/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "brw_fs.h" #include "glsl/glsl_types.h" #include "glsl/ir_optimization.h" #include "glsl/ir_print_visitor.h" static void assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width) { if (reg->file == GRF) { assert(reg->reg_offset >= 0); reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width; reg->reg_offset = 0; } } void fs_visitor::assign_regs_trivial() { int hw_reg_mapping[this->virtual_grf_count + 1]; int i; int reg_width = c->dispatch_width / 8; /* Note that compressed instructions require alignment to 2 registers. */ hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width); for (i = 1; i <= this->virtual_grf_count; i++) { hw_reg_mapping[i] = (hw_reg_mapping[i - 1] + this->virtual_grf_sizes[i - 1] * reg_width); } this->grf_used = hw_reg_mapping[this->virtual_grf_count]; foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; assign_reg(hw_reg_mapping, &inst->dst, reg_width); assign_reg(hw_reg_mapping, &inst->src[0], reg_width); assign_reg(hw_reg_mapping, &inst->src[1], reg_width); assign_reg(hw_reg_mapping, &inst->src[2], reg_width); } if (this->grf_used >= max_grf) { fail("Ran out of regs on trivial allocator (%d/%d)\n", this->grf_used, max_grf); } } static void brw_alloc_reg_set(struct brw_context *brw, int reg_width) { struct intel_context *intel = &brw->intel; int base_reg_count = BRW_MAX_GRF / reg_width; int index = reg_width - 1; /* The registers used to make up almost all values handled in the compiler * are a scalar value occupying a single register (or 2 registers in the * case of 16-wide, which is handled by dividing base_reg_count by 2 and * multiplying allocated register numbers by 2). Things that were * aggregates of scalar values at the GLSL level were split to scalar * values by split_virtual_grfs(). * * However, texture SEND messages return a series of contiguous registers. * We currently always ask for 4 registers, but we may convert that to use * less some day. * * Additionally, on gen5 we need aligned pairs of registers for the PLN * instruction, and on gen4 we need 8 contiguous regs for workaround simd16 * texturing. * * So we have a need for classes for 1, 2, 4, and 8 registers currently, * and we add in '3' to make indexing the array easier for the common case * (since we'll probably want it for texturing later). */ const int class_count = 5; const int class_sizes[class_count] = {1, 2, 3, 4, 8}; /* Compute the total number of registers across all classes. */ int ra_reg_count = 0; for (int i = 0; i < class_count; i++) { ra_reg_count += base_reg_count - (class_sizes[i] - 1); } uint8_t *ra_reg_to_grf = ralloc_array(brw, uint8_t, ra_reg_count); struct ra_regs *regs = ra_alloc_reg_set(brw, ra_reg_count); int *classes = ralloc_array(brw, int, class_count); int aligned_pairs_class = -1; /* Now, add the registers to their classes, and add the conflicts * between them and the base GRF registers (and also each other). */ int reg = 0; int pairs_base_reg = 0; int pairs_reg_count = 0; for (int i = 0; i < class_count; i++) { int class_reg_count = base_reg_count - (class_sizes[i] - 1); classes[i] = ra_alloc_reg_class(regs); /* Save this off for the aligned pair class at the end. */ if (class_sizes[i] == 2) { pairs_base_reg = reg; pairs_reg_count = class_reg_count; } for (int j = 0; j < class_reg_count; j++) { ra_class_add_reg(regs, classes[i], reg); ra_reg_to_grf[reg] = j; for (int base_reg = j; base_reg < j + class_sizes[i]; base_reg++) { ra_add_transitive_reg_conflict(regs, base_reg, reg); } reg++; } } assert(reg == ra_reg_count); /* Add a special class for aligned pairs, which we'll put delta_x/y * in on gen5 so that we can do PLN. */ if (brw->has_pln && reg_width == 1 && intel->gen < 6) { aligned_pairs_class = ra_alloc_reg_class(regs); for (int i = 0; i < pairs_reg_count; i++) { if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) { ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i); } } } ra_set_finalize(regs, NULL); brw->wm.reg_sets[index].regs = regs; brw->wm.reg_sets[index].classes = classes; brw->wm.reg_sets[index].ra_reg_to_grf = ra_reg_to_grf; brw->wm.reg_sets[index].aligned_pairs_class = aligned_pairs_class; } void brw_fs_alloc_reg_sets(struct brw_context *brw) { brw_alloc_reg_set(brw, 1); brw_alloc_reg_set(brw, 2); } int count_to_loop_end(fs_inst *do_inst) { int depth = 1; int ip = 1; for (fs_inst *inst = (fs_inst *)do_inst->next; depth > 0; inst = (fs_inst *)inst->next) { switch (inst->opcode) { case BRW_OPCODE_DO: depth++; break; case BRW_OPCODE_WHILE: depth--; break; default: break; } ip++; } return ip; } /** * Sets up interference between thread payload registers and the virtual GRFs * to be allocated for program temporaries. * * We want to be able to reallocate the payload for our virtual GRFs, notably * because the setup coefficients for a full set of 16 FS inputs takes up 8 of * our 128 registers. * * The layout of the payload registers is: * * 0..nr_payload_regs-1: fixed function setup (including bary coordinates). * nr_payload_regs..nr_payload_regs+curb_read_lengh-1: uniform data * nr_payload_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients. * * And we have payload_node_count nodes covering these registers in order * (note that in 16-wide, a node is two registers). */ void fs_visitor::setup_payload_interference(struct ra_graph *g, int payload_node_count, int first_payload_node) { int reg_width = c->dispatch_width / 8; int loop_depth = 0; int loop_end_ip = 0; int payload_last_use_ip[payload_node_count]; memset(payload_last_use_ip, 0, sizeof(payload_last_use_ip)); int ip = 0; foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; switch (inst->opcode) { case BRW_OPCODE_DO: loop_depth++; /* Since payload regs are deffed only at the start of the shader * execution, any uses of the payload within a loop mean the live * interval extends to the end of the outermost loop. Find the ip of * the end now. */ if (loop_depth == 1) loop_end_ip = ip + count_to_loop_end(inst); break; case BRW_OPCODE_WHILE: loop_depth--; break; default: break; } int use_ip; if (loop_depth > 0) use_ip = loop_end_ip; else use_ip = ip; /* Note that UNIFORM args have been turned into FIXED_HW_REG by * assign_curbe_setup(), and interpolation uses fixed hardware regs from * the start (see interp_reg()). */ for (int i = 0; i < 3; i++) { if (inst->src[i].file == FIXED_HW_REG && inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) { int node_nr = inst->src[i].fixed_hw_reg.nr / reg_width; if (node_nr >= payload_node_count) continue; payload_last_use_ip[node_nr] = use_ip; } } /* Special case instructions which have extra implied registers used. */ switch (inst->opcode) { case FS_OPCODE_FB_WRITE: /* We could omit this for the !inst->header_present case, except that * the simulator apparently incorrectly reads from g0/g1 instead of * sideband. It also really freaks out driver developers to see g0 * used in unusual places, so just always reserve it. */ payload_last_use_ip[0 / reg_width] = use_ip; payload_last_use_ip[1 / reg_width] = use_ip; break; case FS_OPCODE_DISCARD: payload_last_use_ip[1 / reg_width] = use_ip; break; case FS_OPCODE_LINTERP: /* On gen6+ in 16-wide, there are 4 adjacent registers (so 2 nodes) * used by PLN's sourcing of the deltas, while we list only the first * two in the arguments (1 node). Pre-gen6, the deltas are computed * in normal VGRFs. */ if (intel->gen >= 6) { int delta_x_arg = 0; if (inst->src[delta_x_arg].file == FIXED_HW_REG && inst->src[delta_x_arg].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) { int sechalf_node = (inst->src[delta_x_arg].fixed_hw_reg.nr / reg_width) + 1; assert(sechalf_node < payload_node_count); payload_last_use_ip[sechalf_node] = use_ip; } } break; default: break; } ip++; } for (int i = 0; i < payload_node_count; i++) { /* Mark the payload node as interfering with any virtual grf that is * live between the start of the program and our last use of the payload * node. */ for (int j = 0; j < this->virtual_grf_count; j++) { if (this->virtual_grf_def[j] <= payload_last_use_ip[i] || this->virtual_grf_use[j] <= payload_last_use_ip[i]) { ra_add_node_interference(g, first_payload_node + i, j); } } } for (int i = 0; i < payload_node_count; i++) { /* Mark each payload node as being allocated to its physical register. * * The alternative would be to have per-physical-register classes, which * would just be silly. */ ra_set_node_reg(g, first_payload_node + i, i); } } /** * Sets interference between virtual GRFs and usage of the high GRFs for SEND * messages (treated as MRFs in code generation). */ void fs_visitor::setup_mrf_hack_interference(struct ra_graph *g, int first_mrf_node) { int mrf_count = BRW_MAX_GRF - GEN7_MRF_HACK_START; int reg_width = c->dispatch_width / 8; /* Identify all the MRFs used in the program. */ bool mrf_used[mrf_count]; memset(mrf_used, 0, sizeof(mrf_used)); foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; if (inst->dst.file == MRF) { int reg = inst->dst.reg & ~BRW_MRF_COMPR4; mrf_used[reg] = true; if (reg_width == 2) { if (inst->dst.reg & BRW_MRF_COMPR4) { mrf_used[reg + 4] = true; } else { mrf_used[reg + 1] = true; } } } if (inst->mlen > 0) { for (int i = 0; i < implied_mrf_writes(inst); i++) { mrf_used[inst->base_mrf + i] = true; } } } for (int i = 0; i < mrf_count; i++) { /* Mark each payload reg node as being allocated to its physical register. * * The alternative would be to have per-physical-register classes, which * would just be silly. */ ra_set_node_reg(g, first_mrf_node + i, (GEN7_MRF_HACK_START + i) / reg_width); /* Since we don't have any live/dead analysis on the MRFs, just mark all * that are used as conflicting with all virtual GRFs. */ if (mrf_used[i]) { for (int j = 0; j < this->virtual_grf_count; j++) { ra_add_node_interference(g, first_mrf_node + i, j); } } } } bool fs_visitor::assign_regs() { /* Most of this allocation was written for a reg_width of 1 * (dispatch_width == 8). In extending to 16-wide, the code was * left in place and it was converted to have the hardware * registers it's allocating be contiguous physical pairs of regs * for reg_width == 2. */ int reg_width = c->dispatch_width / 8; int hw_reg_mapping[this->virtual_grf_count]; int payload_node_count = (ALIGN(this->first_non_payload_grf, reg_width) / reg_width); int rsi = reg_width - 1; /* Which brw->wm.reg_sets[] to use */ calculate_live_intervals(); int node_count = this->virtual_grf_count; int first_payload_node = node_count; node_count += payload_node_count; int first_mrf_hack_node = node_count; if (intel->gen >= 7) node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START; struct ra_graph *g = ra_alloc_interference_graph(brw->wm.reg_sets[rsi].regs, node_count); for (int i = 0; i < this->virtual_grf_count; i++) { int size = this->virtual_grf_sizes[i]; int c; if (size == 8) { c = 4; } else { assert(size >= 1 && size <= 4 && "Register allocation relies on split_virtual_grfs()"); c = brw->wm.reg_sets[rsi].classes[size - 1]; } /* Special case: on pre-GEN6 hardware that supports PLN, the * second operand of a PLN instruction needs to be an * even-numbered register, so we have a special register class * wm_aligned_pairs_class to handle this case. pre-GEN6 always * uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the * second operand of a PLN instruction (since it doesn't support * any other interpolation modes). So all we need to do is find * that register and set it to the appropriate class. */ if (brw->wm.reg_sets[rsi].aligned_pairs_class >= 0 && this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) { c = brw->wm.reg_sets[rsi].aligned_pairs_class; } ra_set_node_class(g, i, c); for (int j = 0; j < i; j++) { if (virtual_grf_interferes(i, j)) { ra_add_node_interference(g, i, j); } } } setup_payload_interference(g, payload_node_count, first_payload_node); if (intel->gen >= 7) setup_mrf_hack_interference(g, first_mrf_hack_node); if (!ra_allocate_no_spills(g)) { /* Failed to allocate registers. Spill a reg, and the caller will * loop back into here to try again. */ int reg = choose_spill_reg(g); if (reg == -1) { fail("no register to spill\n"); } else if (c->dispatch_width == 16) { fail("Failure to register allocate. Reduce number of live scalar " "values to avoid this."); } else { spill_reg(reg); } ralloc_free(g); return false; } /* Get the chosen virtual registers for each node, and map virtual * regs in the register classes back down to real hardware reg * numbers. */ this->grf_used = payload_node_count * reg_width; for (int i = 0; i < this->virtual_grf_count; i++) { int reg = ra_get_node_reg(g, i); hw_reg_mapping[i] = brw->wm.reg_sets[rsi].ra_reg_to_grf[reg] * reg_width; this->grf_used = MAX2(this->grf_used, hw_reg_mapping[i] + this->virtual_grf_sizes[i] * reg_width); } foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; assign_reg(hw_reg_mapping, &inst->dst, reg_width); assign_reg(hw_reg_mapping, &inst->src[0], reg_width); assign_reg(hw_reg_mapping, &inst->src[1], reg_width); assign_reg(hw_reg_mapping, &inst->src[2], reg_width); } ralloc_free(g); return true; } void fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset) { fs_inst *unspill_inst = new(mem_ctx) fs_inst(FS_OPCODE_UNSPILL, dst); unspill_inst->offset = spill_offset; unspill_inst->ir = inst->ir; unspill_inst->annotation = inst->annotation; /* Choose a MRF that won't conflict with an MRF that's live across the * spill. Nothing else will make it up to MRF 14/15. */ unspill_inst->base_mrf = 14; unspill_inst->mlen = 1; /* header contains offset */ inst->insert_before(unspill_inst); } int fs_visitor::choose_spill_reg(struct ra_graph *g) { float loop_scale = 1.0; float spill_costs[this->virtual_grf_count]; bool no_spill[this->virtual_grf_count]; for (int i = 0; i < this->virtual_grf_count; i++) { spill_costs[i] = 0.0; no_spill[i] = false; } /* Calculate costs for spilling nodes. Call it a cost of 1 per * spill/unspill we'll have to do, and guess that the insides of * loops run 10 times. */ foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) { spill_costs[inst->src[i].reg] += loop_scale; /* Register spilling logic assumes full-width registers; smeared * registers have a width of 1 so if we try to spill them we'll * generate invalid assembly. This shouldn't be a problem because * smeared registers are only used as short-term temporaries when * loading pull constants, so spilling them is unlikely to reduce * register pressure anyhow. */ if (inst->src[i].smear >= 0) { no_spill[inst->src[i].reg] = true; } } } if (inst->dst.file == GRF) { spill_costs[inst->dst.reg] += inst->regs_written() * loop_scale; if (inst->dst.smear >= 0) { no_spill[inst->dst.reg] = true; } } switch (inst->opcode) { case BRW_OPCODE_DO: loop_scale *= 10; break; case BRW_OPCODE_WHILE: loop_scale /= 10; break; case FS_OPCODE_SPILL: if (inst->src[0].file == GRF) no_spill[inst->src[0].reg] = true; break; case FS_OPCODE_UNSPILL: if (inst->dst.file == GRF) no_spill[inst->dst.reg] = true; break; default: break; } } for (int i = 0; i < this->virtual_grf_count; i++) { if (!no_spill[i]) ra_set_node_spill_cost(g, i, spill_costs[i]); } return ra_get_best_spill_node(g); } void fs_visitor::spill_reg(int spill_reg) { int size = virtual_grf_sizes[spill_reg]; unsigned int spill_offset = c->last_scratch; assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */ c->last_scratch += size * REG_SIZE; /* Generate spill/unspill instructions for the objects being * spilled. Right now, we spill or unspill the whole thing to a * virtual grf of the same size. For most instructions, though, we * could just spill/unspill the GRF being accessed. */ foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == GRF && inst->src[i].reg == spill_reg) { inst->src[i].reg = virtual_grf_alloc(1); emit_unspill(inst, inst->src[i], spill_offset + REG_SIZE * inst->src[i].reg_offset); } } if (inst->dst.file == GRF && inst->dst.reg == spill_reg) { int subset_spill_offset = (spill_offset + REG_SIZE * inst->dst.reg_offset); inst->dst.reg = virtual_grf_alloc(inst->regs_written()); inst->dst.reg_offset = 0; /* If our write is going to affect just part of the * inst->regs_written(), then we need to unspill the destination * since we write back out all of the regs_written(). */ if (inst->predicate || inst->force_uncompressed || inst->force_sechalf) { fs_reg unspill_reg = inst->dst; for (int chan = 0; chan < inst->regs_written(); chan++) { emit_unspill(inst, unspill_reg, subset_spill_offset + REG_SIZE * chan); unspill_reg.reg_offset++; } } fs_reg spill_src = inst->dst; spill_src.reg_offset = 0; spill_src.abs = false; spill_src.negate = false; spill_src.smear = -1; for (int chan = 0; chan < inst->regs_written(); chan++) { fs_inst *spill_inst = new(mem_ctx) fs_inst(FS_OPCODE_SPILL, reg_null_f, spill_src); spill_src.reg_offset++; spill_inst->offset = subset_spill_offset + chan * REG_SIZE; spill_inst->ir = inst->ir; spill_inst->annotation = inst->annotation; spill_inst->base_mrf = 14; spill_inst->mlen = 2; /* header, value */ inst->insert_after(spill_inst); } } } this->live_intervals_valid = false; }