/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "brw_nir.h" #include "brw_shader.h" #include "compiler/glsl_types.h" #include "compiler/nir/nir_builder.h" static bool is_input(nir_intrinsic_instr *intrin) { return intrin->intrinsic == nir_intrinsic_load_input || intrin->intrinsic == nir_intrinsic_load_per_vertex_input || intrin->intrinsic == nir_intrinsic_load_interpolated_input; } static bool is_output(nir_intrinsic_instr *intrin) { return intrin->intrinsic == nir_intrinsic_load_output || intrin->intrinsic == nir_intrinsic_load_per_vertex_output || intrin->intrinsic == nir_intrinsic_store_output || intrin->intrinsic == nir_intrinsic_store_per_vertex_output; } /** * In many cases, we just add the base and offset together, so there's no * reason to keep them separate. Sometimes, combining them is essential: * if a shader only accesses part of a compound variable (such as a matrix * or array), the variable's base may not actually exist in the VUE map. * * This pass adds constant offsets to instr->const_index[0], and resets * the offset source to 0. Non-constant offsets remain unchanged - since * we don't know what part of a compound variable is accessed, we allocate * storage for the entire thing. */ static bool add_const_offset_to_base_block(nir_block *block, nir_builder *b, nir_variable_mode mode) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if ((mode == nir_var_shader_in && is_input(intrin)) || (mode == nir_var_shader_out && is_output(intrin))) { nir_src *offset = nir_get_io_offset_src(intrin); nir_const_value *const_offset = nir_src_as_const_value(*offset); if (const_offset) { intrin->const_index[0] += const_offset->u32[0]; b->cursor = nir_before_instr(&intrin->instr); nir_instr_rewrite_src(&intrin->instr, offset, nir_src_for_ssa(nir_imm_int(b, 0))); } } } return true; } static void add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode) { nir_foreach_function(f, nir) { if (f->impl) { nir_builder b; nir_builder_init(&b, f->impl); nir_foreach_block(block, f->impl) { add_const_offset_to_base_block(block, &b, mode); } } } } static bool remap_vs_attrs(nir_block *block, struct nir_shader_info *nir_info) { nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (intrin->intrinsic == nir_intrinsic_load_input) { /* Attributes come in a contiguous block, ordered by their * gl_vert_attrib value. That means we can compute the slot * number for an attribute by masking out the enabled attributes * before it and counting the bits. */ int attr = intrin->const_index[0]; int slot = _mesa_bitcount_64(nir_info->inputs_read & BITFIELD64_MASK(attr)); int dslot = _mesa_bitcount_64(nir_info->double_inputs_read & BITFIELD64_MASK(attr)); intrin->const_index[0] = 4 * (slot + dslot); } } return true; } static bool remap_inputs_with_vue_map(nir_block *block, const struct brw_vue_map *vue_map) { nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (intrin->intrinsic == nir_intrinsic_load_input || intrin->intrinsic == nir_intrinsic_load_per_vertex_input) { int vue_slot = vue_map->varying_to_slot[intrin->const_index[0]]; assert(vue_slot != -1); intrin->const_index[0] = vue_slot; } } return true; } static bool remap_patch_urb_offsets(nir_block *block, nir_builder *b, const struct brw_vue_map *vue_map) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); gl_shader_stage stage = b->shader->stage; if ((stage == MESA_SHADER_TESS_CTRL && is_output(intrin)) || (stage == MESA_SHADER_TESS_EVAL && is_input(intrin))) { int vue_slot = vue_map->varying_to_slot[intrin->const_index[0]]; assert(vue_slot != -1); intrin->const_index[0] = vue_slot; nir_src *vertex = nir_get_io_vertex_index_src(intrin); if (vertex) { nir_const_value *const_vertex = nir_src_as_const_value(*vertex); if (const_vertex) { intrin->const_index[0] += const_vertex->u32[0] * vue_map->num_per_vertex_slots; } else { b->cursor = nir_before_instr(&intrin->instr); /* Multiply by the number of per-vertex slots. */ nir_ssa_def *vertex_offset = nir_imul(b, nir_ssa_for_src(b, *vertex, 1), nir_imm_int(b, vue_map->num_per_vertex_slots)); /* Add it to the existing offset */ nir_src *offset = nir_get_io_offset_src(intrin); nir_ssa_def *total_offset = nir_iadd(b, vertex_offset, nir_ssa_for_src(b, *offset, 1)); nir_instr_rewrite_src(&intrin->instr, offset, nir_src_for_ssa(total_offset)); } } } } return true; } void brw_nir_lower_vs_inputs(nir_shader *nir, const struct gen_device_info *devinfo, bool is_scalar, bool use_legacy_snorm_formula, const uint8_t *vs_attrib_wa_flags) { /* Start with the location of the variable's base. */ foreach_list_typed(nir_variable, var, node, &nir->inputs) { var->data.driver_location = var->data.location; } /* Now use nir_lower_io to walk dereference chains. Attribute arrays are * loaded as one vec4 or dvec4 per element (or matrix column), depending on * whether it is a double-precision type or not. */ nir_lower_io(nir, nir_var_shader_in, type_size_vs_input); /* This pass needs actual constants */ nir_opt_constant_folding(nir); add_const_offset_to_base(nir, nir_var_shader_in); brw_nir_apply_attribute_workarounds(nir, use_legacy_snorm_formula, vs_attrib_wa_flags); if (is_scalar) { /* Finally, translate VERT_ATTRIB_* values into the actual registers. */ nir_foreach_function(function, nir) { if (function->impl) { nir_foreach_block(block, function->impl) { remap_vs_attrs(block, &nir->info); } } } } } void brw_nir_lower_vue_inputs(nir_shader *nir, bool is_scalar, const struct brw_vue_map *vue_map) { foreach_list_typed(nir_variable, var, node, &nir->inputs) { var->data.driver_location = var->data.location; } /* Inputs are stored in vec4 slots, so use type_size_vec4(). */ nir_lower_io(nir, nir_var_shader_in, type_size_vec4); if (is_scalar || nir->stage != MESA_SHADER_GEOMETRY) { /* This pass needs actual constants */ nir_opt_constant_folding(nir); add_const_offset_to_base(nir, nir_var_shader_in); nir_foreach_function(function, nir) { if (function->impl) { nir_foreach_block(block, function->impl) { remap_inputs_with_vue_map(block, vue_map); } } } } } void brw_nir_lower_tes_inputs(nir_shader *nir, const struct brw_vue_map *vue_map) { foreach_list_typed(nir_variable, var, node, &nir->inputs) { var->data.driver_location = var->data.location; } nir_lower_io(nir, nir_var_shader_in, type_size_vec4); /* This pass needs actual constants */ nir_opt_constant_folding(nir); add_const_offset_to_base(nir, nir_var_shader_in); nir_foreach_function(function, nir) { if (function->impl) { nir_builder b; nir_builder_init(&b, function->impl); nir_foreach_block(block, function->impl) { remap_patch_urb_offsets(block, &b, vue_map); } } } } void brw_nir_lower_fs_inputs(nir_shader *nir) { foreach_list_typed(nir_variable, var, node, &nir->inputs) { var->data.driver_location = var->data.location; } nir_lower_io(nir, nir_var_shader_in, type_size_vec4); /* This pass needs actual constants */ nir_opt_constant_folding(nir); add_const_offset_to_base(nir, nir_var_shader_in); } void brw_nir_lower_vue_outputs(nir_shader *nir, bool is_scalar) { if (is_scalar) { nir_assign_var_locations(&nir->outputs, &nir->num_outputs, VARYING_SLOT_VAR0, type_size_vec4_times_4); nir_lower_io(nir, nir_var_shader_out, type_size_vec4_times_4); } else { nir_foreach_variable(var, &nir->outputs) var->data.driver_location = var->data.location; nir_lower_io(nir, nir_var_shader_out, type_size_vec4); } } void brw_nir_lower_tcs_outputs(nir_shader *nir, const struct brw_vue_map *vue_map) { nir_foreach_variable(var, &nir->outputs) { var->data.driver_location = var->data.location; } nir_lower_io(nir, nir_var_shader_out, type_size_vec4); /* This pass needs actual constants */ nir_opt_constant_folding(nir); add_const_offset_to_base(nir, nir_var_shader_out); nir_foreach_function(function, nir) { if (function->impl) { nir_builder b; nir_builder_init(&b, function->impl); nir_foreach_block(block, function->impl) { remap_patch_urb_offsets(block, &b, vue_map); } } } } void brw_nir_lower_fs_outputs(nir_shader *nir) { nir_foreach_variable(var, &nir->outputs) { var->data.driver_location = SET_FIELD(var->data.index, BRW_NIR_FRAG_OUTPUT_INDEX) | SET_FIELD(var->data.location, BRW_NIR_FRAG_OUTPUT_LOCATION); } nir_lower_io(nir, nir_var_shader_out, type_size_dvec4); } void brw_nir_lower_cs_shared(nir_shader *nir) { nir_assign_var_locations(&nir->shared, &nir->num_shared, 0, type_size_scalar_bytes); nir_lower_io(nir, nir_var_shared, type_size_scalar_bytes); } #define OPT(pass, ...) ({ \ bool this_progress = false; \ NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \ if (this_progress) \ progress = true; \ this_progress; \ }) #define OPT_V(pass, ...) NIR_PASS_V(nir, pass, ##__VA_ARGS__) static nir_shader * nir_optimize(nir_shader *nir, bool is_scalar) { bool progress; do { progress = false; OPT_V(nir_lower_vars_to_ssa); if (is_scalar) { OPT(nir_lower_alu_to_scalar); } OPT(nir_copy_prop); if (is_scalar) { OPT(nir_lower_phis_to_scalar); } OPT(nir_copy_prop); OPT(nir_opt_dce); OPT(nir_opt_cse); OPT(nir_opt_peephole_select); OPT(nir_opt_algebraic); OPT(nir_opt_constant_folding); OPT(nir_opt_dead_cf); OPT(nir_opt_remove_phis); OPT(nir_opt_undef); OPT_V(nir_lower_doubles, nir_lower_drcp | nir_lower_dsqrt | nir_lower_drsq | nir_lower_dtrunc | nir_lower_dfloor | nir_lower_dceil | nir_lower_dfract | nir_lower_dround_even | nir_lower_dmod); OPT_V(nir_lower_double_pack); } while (progress); return nir; } /* Does some simple lowering and runs the standard suite of optimizations * * This is intended to be called more-or-less directly after you get the * shader out of GLSL or some other source. While it is geared towards i965, * it is not at all generator-specific except for the is_scalar flag. Even * there, it is safe to call with is_scalar = false for a shader that is * intended for the FS backend as long as nir_optimize is called again with * is_scalar = true to scalarize everything prior to code gen. */ nir_shader * brw_preprocess_nir(const struct brw_compiler *compiler, nir_shader *nir) { bool progress; /* Written by OPT and OPT_V */ (void)progress; const bool is_scalar = compiler->scalar_stage[nir->stage]; if (nir->stage == MESA_SHADER_GEOMETRY) OPT(nir_lower_gs_intrinsics); if (compiler->precise_trig) OPT(brw_nir_apply_trig_workarounds); static const nir_lower_tex_options tex_options = { .lower_txp = ~0, .lower_txf_offset = true, .lower_rect_offset = true, }; OPT(nir_lower_tex, &tex_options); OPT(nir_normalize_cubemap_coords); OPT(nir_lower_global_vars_to_local); OPT(nir_split_var_copies); nir = nir_optimize(nir, is_scalar); if (is_scalar) { OPT_V(nir_lower_load_const_to_scalar); } /* Lower a bunch of stuff */ OPT_V(nir_lower_var_copies); /* Get rid of split copies */ nir = nir_optimize(nir, is_scalar); OPT(nir_remove_dead_variables, nir_var_local); return nir; } /* Prepare the given shader for codegen * * This function is intended to be called right before going into the actual * backend and is highly backend-specific. Also, once this function has been * called on a shader, it will no longer be in SSA form so most optimizations * will not work. */ nir_shader * brw_postprocess_nir(nir_shader *nir, const struct gen_device_info *devinfo, bool is_scalar) { bool debug_enabled = (INTEL_DEBUG & intel_debug_flag_for_shader_stage(nir->stage)); bool progress; /* Written by OPT and OPT_V */ (void)progress; nir = nir_optimize(nir, is_scalar); if (devinfo->gen >= 6) { /* Try and fuse multiply-adds */ OPT(brw_nir_opt_peephole_ffma); } OPT(nir_opt_algebraic_late); OPT(nir_lower_locals_to_regs); OPT_V(nir_lower_to_source_mods); OPT(nir_copy_prop); OPT(nir_opt_dce); if (unlikely(debug_enabled)) { /* Re-index SSA defs so we print more sensible numbers. */ nir_foreach_function(function, nir) { if (function->impl) nir_index_ssa_defs(function->impl); } fprintf(stderr, "NIR (SSA form) for %s shader:\n", _mesa_shader_stage_to_string(nir->stage)); nir_print_shader(nir, stderr); } OPT_V(nir_convert_from_ssa, true); if (!is_scalar) { OPT_V(nir_move_vec_src_uses_to_dest); OPT(nir_lower_vec_to_movs); } /* This is the last pass we run before we start emitting stuff. It * determines when we need to insert boolean resolves on Gen <= 5. We * run it last because it stashes data in instr->pass_flags and we don't * want that to be squashed by other NIR passes. */ if (devinfo->gen <= 5) brw_nir_analyze_boolean_resolves(nir); nir_sweep(nir); if (unlikely(debug_enabled)) { fprintf(stderr, "NIR (final form) for %s shader:\n", _mesa_shader_stage_to_string(nir->stage)); nir_print_shader(nir, stderr); } return nir; } nir_shader * brw_nir_apply_sampler_key(nir_shader *nir, const struct gen_device_info *devinfo, const struct brw_sampler_prog_key_data *key_tex, bool is_scalar) { nir_lower_tex_options tex_options = { 0 }; /* Iron Lake and prior require lowering of all rectangle textures */ if (devinfo->gen < 6) tex_options.lower_rect = true; /* Prior to Broadwell, our hardware can't actually do GL_CLAMP */ if (devinfo->gen < 8) { tex_options.saturate_s = key_tex->gl_clamp_mask[0]; tex_options.saturate_t = key_tex->gl_clamp_mask[1]; tex_options.saturate_r = key_tex->gl_clamp_mask[2]; } /* Prior to Haswell, we have to fake texture swizzle */ for (unsigned s = 0; s < MAX_SAMPLERS; s++) { if (key_tex->swizzles[s] == SWIZZLE_NOOP) continue; tex_options.swizzle_result |= (1 << s); for (unsigned c = 0; c < 4; c++) tex_options.swizzles[s][c] = GET_SWZ(key_tex->swizzles[s], c); } tex_options.lower_y_uv_external = key_tex->y_uv_image_mask; tex_options.lower_y_u_v_external = key_tex->y_u_v_image_mask; tex_options.lower_yx_xuxv_external = key_tex->yx_xuxv_image_mask; if (nir_lower_tex(nir, &tex_options)) { nir_validate_shader(nir); nir = nir_optimize(nir, is_scalar); } return nir; } enum brw_reg_type brw_type_for_nir_type(nir_alu_type type) { switch (type) { case nir_type_uint: case nir_type_uint32: return BRW_REGISTER_TYPE_UD; case nir_type_bool: case nir_type_int: case nir_type_bool32: case nir_type_int32: return BRW_REGISTER_TYPE_D; case nir_type_float: case nir_type_float32: return BRW_REGISTER_TYPE_F; case nir_type_float64: return BRW_REGISTER_TYPE_DF; case nir_type_int64: case nir_type_uint64: /* TODO we should only see these in moves, so for now it's ok, but when * we add actual 64-bit integer support we should fix this. */ return BRW_REGISTER_TYPE_DF; default: unreachable("unknown type"); } return BRW_REGISTER_TYPE_F; } /* Returns the glsl_base_type corresponding to a nir_alu_type. * This is used by both brw_vec4_nir and brw_fs_nir. */ enum glsl_base_type brw_glsl_base_type_for_nir_type(nir_alu_type type) { switch (type) { case nir_type_float: case nir_type_float32: return GLSL_TYPE_FLOAT; case nir_type_float64: return GLSL_TYPE_DOUBLE; case nir_type_int: case nir_type_int32: return GLSL_TYPE_INT; case nir_type_uint: case nir_type_uint32: return GLSL_TYPE_UINT; default: unreachable("bad type"); } }