opportunity * to close the stream and open a new one... */ if (brw->perfquery.oa_stream_fd != -1 && brw->perfquery.current_oa_metrics_set_id != query->oa_metrics_set_id) { if (brw->perfquery.n_oa_users != 0) return false; else close_perf(brw); } /* If the OA counters aren't already on, enable them. */ if (brw->perfquery.oa_stream_fd == -1) { __DRIscreen *screen = brw->screen->driScrnPriv; const struct gen_device_info *devinfo = &brw->screen->devinfo; /* The period_exponent gives a sampling period as follows: * sample_period = timestamp_period * 2^(period_exponent + 1) * * The timestamps increments every 80ns (HSW), ~52ns (GEN9LP) or * ~83ns (GEN8/9). * * The counter overflow period is derived from the EuActive counter * which reads a counter that increments by the number of clock * cycles multiplied by the number of EUs. It can be calculated as: * * 2^(number of bits in A counter) / (n_eus * max_gen_freq * 2) * * (E.g. 40 EUs @ 1GHz = ~53ms) * * We select a sampling period inferior to that overflow period to * ensure we cannot see more than 1 counter overflow, otherwise we * could loose information. */ int a_counter_in_bits = 32; if (devinfo->gen >= 8) a_counter_in_bits = 40; uint64_t overflow_period = pow(2, a_counter_in_bits) / (brw->perfquery.sys_vars.n_eus * /* drop 1GHz freq to have units in nanoseconds */ 2); DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n", overflow_period, overflow_period / 1000000ul, brw->perfquery.sys_vars.n_eus); int period_exponent = 0; uint64_t prev_sample_period, next_sample_period; for (int e = 0; e < 30; e++) { prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency; next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency; /* Take the previous sampling period, lower than the overflow * period. */ if (prev_sample_period < overflow_period && next_sample_period > overflow_period) period_exponent = e + 1; } if (period_exponent == 0) { DBG("WARNING: enable to find a sampling exponent\n"); return false; } DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent, prev_sample_period / 1000000ul); if (!open_i915_perf_oa_stream(brw, query->oa_metrics_set_id, query->oa_format, period_exponent, screen->fd, /* drm fd */ brw->hw_ctx)) return false; } else { assert(brw->perfquery.current_oa_metrics_set_id == query->oa_metrics_set_id && brw->perfquery.current_oa_format == query->oa_format); } if (!inc_n_oa_users(brw)) { DBG("WARNING: Error enabling i915 perf stream: %m\n"); return false; } if (obj->oa.bo) { brw_bo_unreference(obj->oa.bo); obj->oa.bo = NULL; } obj->oa.bo = brw_bo_alloc(brw->bufmgr, "perf. query OA MI_RPC bo", MI_RPC_BO_SIZE, 64); #ifdef DEBUG /* Pre-filling the BO helps debug whether writes landed. */ void *map = brw_bo_map(brw, obj->oa.bo, MAP_WRITE); memset(map, 0x80, MI_RPC_BO_SIZE); brw_bo_unmap(obj->oa.bo); #endif obj->oa.begin_report_id = brw->perfquery.next_query_start_report_id; brw->perfquery.next_query_start_report_id += 2; /* Take a starting OA counter snapshot. */ brw->vtbl.emit_mi_report_perf_count(brw, obj->oa.bo, 0, obj->oa.begin_report_id); ++brw->perfquery.n_active_oa_queries; /* No already-buffered samples can possibly be associated with this query * so create a marker within the list of sample buffers enabling us to * easily ignore earlier samples when processing this query after * completion. */ assert(!exec_list_is_empty(&brw->perfquery.sample_buffers)); obj->oa.samples_head = exec_list_get_tail(&brw->perfquery.sample_buffers); struct brw_oa_sample_buf *buf = exec_node_data(struct brw_oa_sample_buf, obj->oa.samples_head, link); /* This reference will ensure that future/following sample * buffers (that may relate to this query) can't be freed until * this drops to zero. */ buf->refcount++; memset(obj->oa.accumulator, 0, sizeof(obj->oa.accumulator)); obj->oa.results_accumulated = false; add_to_unaccumulated_query_list(brw, obj); break; case PIPELINE_STATS: if (obj->pipeline_stats.bo) { brw_bo_unreference(obj->pipeline_stats.bo); obj->pipeline_stats.bo = NULL; } obj->pipeline_stats.bo = brw_bo_alloc(brw->bufmgr, "perf. query pipeline stats bo", STATS_BO_SIZE, 64); /* Take starting snapshots. */ snapshot_statistics_registers(brw, obj, 0); ++brw->perfquery.n_active_pipeline_stats_queries; break; } if (INTEL_DEBUG & DEBUG_PERFMON) dump_perf_queries(brw); return true; } /** * Driver hook for glEndPerfQueryINTEL(). */ static void brw_end_perf_query(struct gl_context *ctx, struct gl_perf_query_object *o) { struct brw_context *brw = brw_context(ctx); struct brw_perf_query_object *obj = brw_perf_query(o); DBG("End(%d)\n", o->Id); /* Ensure that the work associated with the queried commands will have * finished before taking our query end counter readings. * * For more details see comment in brw_begin_perf_query for * corresponding flush. */ brw_emit_mi_flush(brw); switch (obj->query->kind) { case OA_COUNTERS: /* NB: It's possible that the query will have already been marked * as 'accumulated' if an error was seen while reading samples * from perf. In this case we mustn't try and emit a closing * MI_RPC command in case the OA unit has already been disabled */ if (!obj->oa.results_accumulated) { /* Take an ending OA counter snapshot. */ brw->vtbl.emit_mi_report_perf_count(brw, obj->oa.bo, MI_RPC_BO_END_OFFSET_BYTES, obj->oa.begin_report_id + 1); } /* We flush the batchbuffer here to minimize the chances that MI_RPC * delimiting commands end up in different batchbuffers. If that's the * case, the measurement will include the time it takes for the kernel * scheduler to load a new request into the hardware. This is manifested * in tools like frameretrace by spikes in the "GPU Core Clocks" * counter. */ intel_batchbuffer_flush(brw); --brw->perfquery.n_active_oa_queries; /* NB: even though the query has now ended, it can't be accumulated * until the end MI_REPORT_PERF_COUNT snapshot has been written * to query->oa.bo */ break; case PIPELINE_STATS: snapshot_statistics_registers(brw, obj, STATS_BO_END_OFFSET_BYTES); --brw->perfquery.n_active_pipeline_stats_queries; break; } } static void brw_wait_perf_query(struct gl_context *ctx, struct gl_perf_query_object *o) { struct brw_context *brw = brw_context(ctx); struct brw_perf_query_object *obj = brw_perf_query(o); struct brw_bo *bo = NULL; assert(!o->Ready); switch (obj->query->kind) { case OA_COUNTERS: bo = obj->oa.bo; break; case PIPELINE_STATS: bo = obj->pipeline_stats.bo; break; } if (bo == NULL) return; /* If the current batch references our results bo then we need to * flush first... */ if (brw_batch_references(&brw->batch, bo)) intel_batchbuffer_flush(brw); brw_bo_wait_rendering(bo); /* Due to a race condition between the OA unit signaling report * availability and the report actually being written into memory, * we need to wait for all the reports to come in before we can * read them. */ if (obj->query->kind == OA_COUNTERS) { while (!read_oa_samples_for_query(brw, obj)) ; } } static bool brw_is_perf_query_ready(struct gl_context *ctx, struct gl_perf_query_object *o) { struct brw_context *brw = brw_context(ctx); struct brw_perf_query_object *obj = brw_perf_query(o); if (o->Ready) return true; switch (obj->query->kind) { case OA_COUNTERS: return (obj->oa.results_accumulated || (obj->oa.bo && !brw_batch_references(&brw->batch, obj->oa.bo) && !brw_bo_busy(obj->oa.bo) && read_oa_samples_for_query(brw, obj))); case PIPELINE_STATS: return (obj->pipeline_stats.bo && !brw_batch_references(&brw->batch, obj->pipeline_stats.bo) && !brw_bo_busy(obj->pipeline_stats.bo)); } unreachable("missing ready check for unknown query kind"); return false; } static int get_oa_counter_data(struct brw_context *brw, struct brw_perf_query_object *obj, size_t data_size, uint8_t *data) { const struct brw_perf_query_info *query = obj->query; int n_counters = query->n_counters; int written = 0; if (!obj->oa.results_accumulated) { accumulate_oa_reports(brw, obj); assert(obj->oa.results_accumulated); } for (int i = 0; i < n_counters; i++) { const struct brw_perf_query_counter *counter = &query->counters[i]; uint64_t *out_uint64; float *out_float; if (counter->size) { switch (counter->data_type) { case GL_PERFQUERY_COUNTER_DATA_UINT64_INTEL: out_uint64 = (uint64_t *)(data + counter->offset); *out_uint64 = counter->oa_counter_read_uint64(brw, query, obj->oa.accumulator); break; case GL_PERFQUERY_COUNTER_DATA_FLOAT_INTEL: out_float = (float *)(data + counter->offset); *out_float = counter->oa_counter_read_float(brw, query, obj->oa.accumulator); break; default: /* So far we aren't using uint32, double or bool32... */ unreachable("unexpected counter data type"); } written = counter->offset + counter->size; } } return written; } static int get_pipeline_stats_data(struct brw_context *brw, struct brw_perf_query_object *obj, size_t data_size, uint8_t *data) { const struct brw_perf_query_info *query = obj->query; int n_counters = obj->query->n_counters; uint8_t *p = data; uint64_t *start = brw_bo_map(brw, obj->pipeline_stats.bo, MAP_READ); uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t)); for (int i = 0; i < n_counters; i++) { const struct brw_perf_query_counter *counter = &query->counters[i]; uint64_t value = end[i] - start[i]; if (counter->pipeline_stat.numerator != counter->pipeline_stat.denominator) { value *= counter->pipeline_stat.numerator; value /= counter->pipeline_stat.denominator; } *((uint64_t *)p) = value; p += 8; } brw_bo_unmap(obj->pipeline_stats.bo); return p - data; } /** * Driver hook for glGetPerfQueryDataINTEL(). */ static void brw_get_perf_query_data(struct gl_context *ctx, struct gl_perf_query_object *o, GLsizei data_size, GLuint *data, GLuint *bytes_written) { struct brw_context *brw = brw_context(ctx); struct brw_perf_query_object *obj = brw_perf_query(o); int written = 0; assert(brw_is_perf_query_ready(ctx, o)); DBG("GetData(%d)\n", o->Id); if (INTEL_DEBUG & DEBUG_PERFMON) dump_perf_queries(brw); /* We expect that the frontend only calls this hook when it knows * that results are available. */ assert(o->Ready); switch (obj->query->kind) { case OA_COUNTERS: written = get_oa_counter_data(brw, obj, data_size, (uint8_t *)data); break; case PIPELINE_STATS: written = get_pipeline_stats_data(brw, obj, data_size, (uint8_t *)data); break; } if (bytes_written) *bytes_written = written; } static struct gl_perf_query_object * brw_new_perf_query_object(struct gl_context *ctx, unsigned query_index) { struct brw_context *brw = brw_context(ctx); const struct brw_perf_query_info *query = &brw->perfquery.queries[query_index]; struct brw_perf_query_object *obj = calloc(1, sizeof(struct brw_perf_query_object)); if (!obj) return NULL; obj->query = query; brw->perfquery.n_query_instances++; return &obj->base; } /** * Driver hook for glDeletePerfQueryINTEL(). */ static void brw_delete_perf_query(struct gl_context *ctx, struct gl_perf_query_object *o) { struct brw_context *brw = brw_context(ctx); struct brw_perf_query_object *obj = brw_perf_query(o); /* We can assume that the frontend waits for a query to complete * before ever calling into here, so we don't have to worry about * deleting an in-flight query object. */ assert(!o->Active); assert(!o->Used || o->Ready); DBG("Delete(%d)\n", o->Id); switch (obj->query->kind) { case OA_COUNTERS: if (obj->oa.bo) { if (!obj->oa.results_accumulated) { drop_from_unaccumulated_query_list(brw, obj); dec_n_oa_users(brw); } brw_bo_unreference(obj->oa.bo); obj->oa.bo = NULL; } obj->oa.results_accumulated = false; break; case PIPELINE_STATS: if (obj->pipeline_stats.bo) { brw_bo_unreference(obj->pipeline_stats.bo); obj->pipeline_stats.bo = NULL; } break; } free(obj); /* As an indication that the INTEL_performance_query extension is no * longer in use, it's a good time to free our cache of sample * buffers and close any current i915-perf stream. */ if (--brw->perfquery.n_query_instances == 0) { free_sample_bufs(brw); close_perf(brw); } } /******************************************************************************/ static struct brw_perf_query_info * append_query_info(struct brw_context *brw) { brw->perfquery.queries = reralloc(brw, brw->perfquery.queries, struct brw_perf_query_info, ++brw->perfquery.n_queries); return &brw->perfquery.queries[brw->perfquery.n_queries - 1]; } static void add_stat_reg(struct brw_perf_query_info *query, uint32_t reg, uint32_t numerator, uint32_t denominator, const char *name, const char *description) { struct brw_perf_query_counter *counter; assert(query->n_counters < MAX_STAT_COUNTERS); counter = &query->counters[query->n_counters]; counter->name = name; counter->desc = description; counter->type = GL_PERFQUERY_COUNTER_RAW_INTEL; counter->data_type = GL_PERFQUERY_COUNTER_DATA_UINT64_INTEL; counter->size = sizeof(uint64_t); counter->offset = sizeof(uint64_t) * query->n_counters; counter->pipeline_stat.reg = reg; counter->pipeline_stat.numerator = numerator; counter->pipeline_stat.denominator = denominator; query->n_counters++; } static void add_basic_stat_reg(struct brw_perf_query_info *query, uint32_t reg, const char *name) { add_stat_reg(query, reg, 1, 1, name, name); } static void init_pipeline_statistic_query_registers(struct brw_context *brw) { const struct gen_device_info *devinfo = &brw->screen->devinfo; struct brw_perf_query_info *query = append_query_info(brw); query->kind = PIPELINE_STATS; query->name = "Pipeline Statistics Registers"; query->n_counters = 0; query->counters = rzalloc_array(brw, struct brw_perf_query_counter, MAX_STAT_COUNTERS); add_basic_stat_reg(query, IA_VERTICES_COUNT, "N vertices submitted"); add_basic_stat_reg(query, IA_PRIMITIVES_COUNT, "N primitives submitted"); add_basic_stat_reg(query, VS_INVOCATION_COUNT, "N vertex shader invocations"); if (devinfo->gen == 6) { add_stat_reg(query, GEN6_SO_PRIM_STORAGE_NEEDED, 1, 1, "SO_PRIM_STORAGE_NEEDED", "N geometry shader stream-out primitives (total)"); add_stat_reg(query, GEN6_SO_NUM_PRIMS_WRITTEN, 1, 1, "SO_NUM_PRIMS_WRITTEN", "N geometry shader stream-out primitives (written)"); } else { add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(0), 1, 1, "SO_PRIM_STORAGE_NEEDED (Stream 0)", "N stream-out (stream 0) primitives (total)"); add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(1), 1, 1, "SO_PRIM_STORAGE_NEEDED (Stream 1)", "N stream-out (stream 1) primitives (total)"); add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(2), 1, 1, "SO_PRIM_STORAGE_NEEDED (Stream 2)", "N stream-out (stream 2) primitives (total)"); add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(3), 1, 1, "SO_PRIM_STORAGE_NEEDED (Stream 3)", "N stream-out (stream 3) primitives (total)"); add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(0), 1, 1, "SO_NUM_PRIMS_WRITTEN (Stream 0)", "N stream-out (stream 0) primitives (written)"); add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(1), 1, 1, "SO_NUM_PRIMS_WRITTEN (Stream 1)", "N stream-out (stream 1) primitives (written)"); add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(2), 1, 1, "SO_NUM_PRIMS_WRITTEN (Stream 2)", "N stream-out (stream 2) primitives (written)"); add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(3), 1, 1, "SO_NUM_PRIMS_WRITTEN (Stream 3)", "N stream-out (stream 3) primitives (written)"); } add_basic_stat_reg(query, HS_INVOCATION_COUNT, "N TCS shader invocations"); add_basic_stat_reg(query, DS_INVOCATION_COUNT, "N TES shader invocations"); add_basic_stat_reg(query, GS_INVOCATION_COUNT, "N geometry shader invocations"); add_basic_stat_reg(query, GS_PRIMITIVES_COUNT, "N geometry shader primitives emitted"); add_basic_stat_reg(query, CL_INVOCATION_COUNT, "N primitives entering clipping"); add_basic_stat_reg(query, CL_PRIMITIVES_COUNT, "N primitives leaving clipping"); if (devinfo->is_haswell || devinfo->gen == 8) add_stat_reg(query, PS_INVOCATION_COUNT, 1, 4, "N fragment shader invocations", "N fragment shader invocations"); else add_basic_stat_reg(query, PS_INVOCATION_COUNT, "N fragment shader invocations"); add_basic_stat_reg(query, PS_DEPTH_COUNT, "N z-pass fragments"); if (devinfo->gen >= 7) add_basic_stat_reg(query, CS_INVOCATION_COUNT, "N compute shader invocations"); query->data_size = sizeof(uint64_t) * query->n_counters; } static bool read_file_uint64(const char *file, uint64_t *val) { char buf[32]; int fd, n; fd = open(file, 0); if (fd < 0) return false; n = read(fd, buf, sizeof (buf) - 1); close(fd); if (n < 0) return false; buf[n] = '\0'; *val = strtoull(buf, NULL, 0); return true; } static void enumerate_sysfs_metrics(struct brw_context *brw, const char *sysfs_dev_dir) { char buf[256]; DIR *metricsdir = NULL; struct dirent *metric_entry; int len; len = snprintf(buf, sizeof(buf), "%s/metrics", sysfs_dev_dir); if (len < 0 || len >= sizeof(buf)) { DBG("Failed to concatenate path to sysfs metrics/ directory\n"); return; } metricsdir = opendir(buf); if (!metricsdir) { DBG("Failed to open %s: %m\n", buf); return; } while ((metric_entry = readdir(metricsdir))) { struct hash_entry *entry; if ((metric_entry->d_type != DT_DIR && metric_entry->d_type != DT_LNK) || metric_entry->d_name[0] == '.') continue; DBG("metric set: %s\n", metric_entry->d_name); entry = _mesa_hash_table_search(brw->perfquery.oa_metrics_table, metric_entry->d_name); if (entry) { struct brw_perf_query_info *query; uint64_t id; len = snprintf(buf, sizeof(buf), "%s/metrics/%s/id", sysfs_dev_dir, metric_entry->d_name); if (len < 0 || len >= sizeof(buf)) { DBG("Failed to concatenate path to sysfs metric id file\n"); continue; } if (!read_file_uint64(buf, &id)) { DBG("Failed to read metric set id from %s: %m", buf); continue; } query = append_query_info(brw); *query = *(struct brw_perf_query_info *)entry->data; query->oa_metrics_set_id = id; DBG("metric set known by mesa: id = %" PRIu64"\n", query->oa_metrics_set_id); } else DBG("metric set not known by mesa (skipping)\n"); } closedir(metricsdir); } static bool read_sysfs_drm_device_file_uint64(struct brw_context *brw, const char *sysfs_dev_dir, const char *file, uint64_t *value) { char buf[512]; int len; len = snprintf(buf, sizeof(buf), "%s/%s", sysfs_dev_dir, file); if (len < 0 || len >= sizeof(buf)) { DBG("Failed to concatenate sys filename to read u64 from\n"); return false; } return read_file_uint64(buf, value); } static bool init_oa_sys_vars(struct brw_context *brw, const char *sysfs_dev_dir) { const struct gen_device_info *devinfo = &brw->screen->devinfo; uint64_t min_freq_mhz = 0, max_freq_mhz = 0; if (!read_sysfs_drm_device_file_uint64(brw, sysfs_dev_dir, "gt_min_freq_mhz", &min_freq_mhz)) return false; if (!read_sysfs_drm_device_file_uint64(brw, sysfs_dev_dir, "gt_max_freq_mhz", &max_freq_mhz)) return false; brw->perfquery.sys_vars.gt_min_freq = min_freq_mhz * 1000000; brw->perfquery.sys_vars.gt_max_freq = max_freq_mhz * 1000000; brw->perfquery.sys_vars.timestamp_frequency = devinfo->timestamp_frequency; if (devinfo->is_haswell) { if (devinfo->gt == 1) { brw->perfquery.sys_vars.n_eus = 10; brw->perfquery.sys_vars.n_eu_slices = 1; brw->perfquery.sys_vars.n_eu_sub_slices = 1; brw->perfquery.sys_vars.slice_mask = 0x1; brw->perfquery.sys_vars.subslice_mask = 0x1; } else if (devinfo->gt == 2) { brw->perfquery.sys_vars.n_eus = 20; brw->perfquery.sys_vars.n_eu_slices = 1; brw->perfquery.sys_vars.n_eu_sub_slices = 2; brw->perfquery.sys_vars.slice_mask = 0x1; brw->perfquery.sys_vars.subslice_mask = 0x3; } else if (devinfo->gt == 3) { brw->perfquery.sys_vars.n_eus = 40; brw->perfquery.sys_vars.n_eu_slices = 2; brw->perfquery.sys_vars.n_eu_sub_slices = 2; brw->perfquery.sys_vars.slice_mask = 0x3; brw->perfquery.sys_vars.subslice_mask = 0xf; } else unreachable("not reached"); } else { __DRIscreen *screen = brw->screen->driScrnPriv; drm_i915_getparam_t gp; int ret; int n_eus = 0; int slice_mask = 0; int ss_mask = 0; int s_max = devinfo->num_slices; /* maximum number of slices */ int ss_max = 0; /* maximum number of subslices per slice */ uint64_t subslice_mask = 0; int s; if (devinfo->gen == 8) { if (devinfo->gt == 1) { ss_max = 2; } else { ss_max = 3; } } else if (devinfo->gen == 9) { /* XXX: beware that the kernel (as of writing) actually works as if * ss_max == 4 since the HW register that reports the global subslice * mask has 4 bits while in practice the limit is 3. It's also * important that we initialize $SubsliceMask with 3 bits per slice * since that's what the counter availability expressions in XML * expect. */ ss_max = 3; } else return false; gp.param = I915_PARAM_EU_TOTAL; gp.value = &n_eus; ret = drmIoctl(screen->fd, DRM_IOCTL_I915_GETPARAM, &gp); if (ret) return false; gp.param = I915_PARAM_SLICE_MASK; gp.value = &slice_mask; ret = drmIoctl(screen->fd, DRM_IOCTL_I915_GETPARAM, &gp); if (ret) return false; gp.param = I915_PARAM_SUBSLICE_MASK; gp.value = &ss_mask; ret = drmIoctl(screen->fd, DRM_IOCTL_I915_GETPARAM, &gp); if (ret) return false; brw->perfquery.sys_vars.n_eus = n_eus; brw->perfquery.sys_vars.n_eu_slices = __builtin_popcount(slice_mask); brw->perfquery.sys_vars.slice_mask = slice_mask; /* Note: the _SUBSLICE_MASK param only reports a global subslice mask * which applies to all slices. * * Note: some of the metrics we have (as described in XML) are * conditional on a $SubsliceMask variable which is expected to also * reflect the slice mask by packing together subslice masks for each * slice in one value.. */ for (s = 0; s < s_max; s++) { if (slice_mask & (1<perfquery.sys_vars.subslice_mask = subslice_mask; brw->perfquery.sys_vars.n_eu_sub_slices = __builtin_popcount(subslice_mask); } brw->perfquery.sys_vars.eu_threads_count = brw->perfquery.sys_vars.n_eus * devinfo->num_thread_per_eu; return true; } static bool get_sysfs_dev_dir(struct brw_context *brw, char *path_buf, int path_buf_len) { __DRIscreen *screen = brw->screen->driScrnPriv; struct stat sb; int min, maj; DIR *drmdir; struct dirent *drm_entry; int len; assert(path_buf); assert(path_buf_len); path_buf[0] = '\0'; if (fstat(screen->fd, &sb)) { DBG("Failed to stat DRM fd\n"); return false; } maj = major(sb.st_rdev); min = minor(sb.st_rdev); if (!S_ISCHR(sb.st_mode)) { DBG("DRM fd is not a character device as expected\n"); return false; } len = snprintf(path_buf, path_buf_len, "/sys/dev/char/%d:%d/device/drm", maj, min); if (len < 0 || len >= path_buf_len) { DBG("Failed to concatenate sysfs path to drm device\n"); return false; } drmdir = opendir(path_buf); if (!drmdir) { DBG("Failed to open %s: %m\n", path_buf); return false; } while ((drm_entry = readdir(drmdir))) { if ((drm_entry->d_type == DT_DIR || drm_entry->d_type == DT_LNK) && strncmp(drm_entry->d_name, "card", 4) == 0) { len = snprintf(path_buf, path_buf_len, "/sys/dev/char/%d:%d/device/drm/%s", maj, min, drm_entry->d_name); closedir(drmdir); if (len < 0 || len >= path_buf_len) return false; else return true; } } closedir(drmdir); DBG("Failed to find cardX directory under /sys/dev/char/%d:%d/device/drm\n", maj, min); return false; } typedef void (*perf_register_oa_queries_t)(struct brw_context *); static perf_register_oa_queries_t get_register_queries_function(const struct gen_device_info *devinfo) { if (devinfo->is_haswell) return brw_oa_register_queries_hsw; if (devinfo->is_cherryview) return brw_oa_register_queries_chv; if (devinfo->is_broadwell) return brw_oa_register_queries_bdw; if (devinfo->is_broxton) return brw_oa_register_queries_bxt; if (devinfo->is_skylake) { if (devinfo->gt == 2) return brw_oa_register_queries_sklgt2; if (devinfo->gt == 3) return brw_oa_register_queries_sklgt3; if (devinfo->gt == 4) return brw_oa_register_queries_sklgt4; } if (devinfo->is_kabylake) { if (devinfo->gt == 2) return brw_oa_register_queries_kblgt2; if (devinfo->gt == 3) return brw_oa_register_queries_kblgt3; } if (devinfo->is_geminilake) return brw_oa_register_queries_glk; return NULL; } static unsigned brw_init_perf_query_info(struct gl_context *ctx) { struct brw_context *brw = brw_context(ctx); const struct gen_device_info *devinfo = &brw->screen->devinfo; bool i915_perf_oa_available = false; struct stat sb; char sysfs_dev_dir[128]; perf_register_oa_queries_t oa_register; if (brw->perfquery.n_queries) return brw->perfquery.n_queries; init_pipeline_statistic_query_registers(brw); oa_register = get_register_queries_function(devinfo); /* The existence of this sysctl parameter implies the kernel supports * the i915 perf interface. */ if (stat("/proc/sys/dev/i915/perf_stream_paranoid", &sb) == 0) { /* If _paranoid == 1 then on Gen8+ we won't be able to access OA * metrics unless running as root. */ if (devinfo->is_haswell) i915_perf_oa_available = true; else { uint64_t paranoid = 1; read_file_uint64("/proc/sys/dev/i915/perf_stream_paranoid", ¶noid); if (paranoid == 0 || geteuid() == 0) i915_perf_oa_available = true; } } if (i915_perf_oa_available && oa_register && get_sysfs_dev_dir(brw, sysfs_dev_dir, sizeof(sysfs_dev_dir)) && init_oa_sys_vars(brw, sysfs_dev_dir)) { brw->perfquery.oa_metrics_table = _mesa_hash_table_create(NULL, _mesa_key_hash_string, _mesa_key_string_equal); /* Index all the metric sets mesa knows about before looking to see what * the kernel is advertising. */ oa_register(brw); enumerate_sysfs_metrics(brw, sysfs_dev_dir); } brw->perfquery.unaccumulated = ralloc_array(brw, struct brw_perf_query_object *, 2); brw->perfquery.unaccumulated_elements = 0; brw->perfquery.unaccumulated_array_size = 2; exec_list_make_empty(&brw->perfquery.sample_buffers); exec_list_make_empty(&brw->perfquery.free_sample_buffers); /* It's convenient to guarantee that this linked list of sample * buffers is never empty so we add an empty head so when we * Begin an OA query we can always take a reference on a buffer * in this list. */ struct brw_oa_sample_buf *buf = get_free_sample_buf(brw); exec_list_push_head(&brw->perfquery.sample_buffers, &buf->link); brw->perfquery.oa_stream_fd = -1; brw->perfquery.next_query_start_report_id = 1000; return brw->perfquery.n_queries; } void brw_init_performance_queries(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; ctx->Driver.InitPerfQueryInfo = brw_init_perf_query_info; ctx->Driver.GetPerfQueryInfo = brw_get_perf_query_info; ctx->Driver.GetPerfCounterInfo = brw_get_perf_counter_info; ctx->Driver.NewPerfQueryObject = brw_new_perf_query_object; ctx->Driver.DeletePerfQuery = brw_delete_perf_query; ctx->Driver.BeginPerfQuery = brw_begin_perf_query; ctx->Driver.EndPerfQuery = brw_end_perf_query; ctx->Driver.WaitPerfQuery = brw_wait_perf_query; ctx->Driver.IsPerfQueryReady = brw_is_perf_query_ready; ctx->Driver.GetPerfQueryData = brw_get_perf_query_data; }