/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file brw_fs_visitor.cpp * * This file supports generating the FS LIR from the GLSL IR. The LIR * makes it easier to do backend-specific optimizations than doing so * in the GLSL IR or in the native code. */ #include #include "main/macros.h" #include "main/shaderobj.h" #include "program/prog_parameter.h" #include "program/prog_print.h" #include "program/prog_optimize.h" #include "util/register_allocate.h" #include "program/hash_table.h" #include "brw_context.h" #include "brw_eu.h" #include "brw_wm.h" #include "brw_vec4.h" #include "brw_fs.h" #include "main/uniforms.h" #include "glsl/glsl_types.h" #include "glsl/ir_optimization.h" #include "program/sampler.h" fs_reg * fs_visitor::emit_vs_system_value(int location) { fs_reg *reg = new(this->mem_ctx) fs_reg(ATTR, VERT_ATTRIB_MAX, BRW_REGISTER_TYPE_D); brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data; switch (location) { case SYSTEM_VALUE_BASE_VERTEX: reg->reg_offset = 0; vs_prog_data->uses_vertexid = true; break; case SYSTEM_VALUE_VERTEX_ID: case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE: reg->reg_offset = 2; vs_prog_data->uses_vertexid = true; break; case SYSTEM_VALUE_INSTANCE_ID: reg->reg_offset = 3; vs_prog_data->uses_instanceid = true; break; default: unreachable("not reached"); } return reg; } void fs_visitor::visit(ir_variable *ir) { fs_reg *reg = NULL; if (variable_storage(ir)) return; if (ir->data.mode == ir_var_shader_in) { assert(ir->data.location != -1); if (stage == MESA_SHADER_VERTEX) { reg = new(this->mem_ctx) fs_reg(ATTR, ir->data.location, brw_type_for_base_type(ir->type->get_scalar_type())); } else if (ir->data.location == VARYING_SLOT_POS) { reg = emit_fragcoord_interpolation(ir->data.pixel_center_integer, ir->data.origin_upper_left); } else if (ir->data.location == VARYING_SLOT_FACE) { reg = emit_frontfacing_interpolation(); } else { reg = new(this->mem_ctx) fs_reg(vgrf(ir->type)); emit_general_interpolation(*reg, ir->name, ir->type, (glsl_interp_qualifier) ir->data.interpolation, ir->data.location, ir->data.centroid, ir->data.sample); } assert(reg); hash_table_insert(this->variable_ht, reg, ir); return; } else if (ir->data.mode == ir_var_shader_out) { reg = new(this->mem_ctx) fs_reg(vgrf(ir->type)); if (stage == MESA_SHADER_VERTEX) { int vector_elements = ir->type->is_array() ? ir->type->fields.array->vector_elements : ir->type->vector_elements; for (int i = 0; i < (type_size(ir->type) + 3) / 4; i++) { int output = ir->data.location + i; this->outputs[output] = *reg; this->outputs[output].reg_offset = i * 4; this->output_components[output] = vector_elements; } } else if (ir->data.index > 0) { assert(ir->data.location == FRAG_RESULT_DATA0); assert(ir->data.index == 1); this->dual_src_output = *reg; this->do_dual_src = true; } else if (ir->data.location == FRAG_RESULT_COLOR) { /* Writing gl_FragColor outputs to all color regions. */ assert(stage == MESA_SHADER_FRAGMENT); brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) { this->outputs[i] = *reg; this->output_components[i] = 4; } } else if (ir->data.location == FRAG_RESULT_DEPTH) { this->frag_depth = *reg; } else if (ir->data.location == FRAG_RESULT_SAMPLE_MASK) { this->sample_mask = *reg; } else { /* gl_FragData or a user-defined FS output */ assert(ir->data.location >= FRAG_RESULT_DATA0 && ir->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS); int vector_elements = ir->type->is_array() ? ir->type->fields.array->vector_elements : ir->type->vector_elements; /* General color output. */ for (unsigned int i = 0; i < MAX2(1, ir->type->length); i++) { int output = ir->data.location - FRAG_RESULT_DATA0 + i; this->outputs[output] = offset(*reg, vector_elements * i); this->output_components[output] = vector_elements; } } } else if (ir->data.mode == ir_var_uniform) { int param_index = uniforms; /* Thanks to the lower_ubo_reference pass, we will see only * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO * variables, so no need for them to be in variable_ht. * * Some uniforms, such as samplers and atomic counters, have no actual * storage, so we should ignore them. */ if (ir->is_in_uniform_block() || type_size(ir->type) == 0) return; if (dispatch_width == 16) { if (!variable_storage(ir)) { fail("Failed to find uniform '%s' in SIMD16\n", ir->name); } return; } param_size[param_index] = type_size(ir->type); if (!strncmp(ir->name, "gl_", 3)) { setup_builtin_uniform_values(ir); } else { setup_uniform_values(ir); } reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index); reg->type = brw_type_for_base_type(ir->type); } else if (ir->data.mode == ir_var_system_value) { switch (ir->data.location) { case SYSTEM_VALUE_BASE_VERTEX: case SYSTEM_VALUE_VERTEX_ID: case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE: case SYSTEM_VALUE_INSTANCE_ID: reg = emit_vs_system_value(ir->data.location); break; case SYSTEM_VALUE_SAMPLE_POS: reg = emit_samplepos_setup(); break; case SYSTEM_VALUE_SAMPLE_ID: reg = emit_sampleid_setup(); break; case SYSTEM_VALUE_SAMPLE_MASK_IN: assert(brw->gen >= 7); reg = new(mem_ctx) fs_reg(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0), BRW_REGISTER_TYPE_D)); break; } } if (!reg) reg = new(this->mem_ctx) fs_reg(vgrf(ir->type)); hash_table_insert(this->variable_ht, reg, ir); } void fs_visitor::visit(ir_dereference_variable *ir) { fs_reg *reg = variable_storage(ir->var); if (!reg) { fail("Failed to find variable storage for %s\n", ir->var->name); this->result = fs_reg(reg_null_d); return; } this->result = *reg; } void fs_visitor::visit(ir_dereference_record *ir) { const glsl_type *struct_type = ir->record->type; ir->record->accept(this); unsigned int off = 0; for (unsigned int i = 0; i < struct_type->length; i++) { if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0) break; off += type_size(struct_type->fields.structure[i].type); } this->result = offset(this->result, off); this->result.type = brw_type_for_base_type(ir->type); } void fs_visitor::visit(ir_dereference_array *ir) { ir_constant *constant_index; fs_reg src; int element_size = type_size(ir->type); constant_index = ir->array_index->as_constant(); ir->array->accept(this); src = this->result; src.type = brw_type_for_base_type(ir->type); if (constant_index) { if (src.file == ATTR) { /* Attribute arrays get loaded as one vec4 per element. In that case * offset the source register. */ src.reg += constant_index->value.i[0]; } else { assert(src.file == UNIFORM || src.file == GRF || src.file == HW_REG); src = offset(src, constant_index->value.i[0] * element_size); } } else { /* Variable index array dereference. We attach the variable index * component to the reg as a pointer to a register containing the * offset. Currently only uniform arrays are supported in this patch, * and that reladdr pointer is resolved by * move_uniform_array_access_to_pull_constants(). All other array types * are lowered by lower_variable_index_to_cond_assign(). */ ir->array_index->accept(this); fs_reg index_reg; index_reg = vgrf(glsl_type::int_type); emit(BRW_OPCODE_MUL, index_reg, this->result, fs_reg(element_size)); if (src.reladdr) { emit(BRW_OPCODE_ADD, index_reg, *src.reladdr, index_reg); } src.reladdr = ralloc(mem_ctx, fs_reg); memcpy(src.reladdr, &index_reg, sizeof(index_reg)); } this->result = src; } fs_inst * fs_visitor::emit_lrp(const fs_reg &dst, const fs_reg &x, const fs_reg &y, const fs_reg &a) { if (brw->gen < 6) { /* We can't use the LRP instruction. Emit x*(1-a) + y*a. */ fs_reg y_times_a = vgrf(glsl_type::float_type); fs_reg one_minus_a = vgrf(glsl_type::float_type); fs_reg x_times_one_minus_a = vgrf(glsl_type::float_type); emit(MUL(y_times_a, y, a)); fs_reg negative_a = a; negative_a.negate = !a.negate; emit(ADD(one_minus_a, negative_a, fs_reg(1.0f))); emit(MUL(x_times_one_minus_a, x, one_minus_a)); return emit(ADD(dst, x_times_one_minus_a, y_times_a)); } else { /* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so * we need to reorder the operands. */ return emit(LRP(dst, a, y, x)); } } void fs_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, const fs_reg &dst, const fs_reg &src0, const fs_reg &src1) { assert(conditionalmod == BRW_CONDITIONAL_GE || conditionalmod == BRW_CONDITIONAL_L); fs_inst *inst; if (brw->gen >= 6) { inst = emit(BRW_OPCODE_SEL, dst, src0, src1); inst->conditional_mod = conditionalmod; } else { emit(CMP(reg_null_d, src0, src1, conditionalmod)); inst = emit(BRW_OPCODE_SEL, dst, src0, src1); inst->predicate = BRW_PREDICATE_NORMAL; } } bool fs_visitor::try_emit_saturate(ir_expression *ir) { if (ir->operation != ir_unop_saturate) return false; ir_rvalue *sat_val = ir->operands[0]; fs_inst *pre_inst = (fs_inst *) this->instructions.get_tail(); sat_val->accept(this); fs_reg src = this->result; fs_inst *last_inst = (fs_inst *) this->instructions.get_tail(); /* If the last instruction from our accept() generated our * src, just set the saturate flag instead of emmitting a separate mov. */ fs_inst *modify = get_instruction_generating_reg(pre_inst, last_inst, src); if (modify && modify->regs_written == modify->dst.width / 8 && modify->can_do_saturate()) { modify->saturate = true; this->result = src; return true; } return false; } bool fs_visitor::try_emit_line(ir_expression *ir) { /* LINE's src0 must be of type float. */ if (ir->type != glsl_type::float_type) return false; ir_rvalue *nonmul = ir->operands[1]; ir_expression *mul = ir->operands[0]->as_expression(); if (!mul || mul->operation != ir_binop_mul) { nonmul = ir->operands[0]; mul = ir->operands[1]->as_expression(); if (!mul || mul->operation != ir_binop_mul) return false; } ir_constant *const_add = nonmul->as_constant(); if (!const_add) return false; int add_operand_vf = brw_float_to_vf(const_add->value.f[0]); if (add_operand_vf == -1) return false; ir_rvalue *non_const_mul = mul->operands[1]; ir_constant *const_mul = mul->operands[0]->as_constant(); if (!const_mul) { const_mul = mul->operands[1]->as_constant(); if (!const_mul) return false; non_const_mul = mul->operands[0]; } int mul_operand_vf = brw_float_to_vf(const_mul->value.f[0]); if (mul_operand_vf == -1) return false; non_const_mul->accept(this); fs_reg src1 = this->result; fs_reg src0 = vgrf(ir->type); emit(BRW_OPCODE_MOV, src0, fs_reg((uint8_t)mul_operand_vf, 0, 0, (uint8_t)add_operand_vf)); this->result = vgrf(ir->type); emit(BRW_OPCODE_LINE, this->result, src0, src1); return true; } bool fs_visitor::try_emit_mad(ir_expression *ir) { /* 3-src instructions were introduced in gen6. */ if (brw->gen < 6) return false; /* MAD can only handle floating-point data. */ if (ir->type != glsl_type::float_type) return false; ir_rvalue *nonmul; ir_expression *mul; bool mul_negate, mul_abs; for (int i = 0; i < 2; i++) { mul_negate = false; mul_abs = false; mul = ir->operands[i]->as_expression(); nonmul = ir->operands[1 - i]; if (mul && mul->operation == ir_unop_abs) { mul = mul->operands[0]->as_expression(); mul_abs = true; } else if (mul && mul->operation == ir_unop_neg) { mul = mul->operands[0]->as_expression(); mul_negate = true; } if (mul && mul->operation == ir_binop_mul) break; } if (!mul || mul->operation != ir_binop_mul) return false; nonmul->accept(this); fs_reg src0 = this->result; mul->operands[0]->accept(this); fs_reg src1 = this->result; src1.negate ^= mul_negate; src1.abs = mul_abs; if (mul_abs) src1.negate = false; mul->operands[1]->accept(this); fs_reg src2 = this->result; src2.abs = mul_abs; if (mul_abs) src2.negate = false; this->result = vgrf(ir->type); emit(BRW_OPCODE_MAD, this->result, src0, src1, src2); return true; } bool fs_visitor::try_emit_b2f_of_comparison(ir_expression *ir) { /* On platforms that do not natively generate 0u and ~0u for Boolean * results, b2f expressions that look like * * f = b2f(expr cmp 0) * * will generate better code by pretending the expression is * * f = ir_triop_csel(0.0, 1.0, expr cmp 0) * * This is because the last instruction of "expr" can generate the * condition code for the "cmp 0". This avoids having to do the "-(b & 1)" * trick to generate 0u or ~0u for the Boolean result. This means code like * * mov(16) g16<1>F 1F * mul.ge.f0(16) null g6<8,8,1>F g14<8,8,1>F * (+f0) sel(16) m6<1>F g16<8,8,1>F 0F * * will be generated instead of * * mul(16) g2<1>F g12<8,8,1>F g4<8,8,1>F * cmp.ge.f0(16) g2<1>D g4<8,8,1>F 0F * and(16) g4<1>D g2<8,8,1>D 1D * and(16) m6<1>D -g4<8,8,1>D 0x3f800000UD * * When the comparison is != 0.0 using the knowledge that the false case * already results in zero would allow better code generation by possibly * avoiding a load-immediate instruction. */ ir_expression *cmp = ir->operands[0]->as_expression(); if (cmp == NULL) return false; if (cmp->operation == ir_binop_nequal) { for (unsigned i = 0; i < 2; i++) { ir_constant *c = cmp->operands[i]->as_constant(); if (c == NULL || !c->is_zero()) continue; ir_expression *expr = cmp->operands[i ^ 1]->as_expression(); if (expr != NULL) { fs_reg op[2]; for (unsigned j = 0; j < 2; j++) { cmp->operands[j]->accept(this); op[j] = this->result; resolve_ud_negate(&op[j]); } emit_bool_to_cond_code_of_reg(cmp, op); /* In this case we know when the condition is true, op[i ^ 1] * contains zero. Invert the predicate, use op[i ^ 1] as src0, * and immediate 1.0f as src1. */ this->result = vgrf(ir->type); op[i ^ 1].type = BRW_REGISTER_TYPE_F; fs_inst *inst = emit(SEL(this->result, op[i ^ 1], fs_reg(1.0f))); inst->predicate = BRW_PREDICATE_NORMAL; inst->predicate_inverse = true; return true; } } } emit_bool_to_cond_code(cmp); fs_reg temp = vgrf(ir->type); emit(MOV(temp, fs_reg(1.0f))); this->result = vgrf(ir->type); fs_inst *inst = emit(SEL(this->result, temp, fs_reg(0.0f))); inst->predicate = BRW_PREDICATE_NORMAL; return true; } static int pack_pixel_offset(float x) { /* Clamp upper end of the range to +7/16. See explanation in non-constant * offset case below. */ int n = MIN2((int)(x * 16), 7); return n & 0xf; } void fs_visitor::emit_interpolate_expression(ir_expression *ir) { /* in SIMD16 mode, the pixel interpolator returns coords interleaved * 8 channels at a time, same as the barycentric coords presented in * the FS payload. this requires a bit of extra work to support. */ no16("interpolate_at_* not yet supported in SIMD16 mode."); assert(stage == MESA_SHADER_FRAGMENT); brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; ir_dereference * deref = ir->operands[0]->as_dereference(); ir_swizzle * swiz = NULL; if (!deref) { /* the api does not allow a swizzle here, but the varying packing code * may have pushed one into here. */ swiz = ir->operands[0]->as_swizzle(); assert(swiz); deref = swiz->val->as_dereference(); } assert(deref); ir_variable * var = deref->variable_referenced(); assert(var); /* 1. collect interpolation factors */ fs_reg dst_xy = vgrf(glsl_type::get_instance(ir->type->base_type, 2, 1)); /* for most messages, we need one reg of ignored data; the hardware requires mlen==1 * even when there is no payload. in the per-slot offset case, we'll replace this with * the proper source data. */ fs_reg src = vgrf(glsl_type::float_type); int mlen = 1; /* one reg unless overriden */ int reg_width = dispatch_width / 8; fs_inst *inst; switch (ir->operation) { case ir_unop_interpolate_at_centroid: inst = emit(FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_xy, src, fs_reg(0u)); break; case ir_binop_interpolate_at_sample: { ir_constant *sample_num = ir->operands[1]->as_constant(); assert(sample_num || !"nonconstant sample number should have been lowered."); unsigned msg_data = sample_num->value.i[0] << 4; inst = emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src, fs_reg(msg_data)); break; } case ir_binop_interpolate_at_offset: { ir_constant *const_offset = ir->operands[1]->as_constant(); if (const_offset) { unsigned msg_data = pack_pixel_offset(const_offset->value.f[0]) | (pack_pixel_offset(const_offset->value.f[1]) << 4); inst = emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src, fs_reg(msg_data)); } else { /* pack the operands: hw wants offsets as 4 bit signed ints */ ir->operands[1]->accept(this); src = vgrf(glsl_type::ivec2_type); fs_reg src2 = src; for (int i = 0; i < 2; i++) { fs_reg temp = vgrf(glsl_type::float_type); emit(MUL(temp, this->result, fs_reg(16.0f))); emit(MOV(src2, temp)); /* float to int */ /* Clamp the upper end of the range to +7/16. ARB_gpu_shader5 requires * that we support a maximum offset of +0.5, which isn't representable * in a S0.4 value -- if we didn't clamp it, we'd end up with -8/16, * which is the opposite of what the shader author wanted. * * This is legal due to ARB_gpu_shader5's quantization rules: * * "Not all values of may be supported; x and y offsets may * be rounded to fixed-point values with the number of fraction bits * given by the implementation-dependent constant * FRAGMENT_INTERPOLATION_OFFSET_BITS" */ fs_inst *inst = emit(BRW_OPCODE_SEL, src2, src2, fs_reg(7)); inst->conditional_mod = BRW_CONDITIONAL_L; /* min(src2, 7) */ src2 = offset(src2, 1); this->result = offset(this->result, 1); } mlen = 2 * reg_width; inst = emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src, fs_reg(0u)); } break; } default: unreachable("not reached"); } inst->mlen = mlen; inst->regs_written = 2 * reg_width; /* 2 floats per slot returned */ inst->pi_noperspective = var->determine_interpolation_mode(key->flat_shade) == INTERP_QUALIFIER_NOPERSPECTIVE; /* 2. emit linterp */ fs_reg res = vgrf(ir->type); this->result = res; for (int i = 0; i < ir->type->vector_elements; i++) { int ch = swiz ? ((*(int *)&swiz->mask) >> 2*i) & 3 : i; emit(FS_OPCODE_LINTERP, res, dst_xy, fs_reg(interp_reg(var->data.location, ch))); res = offset(res, 1); } } void fs_visitor::visit(ir_expression *ir) { unsigned int operand; fs_reg op[3], temp; fs_inst *inst; struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key; assert(ir->get_num_operands() <= 3); if (try_emit_saturate(ir)) return; /* Deal with the real oddball stuff first */ switch (ir->operation) { case ir_binop_add: if (brw->gen <= 5 && try_emit_line(ir)) return; if (try_emit_mad(ir)) return; break; case ir_triop_csel: ir->operands[1]->accept(this); op[1] = this->result; ir->operands[2]->accept(this); op[2] = this->result; emit_bool_to_cond_code(ir->operands[0]); this->result = vgrf(ir->type); inst = emit(SEL(this->result, op[1], op[2])); inst->predicate = BRW_PREDICATE_NORMAL; return; case ir_unop_b2f: if (brw->gen <= 5 && try_emit_b2f_of_comparison(ir)) return; break; case ir_unop_interpolate_at_centroid: case ir_binop_interpolate_at_offset: case ir_binop_interpolate_at_sample: emit_interpolate_expression(ir); return; default: break; } for (operand = 0; operand < ir->get_num_operands(); operand++) { ir->operands[operand]->accept(this); if (this->result.file == BAD_FILE) { fail("Failed to get tree for expression operand:\n"); ir->operands[operand]->fprint(stderr); fprintf(stderr, "\n"); } assert(this->result.file == GRF || this->result.file == UNIFORM || this->result.file == ATTR); op[operand] = this->result; /* Matrix expression operands should have been broken down to vector * operations already. */ assert(!ir->operands[operand]->type->is_matrix()); /* And then those vector operands should have been broken down to scalar. */ assert(!ir->operands[operand]->type->is_vector()); } /* Storage for our result. If our result goes into an assignment, it will * just get copy-propagated out, so no worries. */ this->result = vgrf(ir->type); switch (ir->operation) { case ir_unop_logic_not: emit(NOT(this->result, op[0])); break; case ir_unop_neg: op[0].negate = !op[0].negate; emit(MOV(this->result, op[0])); break; case ir_unop_abs: op[0].abs = true; op[0].negate = false; emit(MOV(this->result, op[0])); break; case ir_unop_sign: if (ir->type->is_float()) { /* AND(val, 0x80000000) gives the sign bit. * * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not * zero. */ emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ)); op[0].type = BRW_REGISTER_TYPE_UD; this->result.type = BRW_REGISTER_TYPE_UD; emit(AND(this->result, op[0], fs_reg(0x80000000u))); inst = emit(OR(this->result, this->result, fs_reg(0x3f800000u))); inst->predicate = BRW_PREDICATE_NORMAL; this->result.type = BRW_REGISTER_TYPE_F; } else { /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1). * -> non-negative val generates 0x00000000. * Predicated OR sets 1 if val is positive. */ emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G)); emit(ASR(this->result, op[0], fs_reg(31))); inst = emit(OR(this->result, this->result, fs_reg(1))); inst->predicate = BRW_PREDICATE_NORMAL; } break; case ir_unop_rcp: emit_math(SHADER_OPCODE_RCP, this->result, op[0]); break; case ir_unop_exp2: emit_math(SHADER_OPCODE_EXP2, this->result, op[0]); break; case ir_unop_log2: emit_math(SHADER_OPCODE_LOG2, this->result, op[0]); break; case ir_unop_exp: case ir_unop_log: unreachable("not reached: should be handled by ir_explog_to_explog2"); case ir_unop_sin: emit_math(SHADER_OPCODE_SIN, this->result, op[0]); break; case ir_unop_cos: emit_math(SHADER_OPCODE_COS, this->result, op[0]); break; case ir_unop_dFdx: /* Select one of the two opcodes based on the glHint value. */ if (fs_key->high_quality_derivatives) emit(FS_OPCODE_DDX_FINE, this->result, op[0]); else emit(FS_OPCODE_DDX_COARSE, this->result, op[0]); break; case ir_unop_dFdx_coarse: emit(FS_OPCODE_DDX_COARSE, this->result, op[0]); break; case ir_unop_dFdx_fine: emit(FS_OPCODE_DDX_FINE, this->result, op[0]); break; case ir_unop_dFdy: /* Select one of the two opcodes based on the glHint value. */ if (fs_key->high_quality_derivatives) emit(FS_OPCODE_DDY_FINE, result, op[0], fs_reg(fs_key->render_to_fbo)); else emit(FS_OPCODE_DDY_COARSE, result, op[0], fs_reg(fs_key->render_to_fbo)); break; case ir_unop_dFdy_coarse: emit(FS_OPCODE_DDY_COARSE, result, op[0], fs_reg(fs_key->render_to_fbo)); break; case ir_unop_dFdy_fine: emit(FS_OPCODE_DDY_FINE, result, op[0], fs_reg(fs_key->render_to_fbo)); break; case ir_binop_add: emit(ADD(this->result, op[0], op[1])); break; case ir_binop_sub: unreachable("not reached: should be handled by ir_sub_to_add_neg"); case ir_binop_mul: if (brw->gen < 8 && ir->type->is_integer()) { /* For integer multiplication, the MUL uses the low 16 bits * of one of the operands (src0 on gen6, src1 on gen7). The * MACH accumulates in the contribution of the upper 16 bits * of that operand. */ if (ir->operands[0]->is_uint16_constant()) { if (brw->gen < 7) emit(MUL(this->result, op[0], op[1])); else emit(MUL(this->result, op[1], op[0])); } else if (ir->operands[1]->is_uint16_constant()) { if (brw->gen < 7) emit(MUL(this->result, op[1], op[0])); else emit(MUL(this->result, op[0], op[1])); } else { if (brw->gen >= 7) no16("SIMD16 explicit accumulator operands unsupported\n"); struct brw_reg acc = retype(brw_acc_reg(dispatch_width), this->result.type); emit(MUL(acc, op[0], op[1])); emit(MACH(reg_null_d, op[0], op[1])); emit(MOV(this->result, fs_reg(acc))); } } else { emit(MUL(this->result, op[0], op[1])); } break; case ir_binop_imul_high: { if (brw->gen == 7) no16("SIMD16 explicit accumulator operands unsupported\n"); struct brw_reg acc = retype(brw_acc_reg(dispatch_width), this->result.type); fs_inst *mul = emit(MUL(acc, op[0], op[1])); emit(MACH(this->result, op[0], op[1])); /* Until Gen8, integer multiplies read 32-bits from one source, and * 16-bits from the other, and relying on the MACH instruction to * generate the high bits of the result. * * On Gen8, the multiply instruction does a full 32x32-bit multiply, * but in order to do a 64x64-bit multiply we have to simulate the * previous behavior and then use a MACH instruction. * * FINISHME: Don't use source modifiers on src1. */ if (brw->gen >= 8) { assert(mul->src[1].type == BRW_REGISTER_TYPE_D || mul->src[1].type == BRW_REGISTER_TYPE_UD); if (mul->src[1].type == BRW_REGISTER_TYPE_D) { mul->src[1].type = BRW_REGISTER_TYPE_W; } else { mul->src[1].type = BRW_REGISTER_TYPE_UW; } } break; } case ir_binop_div: /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */ assert(ir->type->is_integer()); emit_math(SHADER_OPCODE_INT_QUOTIENT, this->result, op[0], op[1]); break; case ir_binop_carry: { if (brw->gen == 7) no16("SIMD16 explicit accumulator operands unsupported\n"); struct brw_reg acc = retype(brw_acc_reg(dispatch_width), BRW_REGISTER_TYPE_UD); emit(ADDC(reg_null_ud, op[0], op[1])); emit(MOV(this->result, fs_reg(acc))); break; } case ir_binop_borrow: { if (brw->gen == 7) no16("SIMD16 explicit accumulator operands unsupported\n"); struct brw_reg acc = retype(brw_acc_reg(dispatch_width), BRW_REGISTER_TYPE_UD); emit(SUBB(reg_null_ud, op[0], op[1])); emit(MOV(this->result, fs_reg(acc))); break; } case ir_binop_mod: /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */ assert(ir->type->is_integer()); emit_math(SHADER_OPCODE_INT_REMAINDER, this->result, op[0], op[1]); break; case ir_binop_less: case ir_binop_greater: case ir_binop_lequal: case ir_binop_gequal: case ir_binop_equal: case ir_binop_all_equal: case ir_binop_nequal: case ir_binop_any_nequal: if (brw->gen <= 5) { resolve_bool_comparison(ir->operands[0], &op[0]); resolve_bool_comparison(ir->operands[1], &op[1]); } emit(CMP(this->result, op[0], op[1], brw_conditional_for_comparison(ir->operation))); break; case ir_binop_logic_xor: emit(XOR(this->result, op[0], op[1])); break; case ir_binop_logic_or: emit(OR(this->result, op[0], op[1])); break; case ir_binop_logic_and: emit(AND(this->result, op[0], op[1])); break; case ir_binop_dot: case ir_unop_any: unreachable("not reached: should be handled by brw_fs_channel_expressions"); case ir_unop_noise: unreachable("not reached: should be handled by lower_noise"); case ir_quadop_vector: unreachable("not reached: should be handled by lower_quadop_vector"); case ir_binop_vector_extract: unreachable("not reached: should be handled by lower_vec_index_to_cond_assign()"); case ir_triop_vector_insert: unreachable("not reached: should be handled by lower_vector_insert()"); case ir_binop_ldexp: unreachable("not reached: should be handled by ldexp_to_arith()"); case ir_unop_sqrt: emit_math(SHADER_OPCODE_SQRT, this->result, op[0]); break; case ir_unop_rsq: emit_math(SHADER_OPCODE_RSQ, this->result, op[0]); break; case ir_unop_bitcast_i2f: case ir_unop_bitcast_u2f: op[0].type = BRW_REGISTER_TYPE_F; this->result = op[0]; break; case ir_unop_i2u: case ir_unop_bitcast_f2u: op[0].type = BRW_REGISTER_TYPE_UD; this->result = op[0]; break; case ir_unop_u2i: case ir_unop_bitcast_f2i: op[0].type = BRW_REGISTER_TYPE_D; this->result = op[0]; break; case ir_unop_i2f: case ir_unop_u2f: case ir_unop_f2i: case ir_unop_f2u: emit(MOV(this->result, op[0])); break; case ir_unop_b2i: emit(AND(this->result, op[0], fs_reg(1))); break; case ir_unop_b2f: if (brw->gen <= 5) { resolve_bool_comparison(ir->operands[0], &op[0]); } op[0].type = BRW_REGISTER_TYPE_D; this->result.type = BRW_REGISTER_TYPE_D; emit(AND(this->result, op[0], fs_reg(0x3f800000u))); this->result.type = BRW_REGISTER_TYPE_F; break; case ir_unop_f2b: emit(CMP(this->result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ)); break; case ir_unop_i2b: emit(CMP(this->result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ)); break; case ir_unop_trunc: emit(RNDZ(this->result, op[0])); break; case ir_unop_ceil: { fs_reg tmp = vgrf(ir->type); op[0].negate = !op[0].negate; emit(RNDD(tmp, op[0])); tmp.negate = true; emit(MOV(this->result, tmp)); } break; case ir_unop_floor: emit(RNDD(this->result, op[0])); break; case ir_unop_fract: emit(FRC(this->result, op[0])); break; case ir_unop_round_even: emit(RNDE(this->result, op[0])); break; case ir_binop_min: case ir_binop_max: resolve_ud_negate(&op[0]); resolve_ud_negate(&op[1]); emit_minmax(ir->operation == ir_binop_min ? BRW_CONDITIONAL_L : BRW_CONDITIONAL_GE, this->result, op[0], op[1]); break; case ir_unop_pack_snorm_2x16: case ir_unop_pack_snorm_4x8: case ir_unop_pack_unorm_2x16: case ir_unop_pack_unorm_4x8: case ir_unop_unpack_snorm_2x16: case ir_unop_unpack_snorm_4x8: case ir_unop_unpack_unorm_2x16: case ir_unop_unpack_unorm_4x8: case ir_unop_unpack_half_2x16: case ir_unop_pack_half_2x16: unreachable("not reached: should be handled by lower_packing_builtins"); case ir_unop_unpack_half_2x16_split_x: emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, this->result, op[0]); break; case ir_unop_unpack_half_2x16_split_y: emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, this->result, op[0]); break; case ir_binop_pow: emit_math(SHADER_OPCODE_POW, this->result, op[0], op[1]); break; case ir_unop_bitfield_reverse: emit(BFREV(this->result, op[0])); break; case ir_unop_bit_count: emit(CBIT(this->result, op[0])); break; case ir_unop_find_msb: temp = vgrf(glsl_type::uint_type); emit(FBH(temp, op[0])); /* FBH counts from the MSB side, while GLSL's findMSB() wants the count * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then * subtract the result from 31 to convert the MSB count into an LSB count. */ /* FBH only supports UD type for dst, so use a MOV to convert UD to D. */ emit(MOV(this->result, temp)); emit(CMP(reg_null_d, this->result, fs_reg(-1), BRW_CONDITIONAL_NZ)); temp.negate = true; inst = emit(ADD(this->result, temp, fs_reg(31))); inst->predicate = BRW_PREDICATE_NORMAL; break; case ir_unop_find_lsb: emit(FBL(this->result, op[0])); break; case ir_unop_saturate: inst = emit(MOV(this->result, op[0])); inst->saturate = true; break; case ir_triop_bitfield_extract: /* Note that the instruction's argument order is reversed from GLSL * and the IR. */ emit(BFE(this->result, op[2], op[1], op[0])); break; case ir_binop_bfm: emit(BFI1(this->result, op[0], op[1])); break; case ir_triop_bfi: emit(BFI2(this->result, op[0], op[1], op[2])); break; case ir_quadop_bitfield_insert: unreachable("not reached: should be handled by " "lower_instructions::bitfield_insert_to_bfm_bfi"); case ir_unop_bit_not: emit(NOT(this->result, op[0])); break; case ir_binop_bit_and: emit(AND(this->result, op[0], op[1])); break; case ir_binop_bit_xor: emit(XOR(this->result, op[0], op[1])); break; case ir_binop_bit_or: emit(OR(this->result, op[0], op[1])); break; case ir_binop_lshift: emit(SHL(this->result, op[0], op[1])); break; case ir_binop_rshift: if (ir->type->base_type == GLSL_TYPE_INT) emit(ASR(this->result, op[0], op[1])); else emit(SHR(this->result, op[0], op[1])); break; case ir_binop_pack_half_2x16_split: emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, this->result, op[0], op[1]); break; case ir_binop_ubo_load: { /* This IR node takes a constant uniform block and a constant or * variable byte offset within the block and loads a vector from that. */ ir_constant *const_uniform_block = ir->operands[0]->as_constant(); ir_constant *const_offset = ir->operands[1]->as_constant(); fs_reg surf_index; if (const_uniform_block) { /* The block index is a constant, so just emit the binding table entry * as an immediate. */ surf_index = fs_reg(stage_prog_data->binding_table.ubo_start + const_uniform_block->value.u[0]); } else { /* The block index is not a constant. Evaluate the index expression * per-channel and add the base UBO index; the generator will select * a value from any live channel. */ surf_index = vgrf(glsl_type::uint_type); emit(ADD(surf_index, op[0], fs_reg(stage_prog_data->binding_table.ubo_start))) ->force_writemask_all = true; /* Assume this may touch any UBO. It would be nice to provide * a tighter bound, but the array information is already lowered away. */ brw_mark_surface_used(prog_data, stage_prog_data->binding_table.ubo_start + shader_prog->NumUniformBlocks - 1); } if (const_offset) { fs_reg packed_consts = vgrf(glsl_type::float_type); packed_consts.type = result.type; fs_reg const_offset_reg = fs_reg(const_offset->value.u[0] & ~15); emit(new(mem_ctx) fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, 8, packed_consts, surf_index, const_offset_reg)); for (int i = 0; i < ir->type->vector_elements; i++) { packed_consts.set_smear(const_offset->value.u[0] % 16 / 4 + i); /* The std140 packing rules don't allow vectors to cross 16-byte * boundaries, and a reg is 32 bytes. */ assert(packed_consts.subreg_offset < 32); /* UBO bools are any nonzero value. We consider bools to be * values with the low bit set to 1. Convert them using CMP. */ if (ir->type->base_type == GLSL_TYPE_BOOL) { emit(CMP(result, packed_consts, fs_reg(0u), BRW_CONDITIONAL_NZ)); } else { emit(MOV(result, packed_consts)); } result = offset(result, 1); } } else { /* Turn the byte offset into a dword offset. */ fs_reg base_offset = vgrf(glsl_type::int_type); emit(SHR(base_offset, op[1], fs_reg(2))); for (int i = 0; i < ir->type->vector_elements; i++) { emit(VARYING_PULL_CONSTANT_LOAD(result, surf_index, base_offset, i)); if (ir->type->base_type == GLSL_TYPE_BOOL) emit(CMP(result, result, fs_reg(0), BRW_CONDITIONAL_NZ)); result = offset(result, 1); } } result.reg_offset = 0; break; } case ir_triop_fma: /* Note that the instruction's argument order is reversed from GLSL * and the IR. */ emit(MAD(this->result, op[2], op[1], op[0])); break; case ir_triop_lrp: emit_lrp(this->result, op[0], op[1], op[2]); break; case ir_triop_csel: case ir_unop_interpolate_at_centroid: case ir_binop_interpolate_at_offset: case ir_binop_interpolate_at_sample: unreachable("already handled above"); break; case ir_unop_d2f: case ir_unop_f2d: case ir_unop_d2i: case ir_unop_i2d: case ir_unop_d2u: case ir_unop_u2d: case ir_unop_d2b: case ir_unop_pack_double_2x32: case ir_unop_unpack_double_2x32: case ir_unop_frexp_sig: case ir_unop_frexp_exp: unreachable("fp64 todo"); break; } } void fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r, const glsl_type *type, bool predicated) { switch (type->base_type) { case GLSL_TYPE_FLOAT: case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_BOOL: for (unsigned int i = 0; i < type->components(); i++) { l.type = brw_type_for_base_type(type); r.type = brw_type_for_base_type(type); if (predicated || !l.equals(r)) { fs_inst *inst = emit(MOV(l, r)); inst->predicate = predicated ? BRW_PREDICATE_NORMAL : BRW_PREDICATE_NONE; } l = offset(l, 1); r = offset(r, 1); } break; case GLSL_TYPE_ARRAY: for (unsigned int i = 0; i < type->length; i++) { emit_assignment_writes(l, r, type->fields.array, predicated); } break; case GLSL_TYPE_STRUCT: for (unsigned int i = 0; i < type->length; i++) { emit_assignment_writes(l, r, type->fields.structure[i].type, predicated); } break; case GLSL_TYPE_SAMPLER: case GLSL_TYPE_IMAGE: case GLSL_TYPE_ATOMIC_UINT: break; case GLSL_TYPE_DOUBLE: case GLSL_TYPE_VOID: case GLSL_TYPE_ERROR: case GLSL_TYPE_INTERFACE: unreachable("not reached"); } } /* If the RHS processing resulted in an instruction generating a * temporary value, and it would be easy to rewrite the instruction to * generate its result right into the LHS instead, do so. This ends * up reliably removing instructions where it can be tricky to do so * later without real UD chain information. */ bool fs_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir, fs_reg dst, fs_reg src, fs_inst *pre_rhs_inst, fs_inst *last_rhs_inst) { /* Only attempt if we're doing a direct assignment. */ if (ir->condition || !(ir->lhs->type->is_scalar() || (ir->lhs->type->is_vector() && ir->write_mask == (1 << ir->lhs->type->vector_elements) - 1))) return false; /* Make sure the last instruction generated our source reg. */ fs_inst *modify = get_instruction_generating_reg(pre_rhs_inst, last_rhs_inst, src); if (!modify) return false; /* If last_rhs_inst wrote a different number of components than our LHS, * we can't safely rewrite it. */ if (alloc.sizes[dst.reg] != modify->regs_written) return false; /* Success! Rewrite the instruction. */ modify->dst = dst; return true; } void fs_visitor::visit(ir_assignment *ir) { fs_reg l, r; fs_inst *inst; /* FINISHME: arrays on the lhs */ ir->lhs->accept(this); l = this->result; fs_inst *pre_rhs_inst = (fs_inst *) this->instructions.get_tail(); ir->rhs->accept(this); r = this->result; fs_inst *last_rhs_inst = (fs_inst *) this->instructions.get_tail(); assert(l.file != BAD_FILE); assert(r.file != BAD_FILE); if (try_rewrite_rhs_to_dst(ir, l, r, pre_rhs_inst, last_rhs_inst)) return; if (ir->condition) { emit_bool_to_cond_code(ir->condition); } if (ir->lhs->type->is_scalar() || ir->lhs->type->is_vector()) { for (int i = 0; i < ir->lhs->type->vector_elements; i++) { if (ir->write_mask & (1 << i)) { inst = emit(MOV(l, r)); if (ir->condition) inst->predicate = BRW_PREDICATE_NORMAL; r = offset(r, 1); } l = offset(l, 1); } } else { emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL); } } fs_inst * fs_visitor::emit_texture_gen4(ir_texture_opcode op, fs_reg dst, fs_reg coordinate, int coord_components, fs_reg shadow_c, fs_reg lod, fs_reg dPdy, int grad_components, uint32_t sampler) { int mlen; int base_mrf = 1; bool simd16 = false; fs_reg orig_dst; /* g0 header. */ mlen = 1; if (shadow_c.file != BAD_FILE) { for (int i = 0; i < coord_components; i++) { emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate)); coordinate = offset(coordinate, 1); } /* gen4's SIMD8 sampler always has the slots for u,v,r present. * the unused slots must be zeroed. */ for (int i = coord_components; i < 3; i++) { emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f))); } mlen += 3; if (op == ir_tex) { /* There's no plain shadow compare message, so we use shadow * compare with a bias of 0.0. */ emit(MOV(fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f))); mlen++; } else if (op == ir_txb || op == ir_txl) { emit(MOV(fs_reg(MRF, base_mrf + mlen), lod)); mlen++; } else { unreachable("Should not get here."); } emit(MOV(fs_reg(MRF, base_mrf + mlen), shadow_c)); mlen++; } else if (op == ir_tex) { for (int i = 0; i < coord_components; i++) { emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate)); coordinate = offset(coordinate, 1); } /* zero the others. */ for (int i = coord_components; i<3; i++) { emit(MOV(fs_reg(MRF, base_mrf + mlen + i), fs_reg(0.0f))); } /* gen4's SIMD8 sampler always has the slots for u,v,r present. */ mlen += 3; } else if (op == ir_txd) { fs_reg &dPdx = lod; for (int i = 0; i < coord_components; i++) { emit(MOV(fs_reg(MRF, base_mrf + mlen + i), coordinate)); coordinate = offset(coordinate, 1); } /* the slots for u and v are always present, but r is optional */ mlen += MAX2(coord_components, 2); /* P = u, v, r * dPdx = dudx, dvdx, drdx * dPdy = dudy, dvdy, drdy * * 1-arg: Does not exist. * * 2-arg: dudx dvdx dudy dvdy * dPdx.x dPdx.y dPdy.x dPdy.y * m4 m5 m6 m7 * * 3-arg: dudx dvdx drdx dudy dvdy drdy * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z * m5 m6 m7 m8 m9 m10 */ for (int i = 0; i < grad_components; i++) { emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdx)); dPdx = offset(dPdx, 1); } mlen += MAX2(grad_components, 2); for (int i = 0; i < grad_components; i++) { emit(MOV(fs_reg(MRF, base_mrf + mlen), dPdy)); dPdy = offset(dPdy, 1); } mlen += MAX2(grad_components, 2); } else if (op == ir_txs) { /* There's no SIMD8 resinfo message on Gen4. Use SIMD16 instead. */ simd16 = true; emit(MOV(fs_reg(MRF, base_mrf + mlen, BRW_REGISTER_TYPE_UD), lod)); mlen += 2; } else { /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod * instructions. We'll need to do SIMD16 here. */ simd16 = true; assert(op == ir_txb || op == ir_txl || op == ir_txf); for (int i = 0; i < coord_components; i++) { emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2, coordinate.type), coordinate)); coordinate = offset(coordinate, 1); } /* Initialize the rest of u/v/r with 0.0. Empirically, this seems to * be necessary for TXF (ld), but seems wise to do for all messages. */ for (int i = coord_components; i < 3; i++) { emit(MOV(fs_reg(MRF, base_mrf + mlen + i * 2), fs_reg(0.0f))); } /* lod/bias appears after u/v/r. */ mlen += 6; emit(MOV(fs_reg(MRF, base_mrf + mlen, lod.type), lod)); mlen++; /* The unused upper half. */ mlen++; } if (simd16) { /* Now, since we're doing simd16, the return is 2 interleaved * vec4s where the odd-indexed ones are junk. We'll need to move * this weirdness around to the expected layout. */ orig_dst = dst; dst = fs_reg(GRF, alloc.allocate(8), orig_dst.type); } enum opcode opcode; switch (op) { case ir_tex: opcode = SHADER_OPCODE_TEX; break; case ir_txb: opcode = FS_OPCODE_TXB; break; case ir_txl: opcode = SHADER_OPCODE_TXL; break; case ir_txd: opcode = SHADER_OPCODE_TXD; break; case ir_txs: opcode = SHADER_OPCODE_TXS; break; case ir_txf: opcode = SHADER_OPCODE_TXF; break; default: unreachable("not reached"); } fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler)); inst->base_mrf = base_mrf; inst->mlen = mlen; inst->header_present = true; inst->regs_written = simd16 ? 8 : 4; if (simd16) { for (int i = 0; i < 4; i++) { emit(MOV(orig_dst, dst)); orig_dst = offset(orig_dst, 1); dst = offset(dst, 2); } } return inst; } fs_inst * fs_visitor::emit_texture_gen4_simd16(ir_texture_opcode op, fs_reg dst, fs_reg coordinate, int vector_elements, fs_reg shadow_c, fs_reg lod, uint32_t sampler) { fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F, dispatch_width); bool has_lod = op == ir_txl || op == ir_txb || op == ir_txf; if (has_lod && shadow_c.file != BAD_FILE) no16("TXB and TXL with shadow comparison unsupported in SIMD16."); if (op == ir_txd) no16("textureGrad unsupported in SIMD16."); /* Copy the coordinates. */ for (int i = 0; i < vector_elements; i++) { emit(MOV(retype(offset(message, i), coordinate.type), coordinate)); coordinate = offset(coordinate, 1); } fs_reg msg_end = offset(message, vector_elements); /* Messages other than sample and ld require all three components */ if (has_lod || shadow_c.file != BAD_FILE) { for (int i = vector_elements; i < 3; i++) { emit(MOV(offset(message, i), fs_reg(0.0f))); } } if (has_lod) { fs_reg msg_lod = retype(offset(message, 3), op == ir_txf ? BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F); emit(MOV(msg_lod, lod)); msg_end = offset(msg_lod, 1); } if (shadow_c.file != BAD_FILE) { fs_reg msg_ref = offset(message, 3 + has_lod); emit(MOV(msg_ref, shadow_c)); msg_end = offset(msg_ref, 1); } enum opcode opcode; switch (op) { case ir_tex: opcode = SHADER_OPCODE_TEX; break; case ir_txb: opcode = FS_OPCODE_TXB; break; case ir_txd: opcode = SHADER_OPCODE_TXD; break; case ir_txl: opcode = SHADER_OPCODE_TXL; break; case ir_txs: opcode = SHADER_OPCODE_TXS; break; case ir_txf: opcode = SHADER_OPCODE_TXF; break; default: unreachable("not reached"); } fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler)); inst->base_mrf = message.reg - 1; inst->mlen = msg_end.reg - inst->base_mrf; inst->header_present = true; inst->regs_written = 8; return inst; } /* gen5's sampler has slots for u, v, r, array index, then optional * parameters like shadow comparitor or LOD bias. If optional * parameters aren't present, those base slots are optional and don't * need to be included in the message. * * We don't fill in the unnecessary slots regardless, which may look * surprising in the disassembly. */ fs_inst * fs_visitor::emit_texture_gen5(ir_texture_opcode op, fs_reg dst, fs_reg coordinate, int vector_elements, fs_reg shadow_c, fs_reg lod, fs_reg lod2, int grad_components, fs_reg sample_index, uint32_t sampler, bool has_offset) { int reg_width = dispatch_width / 8; bool header_present = false; fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F, dispatch_width); fs_reg msg_coords = message; if (has_offset) { /* The offsets set up by the ir_texture visitor are in the * m1 header, so we can't go headerless. */ header_present = true; message.reg--; } for (int i = 0; i < vector_elements; i++) { emit(MOV(retype(offset(msg_coords, i), coordinate.type), coordinate)); coordinate = offset(coordinate, 1); } fs_reg msg_end = offset(msg_coords, vector_elements); fs_reg msg_lod = offset(msg_coords, 4); if (shadow_c.file != BAD_FILE) { fs_reg msg_shadow = msg_lod; emit(MOV(msg_shadow, shadow_c)); msg_lod = offset(msg_shadow, 1); msg_end = msg_lod; } enum opcode opcode; switch (op) { case ir_tex: opcode = SHADER_OPCODE_TEX; break; case ir_txb: emit(MOV(msg_lod, lod)); msg_end = offset(msg_lod, 1); opcode = FS_OPCODE_TXB; break; case ir_txl: emit(MOV(msg_lod, lod)); msg_end = offset(msg_lod, 1); opcode = SHADER_OPCODE_TXL; break; case ir_txd: { /** * P = u, v, r * dPdx = dudx, dvdx, drdx * dPdy = dudy, dvdy, drdy * * Load up these values: * - dudx dudy dvdx dvdy drdx drdy * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z */ msg_end = msg_lod; for (int i = 0; i < grad_components; i++) { emit(MOV(msg_end, lod)); lod = offset(lod, 1); msg_end = offset(msg_end, 1); emit(MOV(msg_end, lod2)); lod2 = offset(lod2, 1); msg_end = offset(msg_end, 1); } opcode = SHADER_OPCODE_TXD; break; } case ir_txs: msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD); emit(MOV(msg_lod, lod)); msg_end = offset(msg_lod, 1); opcode = SHADER_OPCODE_TXS; break; case ir_query_levels: msg_lod = msg_end; emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u))); msg_end = offset(msg_lod, 1); opcode = SHADER_OPCODE_TXS; break; case ir_txf: msg_lod = offset(msg_coords, 3); emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod)); msg_end = offset(msg_lod, 1); opcode = SHADER_OPCODE_TXF; break; case ir_txf_ms: msg_lod = offset(msg_coords, 3); /* lod */ emit(MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u))); /* sample index */ emit(MOV(retype(offset(msg_lod, 1), BRW_REGISTER_TYPE_UD), sample_index)); msg_end = offset(msg_lod, 2); opcode = SHADER_OPCODE_TXF_CMS; break; case ir_lod: opcode = SHADER_OPCODE_LOD; break; case ir_tg4: opcode = SHADER_OPCODE_TG4; break; default: unreachable("not reached"); } fs_inst *inst = emit(opcode, dst, reg_undef, fs_reg(sampler)); inst->base_mrf = message.reg; inst->mlen = msg_end.reg - message.reg; inst->header_present = header_present; inst->regs_written = 4 * reg_width; if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) { fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE) " disallowed by hardware\n"); } return inst; } static bool is_high_sampler(struct brw_context *brw, fs_reg sampler) { if (brw->gen < 8 && !brw->is_haswell) return false; return sampler.file != IMM || sampler.fixed_hw_reg.dw1.ud >= 16; } fs_inst * fs_visitor::emit_texture_gen7(ir_texture_opcode op, fs_reg dst, fs_reg coordinate, int coord_components, fs_reg shadow_c, fs_reg lod, fs_reg lod2, int grad_components, fs_reg sample_index, fs_reg mcs, fs_reg sampler, fs_reg offset_value) { int reg_width = dispatch_width / 8; bool header_present = false; fs_reg *sources = ralloc_array(mem_ctx, fs_reg, MAX_SAMPLER_MESSAGE_SIZE); for (int i = 0; i < MAX_SAMPLER_MESSAGE_SIZE; i++) { sources[i] = vgrf(glsl_type::float_type); } int length = 0; if (op == ir_tg4 || offset_value.file != BAD_FILE || is_high_sampler(brw, sampler)) { /* For general texture offsets (no txf workaround), we need a header to * put them in. Note that for SIMD16 we're making space for two actual * hardware registers here, so the emit will have to fix up for this. * * * ir4_tg4 needs to place its channel select in the header, * for interaction with ARB_texture_swizzle * * The sampler index is only 4-bits, so for larger sampler numbers we * need to offset the Sampler State Pointer in the header. */ header_present = true; sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD); length++; } if (shadow_c.file != BAD_FILE) { emit(MOV(sources[length], shadow_c)); length++; } bool has_nonconstant_offset = offset_value.file != BAD_FILE && offset_value.file != IMM; bool coordinate_done = false; /* The sampler can only meaningfully compute LOD for fragment shader * messages. For all other stages, we change the opcode to ir_txl and * hardcode the LOD to 0. */ if (stage != MESA_SHADER_FRAGMENT && op == ir_tex) { op = ir_txl; lod = fs_reg(0.0f); } /* Set up the LOD info */ switch (op) { case ir_tex: case ir_lod: break; case ir_txb: emit(MOV(sources[length], lod)); length++; break; case ir_txl: emit(MOV(sources[length], lod)); length++; break; case ir_txd: { no16("Gen7 does not support sample_d/sample_d_c in SIMD16 mode."); /* Load dPdx and the coordinate together: * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z */ for (int i = 0; i < coord_components; i++) { emit(MOV(sources[length], coordinate)); coordinate = offset(coordinate, 1); length++; /* For cube map array, the coordinate is (u,v,r,ai) but there are * only derivatives for (u, v, r). */ if (i < grad_components) { emit(MOV(sources[length], lod)); lod = offset(lod, 1); length++; emit(MOV(sources[length], lod2)); lod2 = offset(lod2, 1); length++; } } coordinate_done = true; break; } case ir_txs: emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod)); length++; break; case ir_query_levels: emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), fs_reg(0u))); length++; break; case ir_txf: /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. * On Gen9 they are u, v, lod, r */ emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate)); coordinate = offset(coordinate, 1); length++; if (brw->gen >= 9) { if (coord_components >= 2) { emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate)); coordinate = offset(coordinate, 1); } length++; } emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod)); length++; for (int i = brw->gen >= 9 ? 2 : 1; i < coord_components; i++) { emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate)); coordinate = offset(coordinate, 1); length++; } coordinate_done = true; break; case ir_txf_ms: emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index)); length++; /* data from the multisample control surface */ emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs)); length++; /* there is no offsetting for this message; just copy in the integer * texture coordinates */ for (int i = 0; i < coord_components; i++) { emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate)); coordinate = offset(coordinate, 1); length++; } coordinate_done = true; break; case ir_tg4: if (has_nonconstant_offset) { if (shadow_c.file != BAD_FILE) no16("Gen7 does not support gather4_po_c in SIMD16 mode."); /* More crazy intermixing */ for (int i = 0; i < 2; i++) { /* u, v */ emit(MOV(sources[length], coordinate)); coordinate = offset(coordinate, 1); length++; } for (int i = 0; i < 2; i++) { /* offu, offv */ emit(MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value)); offset_value = offset(offset_value, 1); length++; } if (coord_components == 3) { /* r if present */ emit(MOV(sources[length], coordinate)); coordinate = offset(coordinate, 1); length++; } coordinate_done = true; } break; } /* Set up the coordinate (except for cases where it was done above) */ if (!coordinate_done) { for (int i = 0; i < coord_components; i++) { emit(MOV(sources[length], coordinate)); coordinate = offset(coordinate, 1); length++; } } int mlen; if (reg_width == 2) mlen = length * reg_width - header_present; else mlen = length * reg_width; fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen), BRW_REGISTER_TYPE_F); emit(LOAD_PAYLOAD(src_payload, sources, length)); /* Generate the SEND */ enum opcode opcode; switch (op) { case ir_tex: opcode = SHADER_OPCODE_TEX; break; case ir_txb: opcode = FS_OPCODE_TXB; break; case ir_txl: opcode = SHADER_OPCODE_TXL; break; case ir_txd: opcode = SHADER_OPCODE_TXD; break; case ir_txf: opcode = SHADER_OPCODE_TXF; break; case ir_txf_ms: opcode = SHADER_OPCODE_TXF_CMS; break; case ir_txs: opcode = SHADER_OPCODE_TXS; break; case ir_query_levels: opcode = SHADER_OPCODE_TXS; break; case ir_lod: opcode = SHADER_OPCODE_LOD; break; case ir_tg4: if (has_nonconstant_offset) opcode = SHADER_OPCODE_TG4_OFFSET; else opcode = SHADER_OPCODE_TG4; break; default: unreachable("not reached"); } fs_inst *inst = emit(opcode, dst, src_payload, sampler); inst->base_mrf = -1; inst->mlen = mlen; inst->header_present = header_present; inst->regs_written = 4 * reg_width; if (inst->mlen > MAX_SAMPLER_MESSAGE_SIZE) { fail("Message length >" STRINGIFY(MAX_SAMPLER_MESSAGE_SIZE) " disallowed by hardware\n"); } return inst; } fs_reg fs_visitor::rescale_texcoord(fs_reg coordinate, int coord_components, bool is_rect, uint32_t sampler, int texunit) { fs_inst *inst = NULL; bool needs_gl_clamp = true; fs_reg scale_x, scale_y; /* The 965 requires the EU to do the normalization of GL rectangle * texture coordinates. We use the program parameter state * tracking to get the scaling factor. */ if (is_rect && (brw->gen < 6 || (brw->gen >= 6 && (key_tex->gl_clamp_mask[0] & (1 << sampler) || key_tex->gl_clamp_mask[1] & (1 << sampler))))) { struct gl_program_parameter_list *params = prog->Parameters; int tokens[STATE_LENGTH] = { STATE_INTERNAL, STATE_TEXRECT_SCALE, texunit, 0, 0 }; no16("rectangle scale uniform setup not supported on SIMD16\n"); if (dispatch_width == 16) { return coordinate; } GLuint index = _mesa_add_state_reference(params, (gl_state_index *)tokens); /* Try to find existing copies of the texrect scale uniforms. */ for (unsigned i = 0; i < uniforms; i++) { if (stage_prog_data->param[i] == &prog->Parameters->ParameterValues[index][0]) { scale_x = fs_reg(UNIFORM, i); scale_y = fs_reg(UNIFORM, i + 1); break; } } /* If we didn't already set them up, do so now. */ if (scale_x.file == BAD_FILE) { scale_x = fs_reg(UNIFORM, uniforms); scale_y = fs_reg(UNIFORM, uniforms + 1); stage_prog_data->param[uniforms++] = &prog->Parameters->ParameterValues[index][0]; stage_prog_data->param[uniforms++] = &prog->Parameters->ParameterValues[index][1]; } } /* The 965 requires the EU to do the normalization of GL rectangle * texture coordinates. We use the program parameter state * tracking to get the scaling factor. */ if (brw->gen < 6 && is_rect) { fs_reg dst = fs_reg(GRF, alloc.allocate(coord_components)); fs_reg src = coordinate; coordinate = dst; emit(MUL(dst, src, scale_x)); dst = offset(dst, 1); src = offset(src, 1); emit(MUL(dst, src, scale_y)); } else if (is_rect) { /* On gen6+, the sampler handles the rectangle coordinates * natively, without needing rescaling. But that means we have * to do GL_CLAMP clamping at the [0, width], [0, height] scale, * not [0, 1] like the default case below. */ needs_gl_clamp = false; for (int i = 0; i < 2; i++) { if (key_tex->gl_clamp_mask[i] & (1 << sampler)) { fs_reg chan = coordinate; chan = offset(chan, i); inst = emit(BRW_OPCODE_SEL, chan, chan, fs_reg(0.0f)); inst->conditional_mod = BRW_CONDITIONAL_GE; /* Our parameter comes in as 1.0/width or 1.0/height, * because that's what people normally want for doing * texture rectangle handling. We need width or height * for clamping, but we don't care enough to make a new * parameter type, so just invert back. */ fs_reg limit = vgrf(glsl_type::float_type); emit(MOV(limit, i == 0 ? scale_x : scale_y)); emit(SHADER_OPCODE_RCP, limit, limit); inst = emit(BRW_OPCODE_SEL, chan, chan, limit); inst->conditional_mod = BRW_CONDITIONAL_L; } } } if (coord_components > 0 && needs_gl_clamp) { for (int i = 0; i < MIN2(coord_components, 3); i++) { if (key_tex->gl_clamp_mask[i] & (1 << sampler)) { fs_reg chan = coordinate; chan = offset(chan, i); fs_inst *inst = emit(MOV(chan, chan)); inst->saturate = true; } } } return coordinate; } /* Sample from the MCS surface attached to this multisample texture. */ fs_reg fs_visitor::emit_mcs_fetch(fs_reg coordinate, int components, fs_reg sampler) { int reg_width = dispatch_width / 8; fs_reg payload = fs_reg(GRF, alloc.allocate(components * reg_width), BRW_REGISTER_TYPE_F); fs_reg dest = vgrf(glsl_type::uvec4_type); fs_reg *sources = ralloc_array(mem_ctx, fs_reg, components); /* parameters are: u, v, r; missing parameters are treated as zero */ for (int i = 0; i < components; i++) { sources[i] = vgrf(glsl_type::float_type); emit(MOV(retype(sources[i], BRW_REGISTER_TYPE_D), coordinate)); coordinate = offset(coordinate, 1); } emit(LOAD_PAYLOAD(payload, sources, components)); fs_inst *inst = emit(SHADER_OPCODE_TXF_MCS, dest, payload, sampler); inst->base_mrf = -1; inst->mlen = components * reg_width; inst->header_present = false; inst->regs_written = 4 * reg_width; /* we only care about one reg of * response, but the sampler always * writes 4/8 */ return dest; } void fs_visitor::emit_texture(ir_texture_opcode op, const glsl_type *dest_type, fs_reg coordinate, int coord_components, fs_reg shadow_c, fs_reg lod, fs_reg lod2, int grad_components, fs_reg sample_index, fs_reg offset_value, fs_reg mcs, int gather_component, bool is_cube_array, bool is_rect, uint32_t sampler, fs_reg sampler_reg, int texunit) { fs_inst *inst = NULL; if (op == ir_tg4) { /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother * emitting anything other than setting up the constant result. */ int swiz = GET_SWZ(key_tex->swizzles[sampler], gather_component); if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) { fs_reg res = vgrf(glsl_type::vec4_type); this->result = res; for (int i=0; i<4; i++) { emit(MOV(res, fs_reg(swiz == SWIZZLE_ZERO ? 0.0f : 1.0f))); res = offset(res, 1); } return; } } if (coordinate.file != BAD_FILE) { /* FINISHME: Texture coordinate rescaling doesn't work with non-constant * samplers. This should only be a problem with GL_CLAMP on Gen7. */ coordinate = rescale_texcoord(coordinate, coord_components, is_rect, sampler, texunit); } /* Writemasking doesn't eliminate channels on SIMD8 texture * samples, so don't worry about them. */ fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1)); if (brw->gen >= 7) { inst = emit_texture_gen7(op, dst, coordinate, coord_components, shadow_c, lod, lod2, grad_components, sample_index, mcs, sampler_reg, offset_value); } else if (brw->gen >= 5) { inst = emit_texture_gen5(op, dst, coordinate, coord_components, shadow_c, lod, lod2, grad_components, sample_index, sampler, offset_value.file != BAD_FILE); } else if (dispatch_width == 16) { inst = emit_texture_gen4_simd16(op, dst, coordinate, coord_components, shadow_c, lod, sampler); } else { inst = emit_texture_gen4(op, dst, coordinate, coord_components, shadow_c, lod, lod2, grad_components, sampler); } if (shadow_c.file != BAD_FILE) inst->shadow_compare = true; if (offset_value.file == IMM) inst->offset = offset_value.fixed_hw_reg.dw1.ud; if (op == ir_tg4) { inst->offset |= gather_channel(gather_component, sampler) << 16; /* M0.2:16-17 */ if (brw->gen == 6) emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], dst); } /* fixup #layers for cube map arrays */ if (op == ir_txs && is_cube_array) { fs_reg depth = offset(dst, 2); fs_reg fixed_depth = vgrf(glsl_type::int_type); emit_math(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, fs_reg(6)); fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written); int components = inst->regs_written / (dst.width / 8); for (int i = 0; i < components; i++) { if (i == 2) { fixed_payload[i] = fixed_depth; } else { fixed_payload[i] = offset(dst, i); } } emit(LOAD_PAYLOAD(dst, fixed_payload, components)); } swizzle_result(op, dest_type->vector_elements, dst, sampler); } void fs_visitor::visit(ir_texture *ir) { uint32_t sampler = _mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog); ir_rvalue *nonconst_sampler_index = _mesa_get_sampler_array_nonconst_index(ir->sampler); /* Handle non-constant sampler array indexing */ fs_reg sampler_reg; if (nonconst_sampler_index) { /* The highest sampler which may be used by this operation is * the last element of the array. Mark it here, because the generator * doesn't have enough information to determine the bound. */ uint32_t array_size = ir->sampler->as_dereference_array() ->array->type->array_size(); uint32_t max_used = sampler + array_size - 1; if (ir->op == ir_tg4 && brw->gen < 8) { max_used += stage_prog_data->binding_table.gather_texture_start; } else { max_used += stage_prog_data->binding_table.texture_start; } brw_mark_surface_used(prog_data, max_used); /* Emit code to evaluate the actual indexing expression */ nonconst_sampler_index->accept(this); fs_reg temp = vgrf(glsl_type::uint_type); emit(ADD(temp, this->result, fs_reg(sampler))) ->force_writemask_all = true; sampler_reg = temp; } else { /* Single sampler, or constant array index; the indexing expression * is just an immediate. */ sampler_reg = fs_reg(sampler); } /* FINISHME: We're failing to recompile our programs when the sampler is * updated. This only matters for the texture rectangle scale parameters * (pre-gen6, or gen6+ with GL_CLAMP). */ int texunit = prog->SamplerUnits[sampler]; /* Should be lowered by do_lower_texture_projection */ assert(!ir->projector); /* Should be lowered */ assert(!ir->offset || !ir->offset->type->is_array()); /* Generate code to compute all the subexpression trees. This has to be * done before loading any values into MRFs for the sampler message since * generating these values may involve SEND messages that need the MRFs. */ fs_reg coordinate; int coord_components = 0; if (ir->coordinate) { coord_components = ir->coordinate->type->vector_elements; ir->coordinate->accept(this); coordinate = this->result; } fs_reg shadow_comparitor; if (ir->shadow_comparitor) { ir->shadow_comparitor->accept(this); shadow_comparitor = this->result; } fs_reg offset_value; if (ir->offset) { ir_constant *const_offset = ir->offset->as_constant(); if (const_offset) { /* Store the header bitfield in an IMM register. This allows us to * use offset_value.file to distinguish between no offset, a constant * offset, and a non-constant offset. */ offset_value = fs_reg(brw_texture_offset(const_offset->value.i, const_offset->type->vector_elements)); } else { ir->offset->accept(this); offset_value = this->result; } } fs_reg lod, lod2, sample_index, mcs; int grad_components = 0; switch (ir->op) { case ir_tex: case ir_lod: case ir_tg4: case ir_query_levels: break; case ir_txb: ir->lod_info.bias->accept(this); lod = this->result; break; case ir_txd: ir->lod_info.grad.dPdx->accept(this); lod = this->result; ir->lod_info.grad.dPdy->accept(this); lod2 = this->result; grad_components = ir->lod_info.grad.dPdx->type->vector_elements; break; case ir_txf: case ir_txl: case ir_txs: ir->lod_info.lod->accept(this); lod = this->result; break; case ir_txf_ms: ir->lod_info.sample_index->accept(this); sample_index = this->result; if (brw->gen >= 7 && key_tex->compressed_multisample_layout_mask & (1 << sampler)) { mcs = emit_mcs_fetch(coordinate, ir->coordinate->type->vector_elements, sampler_reg); } else { mcs = fs_reg(0u); } break; default: unreachable("Unrecognized texture opcode"); }; int gather_component = 0; if (ir->op == ir_tg4) gather_component = ir->lod_info.component->as_constant()->value.i[0]; bool is_rect = ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT; bool is_cube_array = ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE && ir->sampler->type->sampler_array; emit_texture(ir->op, ir->type, coordinate, coord_components, shadow_comparitor, lod, lod2, grad_components, sample_index, offset_value, mcs, gather_component, is_cube_array, is_rect, sampler, sampler_reg, texunit); } /** * Apply workarounds for Gen6 gather with UINT/SINT */ void fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst) { if (!wa) return; int width = (wa & WA_8BIT) ? 8 : 16; for (int i = 0; i < 4; i++) { fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F); /* Convert from UNORM to UINT */ emit(MUL(dst_f, dst_f, fs_reg((float)((1 << width) - 1)))); emit(MOV(dst, dst_f)); if (wa & WA_SIGN) { /* Reinterpret the UINT value as a signed INT value by * shifting the sign bit into place, then shifting back * preserving sign. */ emit(SHL(dst, dst, fs_reg(32 - width))); emit(ASR(dst, dst, fs_reg(32 - width))); } dst = offset(dst, 1); } } /** * Set up the gather channel based on the swizzle, for gather4. */ uint32_t fs_visitor::gather_channel(int orig_chan, uint32_t sampler) { int swiz = GET_SWZ(key_tex->swizzles[sampler], orig_chan); switch (swiz) { case SWIZZLE_X: return 0; case SWIZZLE_Y: /* gather4 sampler is broken for green channel on RG32F -- * we must ask for blue instead. */ if (key_tex->gather_channel_quirk_mask & (1 << sampler)) return 2; return 1; case SWIZZLE_Z: return 2; case SWIZZLE_W: return 3; default: unreachable("Not reached"); /* zero, one swizzles handled already */ } } /** * Swizzle the result of a texture result. This is necessary for * EXT_texture_swizzle as well as DEPTH_TEXTURE_MODE for shadow comparisons. */ void fs_visitor::swizzle_result(ir_texture_opcode op, int dest_components, fs_reg orig_val, uint32_t sampler) { if (op == ir_query_levels) { /* # levels is in .w */ this->result = offset(orig_val, 3); return; } this->result = orig_val; /* txs,lod don't actually sample the texture, so swizzling the result * makes no sense. */ if (op == ir_txs || op == ir_lod || op == ir_tg4) return; if (dest_components == 1) { /* Ignore DEPTH_TEXTURE_MODE swizzling. */ } else if (key_tex->swizzles[sampler] != SWIZZLE_NOOP) { fs_reg swizzled_result = vgrf(glsl_type::vec4_type); swizzled_result.type = orig_val.type; for (int i = 0; i < 4; i++) { int swiz = GET_SWZ(key_tex->swizzles[sampler], i); fs_reg l = swizzled_result; l = offset(l, i); if (swiz == SWIZZLE_ZERO) { emit(MOV(l, fs_reg(0.0f))); } else if (swiz == SWIZZLE_ONE) { emit(MOV(l, fs_reg(1.0f))); } else { emit(MOV(l, offset(orig_val, GET_SWZ(key_tex->swizzles[sampler], i)))); } } this->result = swizzled_result; } } void fs_visitor::visit(ir_swizzle *ir) { ir->val->accept(this); fs_reg val = this->result; if (ir->type->vector_elements == 1) { this->result = offset(this->result, ir->mask.x); return; } fs_reg result = vgrf(ir->type); this->result = result; for (unsigned int i = 0; i < ir->type->vector_elements; i++) { fs_reg channel = val; int swiz = 0; switch (i) { case 0: swiz = ir->mask.x; break; case 1: swiz = ir->mask.y; break; case 2: swiz = ir->mask.z; break; case 3: swiz = ir->mask.w; break; } emit(MOV(result, offset(channel, swiz))); result = offset(result, 1); } } void fs_visitor::visit(ir_discard *ir) { /* We track our discarded pixels in f0.1. By predicating on it, we can * update just the flag bits that aren't yet discarded. If there's no * condition, we emit a CMP of g0 != g0, so all currently executing * channels will get turned off. */ fs_inst *cmp; if (ir->condition) { emit_bool_to_cond_code(ir->condition); cmp = (fs_inst *) this->instructions.get_tail(); cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod); } else { fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW)); cmp = emit(CMP(reg_null_f, some_reg, some_reg, BRW_CONDITIONAL_NZ)); } cmp->predicate = BRW_PREDICATE_NORMAL; cmp->flag_subreg = 1; if (brw->gen >= 6) { emit_discard_jump(); } } void fs_visitor::visit(ir_constant *ir) { /* Set this->result to reg at the bottom of the function because some code * paths will cause this visitor to be applied to other fields. This will * cause the value stored in this->result to be modified. * * Make reg constant so that it doesn't get accidentally modified along the * way. Yes, I actually had this problem. :( */ const fs_reg reg = vgrf(ir->type); fs_reg dst_reg = reg; if (ir->type->is_array()) { const unsigned size = type_size(ir->type->fields.array); for (unsigned i = 0; i < ir->type->length; i++) { ir->array_elements[i]->accept(this); fs_reg src_reg = this->result; dst_reg.type = src_reg.type; for (unsigned j = 0; j < size; j++) { emit(MOV(dst_reg, src_reg)); src_reg = offset(src_reg, 1); dst_reg = offset(dst_reg, 1); } } } else if (ir->type->is_record()) { foreach_in_list(ir_constant, field, &ir->components) { const unsigned size = type_size(field->type); field->accept(this); fs_reg src_reg = this->result; dst_reg.type = src_reg.type; for (unsigned j = 0; j < size; j++) { emit(MOV(dst_reg, src_reg)); src_reg = offset(src_reg, 1); dst_reg = offset(dst_reg, 1); } } } else { const unsigned size = type_size(ir->type); for (unsigned i = 0; i < size; i++) { switch (ir->type->base_type) { case GLSL_TYPE_FLOAT: emit(MOV(dst_reg, fs_reg(ir->value.f[i]))); break; case GLSL_TYPE_UINT: emit(MOV(dst_reg, fs_reg(ir->value.u[i]))); break; case GLSL_TYPE_INT: emit(MOV(dst_reg, fs_reg(ir->value.i[i]))); break; case GLSL_TYPE_BOOL: emit(MOV(dst_reg, fs_reg(ir->value.b[i] != 0 ? (int)ctx->Const.UniformBooleanTrue : 0))); break; default: unreachable("Non-float/uint/int/bool constant"); } dst_reg = offset(dst_reg, 1); } } this->result = reg; } void fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir) { ir_expression *expr = ir->as_expression(); if (!expr || expr->operation == ir_binop_ubo_load) { ir->accept(this); fs_inst *inst = emit(AND(reg_null_d, this->result, fs_reg(1))); inst->conditional_mod = BRW_CONDITIONAL_NZ; return; } fs_reg op[3]; assert(expr->get_num_operands() <= 3); for (unsigned int i = 0; i < expr->get_num_operands(); i++) { assert(expr->operands[i]->type->is_scalar()); expr->operands[i]->accept(this); op[i] = this->result; resolve_ud_negate(&op[i]); } emit_bool_to_cond_code_of_reg(expr, op); } void fs_visitor::emit_bool_to_cond_code_of_reg(ir_expression *expr, fs_reg op[3]) { fs_inst *inst; switch (expr->operation) { case ir_unop_logic_not: inst = emit(AND(reg_null_d, op[0], fs_reg(1))); inst->conditional_mod = BRW_CONDITIONAL_Z; break; case ir_binop_logic_xor: if (brw->gen <= 5) { fs_reg temp = vgrf(expr->type); emit(XOR(temp, op[0], op[1])); inst = emit(AND(reg_null_d, temp, fs_reg(1))); } else { inst = emit(XOR(reg_null_d, op[0], op[1])); } inst->conditional_mod = BRW_CONDITIONAL_NZ; break; case ir_binop_logic_or: if (brw->gen <= 5) { fs_reg temp = vgrf(expr->type); emit(OR(temp, op[0], op[1])); inst = emit(AND(reg_null_d, temp, fs_reg(1))); } else { inst = emit(OR(reg_null_d, op[0], op[1])); } inst->conditional_mod = BRW_CONDITIONAL_NZ; break; case ir_binop_logic_and: if (brw->gen <= 5) { fs_reg temp = vgrf(expr->type); emit(AND(temp, op[0], op[1])); inst = emit(AND(reg_null_d, temp, fs_reg(1))); } else { inst = emit(AND(reg_null_d, op[0], op[1])); } inst->conditional_mod = BRW_CONDITIONAL_NZ; break; case ir_unop_f2b: if (brw->gen >= 6) { emit(CMP(reg_null_d, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ)); } else { inst = emit(MOV(reg_null_f, op[0])); inst->conditional_mod = BRW_CONDITIONAL_NZ; } break; case ir_unop_i2b: if (brw->gen >= 6) { emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ)); } else { inst = emit(MOV(reg_null_d, op[0])); inst->conditional_mod = BRW_CONDITIONAL_NZ; } break; case ir_binop_greater: case ir_binop_gequal: case ir_binop_less: case ir_binop_lequal: case ir_binop_equal: case ir_binop_all_equal: case ir_binop_nequal: case ir_binop_any_nequal: if (brw->gen <= 5) { resolve_bool_comparison(expr->operands[0], &op[0]); resolve_bool_comparison(expr->operands[1], &op[1]); } emit(CMP(reg_null_d, op[0], op[1], brw_conditional_for_comparison(expr->operation))); break; case ir_triop_csel: { /* Expand the boolean condition into the flag register. */ inst = emit(MOV(reg_null_d, op[0])); inst->conditional_mod = BRW_CONDITIONAL_NZ; /* Select which boolean to return. */ fs_reg temp = vgrf(expr->operands[1]->type); inst = emit(SEL(temp, op[1], op[2])); inst->predicate = BRW_PREDICATE_NORMAL; /* Expand the result to a condition code. */ inst = emit(MOV(reg_null_d, temp)); inst->conditional_mod = BRW_CONDITIONAL_NZ; break; } default: unreachable("not reached"); } } /** * Emit a gen6 IF statement with the comparison folded into the IF * instruction. */ void fs_visitor::emit_if_gen6(ir_if *ir) { ir_expression *expr = ir->condition->as_expression(); if (expr && expr->operation != ir_binop_ubo_load) { fs_reg op[3]; fs_inst *inst; fs_reg temp; assert(expr->get_num_operands() <= 3); for (unsigned int i = 0; i < expr->get_num_operands(); i++) { assert(expr->operands[i]->type->is_scalar()); expr->operands[i]->accept(this); op[i] = this->result; } switch (expr->operation) { case ir_unop_logic_not: emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_Z)); return; case ir_binop_logic_xor: emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ)); return; case ir_binop_logic_or: temp = vgrf(glsl_type::bool_type); emit(OR(temp, op[0], op[1])); emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ)); return; case ir_binop_logic_and: temp = vgrf(glsl_type::bool_type); emit(AND(temp, op[0], op[1])); emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ)); return; case ir_unop_f2b: inst = emit(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0)); inst->conditional_mod = BRW_CONDITIONAL_NZ; return; case ir_unop_i2b: emit(IF(op[0], fs_reg(0), BRW_CONDITIONAL_NZ)); return; case ir_binop_greater: case ir_binop_gequal: case ir_binop_less: case ir_binop_lequal: case ir_binop_equal: case ir_binop_all_equal: case ir_binop_nequal: case ir_binop_any_nequal: if (brw->gen <= 5) { resolve_bool_comparison(expr->operands[0], &op[0]); resolve_bool_comparison(expr->operands[1], &op[1]); } emit(IF(op[0], op[1], brw_conditional_for_comparison(expr->operation))); return; case ir_triop_csel: { /* Expand the boolean condition into the flag register. */ fs_inst *inst = emit(MOV(reg_null_d, op[0])); inst->conditional_mod = BRW_CONDITIONAL_NZ; /* Select which boolean to use as the result. */ fs_reg temp = vgrf(expr->operands[1]->type); inst = emit(SEL(temp, op[1], op[2])); inst->predicate = BRW_PREDICATE_NORMAL; emit(IF(temp, fs_reg(0), BRW_CONDITIONAL_NZ)); return; } default: unreachable("not reached"); } } ir->condition->accept(this); emit(IF(this->result, fs_reg(0), BRW_CONDITIONAL_NZ)); } bool fs_visitor::try_opt_frontfacing_ternary(ir_if *ir) { ir_dereference_variable *deref = ir->condition->as_dereference_variable(); if (!deref || strcmp(deref->var->name, "gl_FrontFacing") != 0) return false; if (ir->then_instructions.length() != 1 || ir->else_instructions.length() != 1) return false; ir_assignment *then_assign = ((ir_instruction *)ir->then_instructions.head)->as_assignment(); ir_assignment *else_assign = ((ir_instruction *)ir->else_instructions.head)->as_assignment(); if (!then_assign || then_assign->condition || !else_assign || else_assign->condition || then_assign->write_mask != else_assign->write_mask || !then_assign->lhs->equals(else_assign->lhs)) return false; ir_constant *then_rhs = then_assign->rhs->as_constant(); ir_constant *else_rhs = else_assign->rhs->as_constant(); if (!then_rhs || !else_rhs) return false; if (then_rhs->type->base_type != GLSL_TYPE_FLOAT) return false; if ((then_rhs->is_one() && else_rhs->is_negative_one()) || (else_rhs->is_one() && then_rhs->is_negative_one())) { then_assign->lhs->accept(this); fs_reg dst = this->result; dst.type = BRW_REGISTER_TYPE_D; fs_reg tmp = vgrf(glsl_type::int_type); if (brw->gen >= 6) { /* Bit 15 of g0.0 is 0 if the polygon is front facing. */ fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W)); /* For (gl_FrontFacing ? 1.0 : -1.0), emit: * * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D * * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0). */ if (then_rhs->is_negative_one()) { assert(else_rhs->is_one()); g0.negate = true; } tmp.type = BRW_REGISTER_TYPE_W; tmp.subreg_offset = 2; tmp.stride = 2; fs_inst *or_inst = emit(OR(tmp, g0, fs_reg(0x3f80))); or_inst->src[1].type = BRW_REGISTER_TYPE_UW; tmp.type = BRW_REGISTER_TYPE_D; tmp.subreg_offset = 0; tmp.stride = 1; } else { /* Bit 31 of g1.6 is 0 if the polygon is front facing. */ fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D)); /* For (gl_FrontFacing ? 1.0 : -1.0), emit: * * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D * * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0). */ if (then_rhs->is_negative_one()) { assert(else_rhs->is_one()); g1_6.negate = true; } emit(OR(tmp, g1_6, fs_reg(0x3f800000))); } emit(AND(dst, tmp, fs_reg(0xbf800000))); return true; } return false; } /** * Try to replace IF/MOV/ELSE/MOV/ENDIF with SEL. * * Many GLSL shaders contain the following pattern: * * x = condition ? foo : bar * * The compiler emits an ir_if tree for this, since each subexpression might be * a complex tree that could have side-effects or short-circuit logic. * * However, the common case is to simply select one of two constants or * variable values---which is exactly what SEL is for. In this case, the * assembly looks like: * * (+f0) IF * MOV dst src0 * ELSE * MOV dst src1 * ENDIF * * which can be easily translated into: * * (+f0) SEL dst src0 src1 * * If src0 is an immediate value, we promote it to a temporary GRF. */ bool fs_visitor::try_replace_with_sel() { fs_inst *endif_inst = (fs_inst *) instructions.get_tail(); assert(endif_inst->opcode == BRW_OPCODE_ENDIF); /* Pattern match in reverse: IF, MOV, ELSE, MOV, ENDIF. */ int opcodes[] = { BRW_OPCODE_IF, BRW_OPCODE_MOV, BRW_OPCODE_ELSE, BRW_OPCODE_MOV, }; fs_inst *match = (fs_inst *) endif_inst->prev; for (int i = 0; i < 4; i++) { if (match->is_head_sentinel() || match->opcode != opcodes[4-i-1]) return false; match = (fs_inst *) match->prev; } /* The opcodes match; it looks like the right sequence of instructions. */ fs_inst *else_mov = (fs_inst *) endif_inst->prev; fs_inst *then_mov = (fs_inst *) else_mov->prev->prev; fs_inst *if_inst = (fs_inst *) then_mov->prev; /* Check that the MOVs are the right form. */ if (then_mov->dst.equals(else_mov->dst) && !then_mov->is_partial_write() && !else_mov->is_partial_write()) { /* Remove the matched instructions; we'll emit a SEL to replace them. */ while (!if_inst->next->is_tail_sentinel()) if_inst->next->exec_node::remove(); if_inst->exec_node::remove(); /* Only the last source register can be a constant, so if the MOV in * the "then" clause uses a constant, we need to put it in a temporary. */ fs_reg src0(then_mov->src[0]); if (src0.file == IMM) { src0 = vgrf(glsl_type::float_type); src0.type = then_mov->src[0].type; emit(MOV(src0, then_mov->src[0])); } fs_inst *sel; if (if_inst->conditional_mod) { /* Sandybridge-specific IF with embedded comparison */ emit(CMP(reg_null_d, if_inst->src[0], if_inst->src[1], if_inst->conditional_mod)); sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]); sel->predicate = BRW_PREDICATE_NORMAL; } else { /* Separate CMP and IF instructions */ sel = emit(BRW_OPCODE_SEL, then_mov->dst, src0, else_mov->src[0]); sel->predicate = if_inst->predicate; sel->predicate_inverse = if_inst->predicate_inverse; } return true; } return false; } void fs_visitor::visit(ir_if *ir) { if (try_opt_frontfacing_ternary(ir)) return; /* Don't point the annotation at the if statement, because then it plus * the then and else blocks get printed. */ this->base_ir = ir->condition; if (brw->gen == 6) { emit_if_gen6(ir); } else { emit_bool_to_cond_code(ir->condition); emit(IF(BRW_PREDICATE_NORMAL)); } foreach_in_list(ir_instruction, ir_, &ir->then_instructions) { this->base_ir = ir_; ir_->accept(this); } if (!ir->else_instructions.is_empty()) { emit(BRW_OPCODE_ELSE); foreach_in_list(ir_instruction, ir_, &ir->else_instructions) { this->base_ir = ir_; ir_->accept(this); } } emit(BRW_OPCODE_ENDIF); if (!try_replace_with_sel() && brw->gen < 6) { no16("Can't support (non-uniform) control flow on SIMD16\n"); } } void fs_visitor::visit(ir_loop *ir) { if (brw->gen < 6) { no16("Can't support (non-uniform) control flow on SIMD16\n"); } this->base_ir = NULL; emit(BRW_OPCODE_DO); foreach_in_list(ir_instruction, ir_, &ir->body_instructions) { this->base_ir = ir_; ir_->accept(this); } this->base_ir = NULL; emit(BRW_OPCODE_WHILE); } void fs_visitor::visit(ir_loop_jump *ir) { switch (ir->mode) { case ir_loop_jump::jump_break: emit(BRW_OPCODE_BREAK); break; case ir_loop_jump::jump_continue: emit(BRW_OPCODE_CONTINUE); break; } } void fs_visitor::visit_atomic_counter_intrinsic(ir_call *ir) { ir_dereference *deref = static_cast( ir->actual_parameters.get_head()); ir_variable *location = deref->variable_referenced(); unsigned surf_index = (stage_prog_data->binding_table.abo_start + location->data.binding); /* Calculate the surface offset */ fs_reg offset = vgrf(glsl_type::uint_type); ir_dereference_array *deref_array = deref->as_dereference_array(); if (deref_array) { deref_array->array_index->accept(this); fs_reg tmp = vgrf(glsl_type::uint_type); emit(MUL(tmp, this->result, fs_reg(ATOMIC_COUNTER_SIZE))); emit(ADD(offset, tmp, fs_reg(location->data.atomic.offset))); } else { offset = fs_reg(location->data.atomic.offset); } /* Emit the appropriate machine instruction */ const char *callee = ir->callee->function_name(); ir->return_deref->accept(this); fs_reg dst = this->result; if (!strcmp("__intrinsic_atomic_read", callee)) { emit_untyped_surface_read(surf_index, dst, offset); } else if (!strcmp("__intrinsic_atomic_increment", callee)) { emit_untyped_atomic(BRW_AOP_INC, surf_index, dst, offset, fs_reg(), fs_reg()); } else if (!strcmp("__intrinsic_atomic_predecrement", callee)) { emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dst, offset, fs_reg(), fs_reg()); } } void fs_visitor::visit(ir_call *ir) { const char *callee = ir->callee->function_name(); if (!strcmp("__intrinsic_atomic_read", callee) || !strcmp("__intrinsic_atomic_increment", callee) || !strcmp("__intrinsic_atomic_predecrement", callee)) { visit_atomic_counter_intrinsic(ir); } else { unreachable("Unsupported intrinsic."); } } void fs_visitor::visit(ir_return *) { unreachable("FINISHME"); } void fs_visitor::visit(ir_function *ir) { /* Ignore function bodies other than main() -- we shouldn't see calls to * them since they should all be inlined before we get to ir_to_mesa. */ if (strcmp(ir->name, "main") == 0) { const ir_function_signature *sig; exec_list empty; sig = ir->matching_signature(NULL, &empty, false); assert(sig); foreach_in_list(ir_instruction, ir_, &sig->body) { this->base_ir = ir_; ir_->accept(this); } } } void fs_visitor::visit(ir_function_signature *) { unreachable("not reached"); } void fs_visitor::visit(ir_emit_vertex *) { unreachable("not reached"); } void fs_visitor::visit(ir_end_primitive *) { unreachable("not reached"); } void fs_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index, fs_reg dst, fs_reg offset, fs_reg src0, fs_reg src1) { int reg_width = dispatch_width / 8; int length = 0; fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 4); sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD); /* Initialize the sample mask in the message header. */ emit(MOV(sources[0], fs_reg(0u))) ->force_writemask_all = true; if (stage == MESA_SHADER_FRAGMENT) { if (((brw_wm_prog_data*)this->prog_data)->uses_kill) { emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1))) ->force_writemask_all = true; } else { emit(MOV(component(sources[0], 7), retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD))) ->force_writemask_all = true; } } else { /* The execution mask is part of the side-band information sent together with * the message payload to the data port. It's implicitly ANDed with the sample * mask sent in the header to compute the actual set of channels that execute * the atomic operation. */ assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE); emit(MOV(component(sources[0], 7), fs_reg(0xffffu)))->force_writemask_all = true; } length++; /* Set the atomic operation offset. */ sources[1] = vgrf(glsl_type::uint_type); emit(MOV(sources[1], offset)); length++; /* Set the atomic operation arguments. */ if (src0.file != BAD_FILE) { sources[length] = vgrf(glsl_type::uint_type); emit(MOV(sources[length], src0)); length++; } if (src1.file != BAD_FILE) { sources[length] = vgrf(glsl_type::uint_type); emit(MOV(sources[length], src1)); length++; } int mlen = 1 + (length - 1) * reg_width; fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen), BRW_REGISTER_TYPE_UD); emit(LOAD_PAYLOAD(src_payload, sources, length)); /* Emit the instruction. */ fs_inst *inst = emit(SHADER_OPCODE_UNTYPED_ATOMIC, dst, src_payload, fs_reg(atomic_op), fs_reg(surf_index)); inst->mlen = mlen; } void fs_visitor::emit_untyped_surface_read(unsigned surf_index, fs_reg dst, fs_reg offset) { int reg_width = dispatch_width / 8; fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2); sources[0] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD); /* Initialize the sample mask in the message header. */ emit(MOV(sources[0], fs_reg(0u))) ->force_writemask_all = true; if (stage == MESA_SHADER_FRAGMENT) { if (((brw_wm_prog_data*)this->prog_data)->uses_kill) { emit(MOV(component(sources[0], 7), brw_flag_reg(0, 1))) ->force_writemask_all = true; } else { emit(MOV(component(sources[0], 7), retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UD))) ->force_writemask_all = true; } } else { /* The execution mask is part of the side-band information sent together with * the message payload to the data port. It's implicitly ANDed with the sample * mask sent in the header to compute the actual set of channels that execute * the atomic operation. */ assert(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_COMPUTE); emit(MOV(component(sources[0], 7), fs_reg(0xffffu)))->force_writemask_all = true; } /* Set the surface read offset. */ sources[1] = vgrf(glsl_type::uint_type); emit(MOV(sources[1], offset)); int mlen = 1 + reg_width; fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen), BRW_REGISTER_TYPE_UD); fs_inst *inst = emit(LOAD_PAYLOAD(src_payload, sources, 2)); /* Emit the instruction. */ inst = emit(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst, src_payload, fs_reg(surf_index)); inst->mlen = mlen; } fs_inst * fs_visitor::emit(fs_inst *inst) { if (dispatch_width == 16 && inst->exec_size == 8) inst->force_uncompressed = true; inst->annotation = this->current_annotation; inst->ir = this->base_ir; this->instructions.push_tail(inst); return inst; } void fs_visitor::emit(exec_list list) { foreach_in_list_safe(fs_inst, inst, &list) { inst->exec_node::remove(); emit(inst); } } /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */ void fs_visitor::emit_dummy_fs() { int reg_width = dispatch_width / 8; /* Everyone's favorite color. */ const float color[4] = { 1.0, 0.0, 1.0, 0.0 }; for (int i = 0; i < 4; i++) { emit(MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F, dispatch_width), fs_reg(color[i]))); } fs_inst *write; write = emit(FS_OPCODE_FB_WRITE); write->eot = true; if (brw->gen >= 6) { write->base_mrf = 2; write->mlen = 4 * reg_width; } else { write->header_present = true; write->base_mrf = 0; write->mlen = 2 + 4 * reg_width; } /* Tell the SF we don't have any inputs. Gen4-5 require at least one * varying to avoid GPU hangs, so set that. */ brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data; wm_prog_data->num_varying_inputs = brw->gen < 6 ? 1 : 0; memset(wm_prog_data->urb_setup, -1, sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX); /* We don't have any uniforms. */ stage_prog_data->nr_params = 0; stage_prog_data->nr_pull_params = 0; stage_prog_data->curb_read_length = 0; stage_prog_data->dispatch_grf_start_reg = 2; wm_prog_data->dispatch_grf_start_reg_16 = 2; grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */ calculate_cfg(); } /* The register location here is relative to the start of the URB * data. It will get adjusted to be a real location before * generate_code() time. */ struct brw_reg fs_visitor::interp_reg(int location, int channel) { assert(stage == MESA_SHADER_FRAGMENT); brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data; int regnr = prog_data->urb_setup[location] * 2 + channel / 2; int stride = (channel & 1) * 4; assert(prog_data->urb_setup[location] != -1); return brw_vec1_grf(regnr, stride); } /** Emits the interpolation for the varying inputs. */ void fs_visitor::emit_interpolation_setup_gen4() { struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW); this->current_annotation = "compute pixel centers"; this->pixel_x = vgrf(glsl_type::uint_type); this->pixel_y = vgrf(glsl_type::uint_type); this->pixel_x.type = BRW_REGISTER_TYPE_UW; this->pixel_y.type = BRW_REGISTER_TYPE_UW; emit(ADD(this->pixel_x, fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)), fs_reg(brw_imm_v(0x10101010)))); emit(ADD(this->pixel_y, fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)), fs_reg(brw_imm_v(0x11001100)))); this->current_annotation = "compute pixel deltas from v0"; this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] = vgrf(glsl_type::vec2_type); const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC]; const fs_reg xstart(negate(brw_vec1_grf(1, 0))); const fs_reg ystart(negate(brw_vec1_grf(1, 1))); if (brw->has_pln && dispatch_width == 16) { emit(ADD(half(offset(delta_xy, 0), 0), half(this->pixel_x, 0), xstart)); emit(ADD(half(offset(delta_xy, 0), 1), half(this->pixel_y, 0), ystart)); emit(ADD(half(offset(delta_xy, 1), 0), half(this->pixel_x, 1), xstart)) ->force_sechalf = true; emit(ADD(half(offset(delta_xy, 1), 1), half(this->pixel_y, 1), ystart)) ->force_sechalf = true; } else { emit(ADD(offset(delta_xy, 0), this->pixel_x, xstart)); emit(ADD(offset(delta_xy, 1), this->pixel_y, ystart)); } this->current_annotation = "compute pos.w and 1/pos.w"; /* Compute wpos.w. It's always in our setup, since it's needed to * interpolate the other attributes. */ this->wpos_w = vgrf(glsl_type::float_type); emit(FS_OPCODE_LINTERP, wpos_w, delta_xy, interp_reg(VARYING_SLOT_POS, 3)); /* Compute the pixel 1/W value from wpos.w. */ this->pixel_w = vgrf(glsl_type::float_type); emit_math(SHADER_OPCODE_RCP, this->pixel_w, wpos_w); this->current_annotation = NULL; } /** Emits the interpolation for the varying inputs. */ void fs_visitor::emit_interpolation_setup_gen6() { struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW); this->current_annotation = "compute pixel centers"; if (brw->gen >= 8 || dispatch_width == 8) { /* The "Register Region Restrictions" page says for BDW (and newer, * presumably): * * "When destination spans two registers, the source may be one or * two registers. The destination elements must be evenly split * between the two registers." * * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to * compute our pixel centers. */ fs_reg int_pixel_xy(GRF, alloc.allocate(dispatch_width / 8), BRW_REGISTER_TYPE_UW, dispatch_width * 2); emit(ADD(int_pixel_xy, fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)), fs_reg(brw_imm_v(0x11001010)))) ->force_writemask_all = true; this->pixel_x = vgrf(glsl_type::float_type); this->pixel_y = vgrf(glsl_type::float_type); emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy); emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy); } else { /* The "Register Region Restrictions" page says for SNB, IVB, HSW: * * "When destination spans two registers, the source MUST span two * registers." * * Since the GRF source of the ADD will only read a single register, we * must do two separate ADDs in SIMD16. */ fs_reg int_pixel_x = vgrf(glsl_type::uint_type); fs_reg int_pixel_y = vgrf(glsl_type::uint_type); int_pixel_x.type = BRW_REGISTER_TYPE_UW; int_pixel_y.type = BRW_REGISTER_TYPE_UW; emit(ADD(int_pixel_x, fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)), fs_reg(brw_imm_v(0x10101010)))); emit(ADD(int_pixel_y, fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)), fs_reg(brw_imm_v(0x11001100)))); /* As of gen6, we can no longer mix float and int sources. We have * to turn the integer pixel centers into floats for their actual * use. */ this->pixel_x = vgrf(glsl_type::float_type); this->pixel_y = vgrf(glsl_type::float_type); emit(MOV(this->pixel_x, int_pixel_x)); emit(MOV(this->pixel_y, int_pixel_y)); } this->current_annotation = "compute pos.w"; this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0)); this->wpos_w = vgrf(glsl_type::float_type); emit_math(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w); for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) { uint8_t reg = payload.barycentric_coord_reg[i]; this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0)); } this->current_annotation = NULL; } int fs_visitor::setup_color_payload(fs_reg *dst, fs_reg color, unsigned components, bool use_2nd_half) { brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; fs_inst *inst; if (color.file == BAD_FILE) { return 4 * (dispatch_width / 8); } uint8_t colors_enabled; if (components == 0) { /* We want to write one component to the alpha channel */ colors_enabled = 0x8; } else { /* Enable the first components-many channels */ colors_enabled = (1 << components) - 1; } if (dispatch_width == 8 || (brw->gen >= 6 && !do_dual_src)) { /* SIMD8 write looks like: * m + 0: r0 * m + 1: r1 * m + 2: g0 * m + 3: g1 * * gen6 SIMD16 DP write looks like: * m + 0: r0 * m + 1: r1 * m + 2: g0 * m + 3: g1 * m + 4: b0 * m + 5: b1 * m + 6: a0 * m + 7: a1 */ int len = 0; for (unsigned i = 0; i < 4; ++i) { if (colors_enabled & (1 << i)) { dst[len] = fs_reg(GRF, alloc.allocate(color.width / 8), color.type, color.width); inst = emit(MOV(dst[len], offset(color, i))); inst->saturate = key->clamp_fragment_color; } else if (color.width == 16) { /* We need two BAD_FILE slots for a 16-wide color */ len++; } len++; } return len; } else if (brw->gen >= 6 && do_dual_src) { /* SIMD16 dual source blending for gen6+. * * From the SNB PRM, volume 4, part 1, page 193: * * "The dual source render target messages only have SIMD8 forms due to * maximum message length limitations. SIMD16 pixel shaders must send two * of these messages to cover all of the pixels. Each message contains * two colors (4 channels each) for each pixel in the message payload." * * So in SIMD16 dual source blending we will send 2 SIMD8 messages, * each one will call this function twice (one for each color involved), * so in each pass we only write 4 registers. Notice that the second * SIMD8 message needs to read color data from the 2nd half of the color * registers, so it needs to call this with use_2nd_half = true. */ for (unsigned i = 0; i < 4; ++i) { if (colors_enabled & (1 << i)) { dst[i] = fs_reg(GRF, alloc.allocate(1), color.type); inst = emit(MOV(dst[i], half(offset(color, i), use_2nd_half ? 1 : 0))); inst->saturate = key->clamp_fragment_color; if (use_2nd_half) inst->force_sechalf = true; } } return 4; } else { /* pre-gen6 SIMD16 single source DP write looks like: * m + 0: r0 * m + 1: g0 * m + 2: b0 * m + 3: a0 * m + 4: r1 * m + 5: g1 * m + 6: b1 * m + 7: a1 */ for (unsigned i = 0; i < 4; ++i) { if (colors_enabled & (1 << i)) { dst[i] = fs_reg(GRF, alloc.allocate(1), color.type); inst = emit(MOV(dst[i], half(offset(color, i), 0))); inst->saturate = key->clamp_fragment_color; dst[i + 4] = fs_reg(GRF, alloc.allocate(1), color.type); inst = emit(MOV(dst[i + 4], half(offset(color, i), 1))); inst->saturate = key->clamp_fragment_color; inst->force_sechalf = true; } } return 8; } } static enum brw_conditional_mod cond_for_alpha_func(GLenum func) { switch(func) { case GL_GREATER: return BRW_CONDITIONAL_G; case GL_GEQUAL: return BRW_CONDITIONAL_GE; case GL_LESS: return BRW_CONDITIONAL_L; case GL_LEQUAL: return BRW_CONDITIONAL_LE; case GL_EQUAL: return BRW_CONDITIONAL_EQ; case GL_NOTEQUAL: return BRW_CONDITIONAL_NEQ; default: unreachable("Not reached"); } } /** * Alpha test support for when we compile it into the shader instead * of using the normal fixed-function alpha test. */ void fs_visitor::emit_alpha_test() { assert(stage == MESA_SHADER_FRAGMENT); brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; this->current_annotation = "Alpha test"; fs_inst *cmp; if (key->alpha_test_func == GL_ALWAYS) return; if (key->alpha_test_func == GL_NEVER) { /* f0.1 = 0 */ fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW)); cmp = emit(CMP(reg_null_f, some_reg, some_reg, BRW_CONDITIONAL_NEQ)); } else { /* RT0 alpha */ fs_reg color = offset(outputs[0], 3); /* f0.1 &= func(color, ref) */ cmp = emit(CMP(reg_null_f, color, fs_reg(key->alpha_test_ref), cond_for_alpha_func(key->alpha_test_func))); } cmp->predicate = BRW_PREDICATE_NORMAL; cmp->flag_subreg = 1; } fs_inst * fs_visitor::emit_single_fb_write(fs_reg color0, fs_reg color1, fs_reg src0_alpha, unsigned components, bool use_2nd_half) { assert(stage == MESA_SHADER_FRAGMENT); brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data; brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; this->current_annotation = "FB write header"; bool header_present = true; int reg_size = dispatch_width / 8; /* We can potentially have a message length of up to 15, so we have to set * base_mrf to either 0 or 1 in order to fit in m0..m15. */ fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 15); int length = 0; /* From the Sandy Bridge PRM, volume 4, page 198: * * "Dispatched Pixel Enables. One bit per pixel indicating * which pixels were originally enabled when the thread was * dispatched. This field is only required for the end-of- * thread message and on all dual-source messages." */ if (brw->gen >= 6 && (brw->is_haswell || brw->gen >= 8 || !prog_data->uses_kill) && color1.file == BAD_FILE && key->nr_color_regions == 1) { header_present = false; } if (header_present) /* Allocate 2 registers for a header */ length += 2; if (payload.aa_dest_stencil_reg) { sources[length] = fs_reg(GRF, alloc.allocate(1)); emit(MOV(sources[length], fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)))); length++; } prog_data->uses_omask = prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK); if (prog_data->uses_omask) { this->current_annotation = "FB write oMask"; assert(this->sample_mask.file != BAD_FILE); /* Hand over gl_SampleMask. Only lower 16 bits are relevant. Since * it's unsinged single words, one vgrf is always 16-wide. */ sources[length] = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UW, 16); emit(FS_OPCODE_SET_OMASK, sources[length], this->sample_mask); length++; } if (color0.file == BAD_FILE) { /* Even if there's no color buffers enabled, we still need to send * alpha out the pipeline to our null renderbuffer to support * alpha-testing, alpha-to-coverage, and so on. */ length += setup_color_payload(sources + length, this->outputs[0], 0, false); } else if (color1.file == BAD_FILE) { if (src0_alpha.file != BAD_FILE) { sources[length] = fs_reg(GRF, alloc.allocate(reg_size), src0_alpha.type, src0_alpha.width); fs_inst *inst = emit(MOV(sources[length], src0_alpha)); inst->saturate = key->clamp_fragment_color; length++; } length += setup_color_payload(sources + length, color0, components, false); } else { length += setup_color_payload(sources + length, color0, components, use_2nd_half); length += setup_color_payload(sources + length, color1, components, use_2nd_half); } if (source_depth_to_render_target) { if (brw->gen == 6) { /* For outputting oDepth on gen6, SIMD8 writes have to be * used. This would require SIMD8 moves of each half to * message regs, kind of like pre-gen5 SIMD16 FB writes. * Just bail on doing so for now. */ no16("Missing support for simd16 depth writes on gen6\n"); } sources[length] = vgrf(glsl_type::float_type); if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) { /* Hand over gl_FragDepth. */ assert(this->frag_depth.file != BAD_FILE); emit(MOV(sources[length], this->frag_depth)); } else { /* Pass through the payload depth. */ emit(MOV(sources[length], fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)))); } length++; } if (payload.dest_depth_reg) { sources[length] = vgrf(glsl_type::float_type); emit(MOV(sources[length], fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)))); length++; } fs_inst *load; fs_inst *write; if (brw->gen >= 7) { /* Send from the GRF */ fs_reg payload = fs_reg(GRF, -1, BRW_REGISTER_TYPE_F); load = emit(LOAD_PAYLOAD(payload, sources, length)); payload.reg = alloc.allocate(load->regs_written); payload.width = dispatch_width; load->dst = payload; write = emit(FS_OPCODE_FB_WRITE, reg_undef, payload); write->base_mrf = -1; } else { /* Send from the MRF */ load = emit(LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F), sources, length)); write = emit(FS_OPCODE_FB_WRITE); write->exec_size = dispatch_width; write->base_mrf = 1; } write->mlen = load->regs_written; write->header_present = header_present; if (prog_data->uses_kill) { write->predicate = BRW_PREDICATE_NORMAL; write->flag_subreg = 1; } return write; } void fs_visitor::emit_fb_writes() { assert(stage == MESA_SHADER_FRAGMENT); brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data; brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; fs_inst *inst = NULL; if (do_dual_src) { this->current_annotation = ralloc_asprintf(this->mem_ctx, "FB dual-source write"); inst = emit_single_fb_write(this->outputs[0], this->dual_src_output, reg_undef, 4); inst->target = 0; /* SIMD16 dual source blending requires to send two SIMD8 dual source * messages, where each message contains color data for 8 pixels. Color * data for the first group of pixels is stored in the "lower" half of * the color registers, so in SIMD16, the previous message did: * m + 0: r0 * m + 1: g0 * m + 2: b0 * m + 3: a0 * * Here goes the second message, which packs color data for the * remaining 8 pixels. Color data for these pixels is stored in the * "upper" half of the color registers, so we need to do: * m + 0: r1 * m + 1: g1 * m + 2: b1 * m + 3: a1 */ if (dispatch_width == 16) { inst = emit_single_fb_write(this->outputs[0], this->dual_src_output, reg_undef, 4, true); inst->target = 0; } prog_data->dual_src_blend = true; } else { for (int target = 0; target < key->nr_color_regions; target++) { /* Skip over outputs that weren't written. */ if (this->outputs[target].file == BAD_FILE) continue; this->current_annotation = ralloc_asprintf(this->mem_ctx, "FB write target %d", target); fs_reg src0_alpha; if (brw->gen >= 6 && key->replicate_alpha && target != 0) src0_alpha = offset(outputs[0], 3); inst = emit_single_fb_write(this->outputs[target], reg_undef, src0_alpha, this->output_components[target]); inst->target = target; } } if (inst == NULL) { /* Even if there's no color buffers enabled, we still need to send * alpha out the pipeline to our null renderbuffer to support * alpha-testing, alpha-to-coverage, and so on. */ inst = emit_single_fb_write(reg_undef, reg_undef, reg_undef, 0); inst->target = 0; } inst->eot = true; this->current_annotation = NULL; } void fs_visitor::setup_uniform_clipplane_values() { gl_clip_plane *clip_planes = brw_select_clip_planes(ctx); const struct brw_vue_prog_key *key = (const struct brw_vue_prog_key *) this->key; for (int i = 0; i < key->nr_userclip_plane_consts; i++) { this->userplane[i] = fs_reg(UNIFORM, uniforms); for (int j = 0; j < 4; ++j) { stage_prog_data->param[uniforms + j] = (gl_constant_value *) &clip_planes[i][j]; } uniforms += 4; } } void fs_visitor::compute_clip_distance() { struct brw_vue_prog_data *vue_prog_data = (struct brw_vue_prog_data *) prog_data; const struct brw_vue_prog_key *key = (const struct brw_vue_prog_key *) this->key; /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables): * * "If a linked set of shaders forming the vertex stage contains no * static write to gl_ClipVertex or gl_ClipDistance, but the * application has requested clipping against user clip planes through * the API, then the coordinate written to gl_Position is used for * comparison against the user clip planes." * * This function is only called if the shader didn't write to * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping * if the user wrote to it; otherwise we use gl_Position. */ gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX; if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX)) clip_vertex = VARYING_SLOT_POS; /* If the clip vertex isn't written, skip this. Typically this means * the GS will set up clipping. */ if (outputs[clip_vertex].file == BAD_FILE) return; setup_uniform_clipplane_values(); current_annotation = "user clip distances"; this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type); this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type); for (int i = 0; i < key->nr_userclip_plane_consts; i++) { fs_reg u = userplane[i]; fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4]; output.reg_offset = i & 3; emit(MUL(output, outputs[clip_vertex], u)); for (int j = 1; j < 4; j++) { u.reg = userplane[i].reg + j; emit(MAD(output, output, offset(outputs[clip_vertex], j), u)); } } } void fs_visitor::emit_urb_writes() { int slot, urb_offset, length; struct brw_vs_prog_data *vs_prog_data = (struct brw_vs_prog_data *) prog_data; const struct brw_vs_prog_key *key = (const struct brw_vs_prog_key *) this->key; const GLbitfield64 psiz_mask = VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ; const struct brw_vue_map *vue_map = &vs_prog_data->base.vue_map; bool flush; fs_reg sources[8]; /* Lower legacy ff and ClipVertex clipping to clip distances */ if (key->base.userclip_active && !prog->UsesClipDistanceOut) compute_clip_distance(); /* If we don't have any valid slots to write, just do a minimal urb write * send to terminate the shader. */ if (vue_map->slots_valid == 0) { fs_reg payload = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD); fs_inst *inst = emit(MOV(payload, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)))); inst->force_writemask_all = true; inst = emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload); inst->eot = true; inst->mlen = 1; inst->offset = 1; return; } length = 0; urb_offset = 0; flush = false; for (slot = 0; slot < vue_map->num_slots; slot++) { fs_reg reg, src, zero; int varying = vue_map->slot_to_varying[slot]; switch (varying) { case VARYING_SLOT_PSIZ: /* The point size varying slot is the vue header and is always in the * vue map. But often none of the special varyings that live there * are written and in that case we can skip writing to the vue * header, provided the corresponding state properly clamps the * values further down the pipeline. */ if ((vue_map->slots_valid & psiz_mask) == 0) { assert(length == 0); urb_offset++; break; } zero = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD); emit(MOV(zero, fs_reg(0u))); sources[length++] = zero; if (vue_map->slots_valid & VARYING_BIT_LAYER) sources[length++] = this->outputs[VARYING_SLOT_LAYER]; else sources[length++] = zero; if (vue_map->slots_valid & VARYING_BIT_VIEWPORT) sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT]; else sources[length++] = zero; if (vue_map->slots_valid & VARYING_BIT_PSIZ) sources[length++] = this->outputs[VARYING_SLOT_PSIZ]; else sources[length++] = zero; break; case BRW_VARYING_SLOT_NDC: case VARYING_SLOT_EDGE: unreachable("unexpected scalar vs output"); break; case BRW_VARYING_SLOT_PAD: break; default: /* gl_Position is always in the vue map, but isn't always written by * the shader. Other varyings (clip distances) get added to the vue * map but don't always get written. In those cases, the * corresponding this->output[] slot will be invalid we and can skip * the urb write for the varying. If we've already queued up a vue * slot for writing we flush a mlen 5 urb write, otherwise we just * advance the urb_offset. */ if (this->outputs[varying].file == BAD_FILE) { if (length > 0) flush = true; else urb_offset++; break; } if ((varying == VARYING_SLOT_COL0 || varying == VARYING_SLOT_COL1 || varying == VARYING_SLOT_BFC0 || varying == VARYING_SLOT_BFC1) && key->clamp_vertex_color) { /* We need to clamp these guys, so do a saturating MOV into a * temp register and use that for the payload. */ for (int i = 0; i < 4; i++) { reg = fs_reg(GRF, alloc.allocate(1), outputs[varying].type); src = offset(this->outputs[varying], i); fs_inst *inst = emit(MOV(reg, src)); inst->saturate = true; sources[length++] = reg; } } else { for (int i = 0; i < 4; i++) sources[length++] = offset(this->outputs[varying], i); } break; } current_annotation = "URB write"; /* If we've queued up 8 registers of payload (2 VUE slots), if this is * the last slot or if we need to flush (see BAD_FILE varying case * above), emit a URB write send now to flush out the data. */ int last = slot == vue_map->num_slots - 1; if (length == 8 || last) flush = true; if (flush) { fs_reg *payload_sources = ralloc_array(mem_ctx, fs_reg, length + 1); fs_reg payload = fs_reg(GRF, alloc.allocate(length + 1), BRW_REGISTER_TYPE_F); /* We need WE_all on the MOV for the message header (the URB handles) * so do a MOV to a dummy register and set force_writemask_all on the * MOV. LOAD_PAYLOAD will preserve that. */ fs_reg dummy = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD); fs_inst *inst = emit(MOV(dummy, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)))); inst->force_writemask_all = true; payload_sources[0] = dummy; memcpy(&payload_sources[1], sources, length * sizeof sources[0]); emit(LOAD_PAYLOAD(payload, payload_sources, length + 1)); inst = emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload); inst->eot = last; inst->mlen = length + 1; inst->offset = urb_offset; urb_offset = slot + 1; length = 0; flush = false; } } } void fs_visitor::resolve_ud_negate(fs_reg *reg) { if (reg->type != BRW_REGISTER_TYPE_UD || !reg->negate) return; fs_reg temp = vgrf(glsl_type::uint_type); emit(MOV(temp, *reg)); *reg = temp; } /** * Resolve the result of a Gen4-5 CMP instruction to a proper boolean. * * CMP on Gen4-5 only sets the LSB of the result; the rest are undefined. * If we need a proper boolean value, we have to fix it up to be 0 or ~0. */ void fs_visitor::resolve_bool_comparison(ir_rvalue *rvalue, fs_reg *reg) { assert(brw->gen <= 5); if (rvalue->type != glsl_type::bool_type) return; fs_reg and_result = vgrf(glsl_type::bool_type); fs_reg neg_result = vgrf(glsl_type::bool_type); emit(AND(and_result, *reg, fs_reg(1))); emit(MOV(neg_result, negate(and_result))); *reg = neg_result; } fs_visitor::fs_visitor(struct brw_context *brw, void *mem_ctx, const struct brw_wm_prog_key *key, struct brw_wm_prog_data *prog_data, struct gl_shader_program *shader_prog, struct gl_fragment_program *fp, unsigned dispatch_width) : backend_visitor(brw, shader_prog, &fp->Base, &prog_data->base, MESA_SHADER_FRAGMENT), reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)), reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)), reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)), key(key), prog_data(&prog_data->base), dispatch_width(dispatch_width), promoted_constants(0) { this->mem_ctx = mem_ctx; init(); } fs_visitor::fs_visitor(struct brw_context *brw, void *mem_ctx, const struct brw_vs_prog_key *key, struct brw_vs_prog_data *prog_data, struct gl_shader_program *shader_prog, struct gl_vertex_program *cp, unsigned dispatch_width) : backend_visitor(brw, shader_prog, &cp->Base, &prog_data->base.base, MESA_SHADER_VERTEX), reg_null_f(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_F)), reg_null_d(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_D)), reg_null_ud(retype(brw_null_vec(dispatch_width), BRW_REGISTER_TYPE_UD)), key(key), prog_data(&prog_data->base.base), dispatch_width(dispatch_width), promoted_constants(0) { this->mem_ctx = mem_ctx; init(); } void fs_visitor::init() { switch (stage) { case MESA_SHADER_FRAGMENT: key_tex = &((const brw_wm_prog_key *) key)->tex; break; case MESA_SHADER_VERTEX: case MESA_SHADER_GEOMETRY: key_tex = &((const brw_vue_prog_key *) key)->tex; break; default: unreachable("unhandled shader stage"); } this->failed = false; this->simd16_unsupported = false; this->no16_msg = NULL; this->variable_ht = hash_table_ctor(0, hash_table_pointer_hash, hash_table_pointer_compare); this->nir_locals = NULL; this->nir_globals = NULL; memset(&this->payload, 0, sizeof(this->payload)); memset(this->outputs, 0, sizeof(this->outputs)); memset(this->output_components, 0, sizeof(this->output_components)); this->source_depth_to_render_target = false; this->runtime_check_aads_emit = false; this->first_non_payload_grf = 0; this->max_grf = brw->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF; this->current_annotation = NULL; this->base_ir = NULL; this->virtual_grf_start = NULL; this->virtual_grf_end = NULL; this->live_intervals = NULL; this->regs_live_at_ip = NULL; this->uniforms = 0; this->last_scratch = 0; this->pull_constant_loc = NULL; this->push_constant_loc = NULL; this->spilled_any_registers = false; this->do_dual_src = false; if (dispatch_width == 8) this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params); } fs_visitor::~fs_visitor() { hash_table_dtor(this->variable_ht); }