/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "compiler/glsl/ir.h" #include "brw_fs.h" #include "brw_fs_surface_builder.h" #include "brw_nir.h" #include "brw_program.h" using namespace brw; using namespace brw::surface_access; void fs_visitor::emit_nir_code() { /* emit the arrays used for inputs and outputs - load/store intrinsics will * be converted to reads/writes of these arrays */ nir_setup_outputs(); nir_setup_uniforms(); nir_emit_system_values(); /* get the main function and emit it */ nir_foreach_function(function, nir) { assert(strcmp(function->name, "main") == 0); assert(function->impl); nir_emit_impl(function->impl); } } void fs_visitor::nir_setup_single_output_varying(fs_reg *reg, const glsl_type *type, unsigned *location) { if (type->is_array() || type->is_matrix()) { const struct glsl_type *elem_type = glsl_get_array_element(type); const unsigned length = glsl_get_length(type); for (unsigned i = 0; i < length; i++) { nir_setup_single_output_varying(reg, elem_type, location); } } else if (type->is_record()) { for (unsigned i = 0; i < type->length; i++) { const struct glsl_type *field_type = type->fields.structure[i].type; nir_setup_single_output_varying(reg, field_type, location); } } else { assert(type->is_scalar() || type->is_vector()); unsigned num_iter = 1; if (type->is_dual_slot()) num_iter = 2; for (unsigned count = 0; count < num_iter; count++) { this->outputs[*location] = *reg; *reg = offset(*reg, bld, 4); (*location)++; } } } void fs_visitor::nir_setup_outputs() { if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT) return; nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs); nir_foreach_variable(var, &nir->outputs) { switch (stage) { case MESA_SHADER_VERTEX: case MESA_SHADER_TESS_EVAL: case MESA_SHADER_GEOMETRY: { fs_reg reg = offset(nir_outputs, bld, var->data.driver_location); unsigned location = var->data.location; nir_setup_single_output_varying(®, var->type, &location); break; } default: unreachable("unhandled shader stage"); } } } void fs_visitor::nir_setup_uniforms() { if (dispatch_width != min_dispatch_width) return; uniforms = nir->num_uniforms / 4; } static bool emit_system_values_block(nir_block *block, fs_visitor *v) { fs_reg *reg; nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_load_vertex_id: unreachable("should be lowered by lower_vertex_id()."); case nir_intrinsic_load_vertex_id_zero_base: assert(v->stage == MESA_SHADER_VERTEX); reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE]; if (reg->file == BAD_FILE) *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE); break; case nir_intrinsic_load_base_vertex: assert(v->stage == MESA_SHADER_VERTEX); reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX]; if (reg->file == BAD_FILE) *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX); break; case nir_intrinsic_load_instance_id: assert(v->stage == MESA_SHADER_VERTEX); reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID]; if (reg->file == BAD_FILE) *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID); break; case nir_intrinsic_load_base_instance: assert(v->stage == MESA_SHADER_VERTEX); reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE]; if (reg->file == BAD_FILE) *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE); break; case nir_intrinsic_load_draw_id: assert(v->stage == MESA_SHADER_VERTEX); reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID]; if (reg->file == BAD_FILE) *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID); break; case nir_intrinsic_load_invocation_id: if (v->stage == MESA_SHADER_TESS_CTRL) break; assert(v->stage == MESA_SHADER_GEOMETRY); reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID]; if (reg->file == BAD_FILE) { const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL); fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)); fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.SHR(iid, g1, brw_imm_ud(27u)); *reg = iid; } break; case nir_intrinsic_load_sample_pos: assert(v->stage == MESA_SHADER_FRAGMENT); reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS]; if (reg->file == BAD_FILE) *reg = *v->emit_samplepos_setup(); break; case nir_intrinsic_load_sample_id: assert(v->stage == MESA_SHADER_FRAGMENT); reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID]; if (reg->file == BAD_FILE) *reg = *v->emit_sampleid_setup(); break; case nir_intrinsic_load_sample_mask_in: assert(v->stage == MESA_SHADER_FRAGMENT); assert(v->devinfo->gen >= 7); reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN]; if (reg->file == BAD_FILE) *reg = *v->emit_samplemaskin_setup(); break; case nir_intrinsic_load_work_group_id: assert(v->stage == MESA_SHADER_COMPUTE); reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID]; if (reg->file == BAD_FILE) *reg = *v->emit_cs_work_group_id_setup(); break; case nir_intrinsic_load_helper_invocation: assert(v->stage == MESA_SHADER_FRAGMENT); reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION]; if (reg->file == BAD_FILE) { const fs_builder abld = v->bld.annotate("gl_HelperInvocation", NULL); /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the * pixel mask is in g1.7 of the thread payload. * * We move the per-channel pixel enable bit to the low bit of each * channel by shifting the byte containing the pixel mask by the * vector immediate 0x76543210UV. * * The region of <1,8,0> reads only 1 byte (the pixel masks for * subspans 0 and 1) in SIMD8 and an additional byte (the pixel * masks for 2 and 3) in SIMD16. */ fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1); abld.SHR(shifted, stride(byte_offset(retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UB), 28), 1, 8, 0), brw_imm_v(0x76543210)); /* A set bit in the pixel mask means the channel is enabled, but * that is the opposite of gl_HelperInvocation so we need to invert * the mask. * * The negate source-modifier bit of logical instructions on Gen8+ * performs 1's complement negation, so we can use that instead of * a NOT instruction. */ fs_reg inverted = negate(shifted); if (v->devinfo->gen < 8) { inverted = abld.vgrf(BRW_REGISTER_TYPE_UW); abld.NOT(inverted, shifted); } /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing * with 1 and negating. */ fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.AND(anded, inverted, brw_imm_uw(1)); fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1); abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D))); *reg = dst; } break; default: break; } } return true; } void fs_visitor::nir_emit_system_values() { nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX); for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) { nir_system_values[i] = fs_reg(); } nir_foreach_function(function, nir) { assert(strcmp(function->name, "main") == 0); assert(function->impl); nir_foreach_block(block, function->impl) { emit_system_values_block(block, this); } } } void fs_visitor::nir_emit_impl(nir_function_impl *impl) { nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc); for (unsigned i = 0; i < impl->reg_alloc; i++) { nir_locals[i] = fs_reg(); } foreach_list_typed(nir_register, reg, node, &impl->registers) { unsigned array_elems = reg->num_array_elems == 0 ? 1 : reg->num_array_elems; unsigned size = array_elems * reg->num_components; const brw_reg_type reg_type = reg->bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF; nir_locals[reg->index] = bld.vgrf(reg_type, size); } nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg, impl->ssa_alloc); nir_emit_cf_list(&impl->body); } void fs_visitor::nir_emit_cf_list(exec_list *list) { exec_list_validate(list); foreach_list_typed(nir_cf_node, node, node, list) { switch (node->type) { case nir_cf_node_if: nir_emit_if(nir_cf_node_as_if(node)); break; case nir_cf_node_loop: nir_emit_loop(nir_cf_node_as_loop(node)); break; case nir_cf_node_block: nir_emit_block(nir_cf_node_as_block(node)); break; default: unreachable("Invalid CFG node block"); } } } void fs_visitor::nir_emit_if(nir_if *if_stmt) { /* first, put the condition into f0 */ fs_inst *inst = bld.MOV(bld.null_reg_d(), retype(get_nir_src(if_stmt->condition), BRW_REGISTER_TYPE_D)); inst->conditional_mod = BRW_CONDITIONAL_NZ; bld.IF(BRW_PREDICATE_NORMAL); nir_emit_cf_list(&if_stmt->then_list); /* note: if the else is empty, dead CF elimination will remove it */ bld.emit(BRW_OPCODE_ELSE); nir_emit_cf_list(&if_stmt->else_list); bld.emit(BRW_OPCODE_ENDIF); } void fs_visitor::nir_emit_loop(nir_loop *loop) { bld.emit(BRW_OPCODE_DO); nir_emit_cf_list(&loop->body); bld.emit(BRW_OPCODE_WHILE); } void fs_visitor::nir_emit_block(nir_block *block) { nir_foreach_instr(instr, block) { nir_emit_instr(instr); } } void fs_visitor::nir_emit_instr(nir_instr *instr) { const fs_builder abld = bld.annotate(NULL, instr); switch (instr->type) { case nir_instr_type_alu: nir_emit_alu(abld, nir_instr_as_alu(instr)); break; case nir_instr_type_intrinsic: switch (stage) { case MESA_SHADER_VERTEX: nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_TESS_CTRL: nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_TESS_EVAL: nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_GEOMETRY: nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_FRAGMENT: nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_COMPUTE: nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr)); break; default: unreachable("unsupported shader stage"); } break; case nir_instr_type_tex: nir_emit_texture(abld, nir_instr_as_tex(instr)); break; case nir_instr_type_load_const: nir_emit_load_const(abld, nir_instr_as_load_const(instr)); break; case nir_instr_type_ssa_undef: /* We create a new VGRF for undefs on every use (by handling * them in get_nir_src()), rather than for each definition. * This helps register coalescing eliminate MOVs from undef. */ break; case nir_instr_type_jump: nir_emit_jump(abld, nir_instr_as_jump(instr)); break; default: unreachable("unknown instruction type"); } } /** * Recognizes a parent instruction of nir_op_extract_* and changes the type to * match instr. */ bool fs_visitor::optimize_extract_to_float(nir_alu_instr *instr, const fs_reg &result) { if (!instr->src[0].src.is_ssa || !instr->src[0].src.ssa->parent_instr) return false; if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu) return false; nir_alu_instr *src0 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr); if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 && src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16) return false; nir_const_value *element = nir_src_as_const_value(src0->src[1].src); assert(element != NULL); /* Element type to extract.*/ const brw_reg_type type = brw_int_type( src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1, src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8); fs_reg op0 = get_nir_src(src0->src[0].src); op0.type = brw_type_for_nir_type( (nir_alu_type)(nir_op_infos[src0->op].input_types[0] | nir_src_bit_size(src0->src[0].src))); op0 = offset(op0, bld, src0->src[0].swizzle[0]); set_saturate(instr->dest.saturate, bld.MOV(result, subscript(op0, type, element->u32[0]))); return true; } bool fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr, const fs_reg &result) { if (!instr->src[0].src.is_ssa || instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic) return false; nir_intrinsic_instr *src0 = nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr); if (src0->intrinsic != nir_intrinsic_load_front_face) return false; nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src); if (!value1 || fabsf(value1->f32[0]) != 1.0f) return false; nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src); if (!value2 || fabsf(value2->f32[0]) != 1.0f) return false; fs_reg tmp = vgrf(glsl_type::int_type); if (devinfo->gen >= 6) { /* Bit 15 of g0.0 is 0 if the polygon is front facing. */ fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W)); /* For (gl_FrontFacing ? 1.0 : -1.0), emit: * * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D * * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0). * * This negation looks like it's safe in practice, because bits 0:4 will * surely be TRIANGLES */ if (value1->f32[0] == -1.0f) { g0.negate = true; } tmp.type = BRW_REGISTER_TYPE_W; tmp.subreg_offset = 2; tmp.stride = 2; bld.OR(tmp, g0, brw_imm_uw(0x3f80)); tmp.type = BRW_REGISTER_TYPE_D; tmp.subreg_offset = 0; tmp.stride = 1; } else { /* Bit 31 of g1.6 is 0 if the polygon is front facing. */ fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D)); /* For (gl_FrontFacing ? 1.0 : -1.0), emit: * * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D * * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0). * * This negation looks like it's safe in practice, because bits 0:4 will * surely be TRIANGLES */ if (value1->f32[0] == -1.0f) { g1_6.negate = true; } bld.OR(tmp, g1_6, brw_imm_d(0x3f800000)); } bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000)); return true; } static void emit_find_msb_using_lzd(const fs_builder &bld, const fs_reg &result, const fs_reg &src, bool is_signed) { fs_inst *inst; fs_reg temp = src; if (is_signed) { /* LZD of an absolute value source almost always does the right * thing. There are two problem values: * * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns * 0. However, findMSB(int(0x80000000)) == 30. * * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says: * * For a value of zero or negative one, -1 will be returned. * * * Negative powers of two. LZD(abs(-(1<src[0].negate = true; } void fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr) { struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key; fs_inst *inst; fs_reg result = get_nir_dest(instr->dest.dest); result.type = brw_type_for_nir_type( (nir_alu_type)(nir_op_infos[instr->op].output_type | nir_dest_bit_size(instr->dest.dest))); fs_reg op[4]; for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { op[i] = get_nir_src(instr->src[i].src); op[i].type = brw_type_for_nir_type( (nir_alu_type)(nir_op_infos[instr->op].input_types[i] | nir_src_bit_size(instr->src[i].src))); op[i].abs = instr->src[i].abs; op[i].negate = instr->src[i].negate; } /* We get a bunch of mov's out of the from_ssa pass and they may still * be vectorized. We'll handle them as a special-case. We'll also * handle vecN here because it's basically the same thing. */ switch (instr->op) { case nir_op_imov: case nir_op_fmov: case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: { fs_reg temp = result; bool need_extra_copy = false; for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { if (!instr->src[i].src.is_ssa && instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) { need_extra_copy = true; temp = bld.vgrf(result.type, 4); break; } } for (unsigned i = 0; i < 4; i++) { if (!(instr->dest.write_mask & (1 << i))) continue; if (instr->op == nir_op_imov || instr->op == nir_op_fmov) { inst = bld.MOV(offset(temp, bld, i), offset(op[0], bld, instr->src[0].swizzle[i])); } else { inst = bld.MOV(offset(temp, bld, i), offset(op[i], bld, instr->src[i].swizzle[0])); } inst->saturate = instr->dest.saturate; } /* In this case the source and destination registers were the same, * so we need to insert an extra set of moves in order to deal with * any swizzling. */ if (need_extra_copy) { for (unsigned i = 0; i < 4; i++) { if (!(instr->dest.write_mask & (1 << i))) continue; bld.MOV(offset(result, bld, i), offset(temp, bld, i)); } } return; } default: break; } /* At this point, we have dealt with any instruction that operates on * more than a single channel. Therefore, we can just adjust the source * and destination registers for that channel and emit the instruction. */ unsigned channel = 0; if (nir_op_infos[instr->op].output_size == 0) { /* Since NIR is doing the scalarizing for us, we should only ever see * vectorized operations with a single channel. */ assert(_mesa_bitcount(instr->dest.write_mask) == 1); channel = ffs(instr->dest.write_mask) - 1; result = offset(result, bld, channel); } for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { assert(nir_op_infos[instr->op].input_sizes[i] < 2); op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]); } switch (instr->op) { case nir_op_i2f: case nir_op_u2f: if (optimize_extract_to_float(instr, result)) return; inst = bld.MOV(result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_f2d: case nir_op_i2d: case nir_op_u2d: /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions: * * "When source or destination is 64b (...), regioning in Align1 * must follow these rules: * * 1. Source and destination horizontal stride must be aligned to * the same qword. * (...)" * * This means that 32-bit to 64-bit conversions need to have the 32-bit * data elements aligned to 64-bit. This restriction does not apply to * BDW and later. */ if (devinfo->is_cherryview || devinfo->is_broxton) { fs_reg tmp = bld.vgrf(result.type, 1); tmp = subscript(tmp, op[0].type, 0); inst = bld.MOV(tmp, op[0]); inst = bld.MOV(result, tmp); inst->saturate = instr->dest.saturate; break; } /* fallthrough */ case nir_op_d2f: case nir_op_d2i: case nir_op_d2u: inst = bld.MOV(result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_f2i: case nir_op_f2u: bld.MOV(result, op[0]); break; case nir_op_fsign: { if (type_sz(op[0].type) < 8) { /* AND(val, 0x80000000) gives the sign bit. * * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not * zero. */ bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ); fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD); op[0].type = BRW_REGISTER_TYPE_UD; result.type = BRW_REGISTER_TYPE_UD; bld.AND(result_int, op[0], brw_imm_ud(0x80000000u)); inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u)); inst->predicate = BRW_PREDICATE_NORMAL; if (instr->dest.saturate) { inst = bld.MOV(result, result); inst->saturate = true; } } else { /* For doubles we do the same but we need to consider: * * - 2-src instructions can't operate with 64-bit immediates * - The sign is encoded in the high 32-bit of each DF * - CMP with DF requires special handling in SIMD16 * - We need to produce a DF result. */ /* 2-src instructions can't have 64-bit immediates, so put 0.0 in * a register and compare with that. */ fs_reg tmp = vgrf(glsl_type::double_type); bld.MOV(tmp, setup_imm_df(bld, 0.0)); /* A direct DF CMP using the flag register (null dst) won't work in * SIMD16 because the CMP will be split in two by lower_simd_width, * resulting in two CMP instructions with the same dst (NULL), * leading to dead code elimination of the first one. In SIMD8, * however, there is no need to split the CMP and we can save some * work. */ fs_reg dst_tmp = vgrf(glsl_type::double_type); bld.CMP(dst_tmp, op[0], tmp, BRW_CONDITIONAL_NZ); /* In SIMD16 we want to avoid using a NULL dst register with DF CMP, * so we store the result of the comparison in a vgrf instead and * then we generate a UD comparison from that that won't have to * be split by lower_simd_width. This is what NIR does to handle * double comparisons in the general case. */ if (bld.dispatch_width() == 16 ) { fs_reg dst_tmp_ud = retype(dst_tmp, BRW_REGISTER_TYPE_UD); bld.MOV(dst_tmp_ud, subscript(dst_tmp, BRW_REGISTER_TYPE_UD, 0)); bld.CMP(bld.null_reg_ud(), dst_tmp_ud, brw_imm_ud(0), BRW_CONDITIONAL_NZ); } /* Get the high 32-bit of each double component where the sign is */ fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD); bld.MOV(result_int, subscript(op[0], BRW_REGISTER_TYPE_UD, 1)); /* Get the sign bit */ bld.AND(result_int, result_int, brw_imm_ud(0x80000000u)); /* Add 1.0 to the sign, predicated to skip the case of op[0] == 0.0 */ inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u)); inst->predicate = BRW_PREDICATE_NORMAL; /* Convert from 32-bit float to 64-bit double */ result.type = BRW_REGISTER_TYPE_DF; inst = bld.MOV(result, retype(result_int, BRW_REGISTER_TYPE_F)); if (instr->dest.saturate) { inst = bld.MOV(result, result); inst->saturate = true; } } break; } case nir_op_isign: /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1). * -> non-negative val generates 0x00000000. * Predicated OR sets 1 if val is positive. */ assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G); bld.ASR(result, op[0], brw_imm_d(31)); inst = bld.OR(result, result, brw_imm_d(1)); inst->predicate = BRW_PREDICATE_NORMAL; break; case nir_op_frcp: inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fexp2: inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_flog2: inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fsin: inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fcos: inst = bld.emit(SHADER_OPCODE_COS, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fddx: if (fs_key->high_quality_derivatives) { inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]); } else { inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]); } inst->saturate = instr->dest.saturate; break; case nir_op_fddx_fine: inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fddx_coarse: inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fddy: if (fs_key->high_quality_derivatives) { inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]); } else { inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]); } inst->saturate = instr->dest.saturate; break; case nir_op_fddy_fine: inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fddy_coarse: inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_iadd: assert(nir_dest_bit_size(instr->dest.dest) < 64); case nir_op_fadd: inst = bld.ADD(result, op[0], op[1]); inst->saturate = instr->dest.saturate; break; case nir_op_fmul: inst = bld.MUL(result, op[0], op[1]); inst->saturate = instr->dest.saturate; break; case nir_op_imul: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.MUL(result, op[0], op[1]); break; case nir_op_imul_high: case nir_op_umul_high: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]); break; case nir_op_idiv: case nir_op_udiv: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]); break; case nir_op_uadd_carry: unreachable("Should have been lowered by carry_to_arith()."); case nir_op_usub_borrow: unreachable("Should have been lowered by borrow_to_arith()."); case nir_op_umod: case nir_op_irem: /* According to the sign table for INT DIV in the Ivy Bridge PRM, it * appears that our hardware just does the right thing for signed * remainder. */ assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]); break; case nir_op_imod: { /* Get a regular C-style remainder. If a % b == 0, set the predicate. */ bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]); /* Math instructions don't support conditional mod */ inst = bld.MOV(bld.null_reg_d(), result); inst->conditional_mod = BRW_CONDITIONAL_NZ; /* Now, we need to determine if signs of the sources are different. * When we XOR the sources, the top bit is 0 if they are the same and 1 * if they are different. We can then use a conditional modifier to * turn that into a predicate. This leads us to an XOR.l instruction. * * Technically, according to the PRM, you're not allowed to use .l on a * XOR instruction. However, emperical experiments and Curro's reading * of the simulator source both indicate that it's safe. */ fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D); inst = bld.XOR(tmp, op[0], op[1]); inst->predicate = BRW_PREDICATE_NORMAL; inst->conditional_mod = BRW_CONDITIONAL_L; /* If the result of the initial remainder operation is non-zero and the * two sources have different signs, add in a copy of op[1] to get the * final integer modulus value. */ inst = bld.ADD(result, result, op[1]); inst->predicate = BRW_PREDICATE_NORMAL; break; } case nir_op_flt: case nir_op_fge: case nir_op_feq: case nir_op_fne: { fs_reg dest = result; if (nir_src_bit_size(instr->src[0].src) > 32) { dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1); } brw_conditional_mod cond; switch (instr->op) { case nir_op_flt: cond = BRW_CONDITIONAL_L; break; case nir_op_fge: cond = BRW_CONDITIONAL_GE; break; case nir_op_feq: cond = BRW_CONDITIONAL_Z; break; case nir_op_fne: cond = BRW_CONDITIONAL_NZ; break; default: unreachable("bad opcode"); } bld.CMP(dest, op[0], op[1], cond); if (nir_src_bit_size(instr->src[0].src) > 32) { bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0)); } break; } case nir_op_ilt: case nir_op_ult: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L); break; case nir_op_ige: case nir_op_uge: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE); break; case nir_op_ieq: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z); break; case nir_op_ine: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ); break; case nir_op_inot: assert(nir_dest_bit_size(instr->dest.dest) < 64); if (devinfo->gen >= 8) { op[0] = resolve_source_modifiers(op[0]); } bld.NOT(result, op[0]); break; case nir_op_ixor: assert(nir_dest_bit_size(instr->dest.dest) < 64); if (devinfo->gen >= 8) { op[0] = resolve_source_modifiers(op[0]); op[1] = resolve_source_modifiers(op[1]); } bld.XOR(result, op[0], op[1]); break; case nir_op_ior: assert(nir_dest_bit_size(instr->dest.dest) < 64); if (devinfo->gen >= 8) { op[0] = resolve_source_modifiers(op[0]); op[1] = resolve_source_modifiers(op[1]); } bld.OR(result, op[0], op[1]); break; case nir_op_iand: assert(nir_dest_bit_size(instr->dest.dest) < 64); if (devinfo->gen >= 8) { op[0] = resolve_source_modifiers(op[0]); op[1] = resolve_source_modifiers(op[1]); } bld.AND(result, op[0], op[1]); break; case nir_op_fdot2: case nir_op_fdot3: case nir_op_fdot4: case nir_op_ball_fequal2: case nir_op_ball_iequal2: case nir_op_ball_fequal3: case nir_op_ball_iequal3: case nir_op_ball_fequal4: case nir_op_ball_iequal4: case nir_op_bany_fnequal2: case nir_op_bany_inequal2: case nir_op_bany_fnequal3: case nir_op_bany_inequal3: case nir_op_bany_fnequal4: case nir_op_bany_inequal4: unreachable("Lowered by nir_lower_alu_reductions"); case nir_op_fnoise1_1: case nir_op_fnoise1_2: case nir_op_fnoise1_3: case nir_op_fnoise1_4: case nir_op_fnoise2_1: case nir_op_fnoise2_2: case nir_op_fnoise2_3: case nir_op_fnoise2_4: case nir_op_fnoise3_1: case nir_op_fnoise3_2: case nir_op_fnoise3_3: case nir_op_fnoise3_4: case nir_op_fnoise4_1: case nir_op_fnoise4_2: case nir_op_fnoise4_3: case nir_op_fnoise4_4: unreachable("not reached: should be handled by lower_noise"); case nir_op_ldexp: unreachable("not reached: should be handled by ldexp_to_arith()"); case nir_op_fsqrt: inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_frsq: inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_b2i: case nir_op_b2f: bld.MOV(result, negate(op[0])); break; case nir_op_f2b: bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ); break; case nir_op_d2b: { /* two-argument instructions can't take 64-bit immediates */ fs_reg zero = vgrf(glsl_type::double_type); bld.MOV(zero, setup_imm_df(bld, 0.0)); /* A SIMD16 execution needs to be split in two instructions, so use * a vgrf instead of the flag register as dst so instruction splitting * works */ fs_reg tmp = vgrf(glsl_type::double_type); bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ); bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0)); break; } case nir_op_i2b: bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ); break; case nir_op_ftrunc: inst = bld.RNDZ(result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fceil: { op[0].negate = !op[0].negate; fs_reg temp = vgrf(glsl_type::float_type); bld.RNDD(temp, op[0]); temp.negate = true; inst = bld.MOV(result, temp); inst->saturate = instr->dest.saturate; break; } case nir_op_ffloor: inst = bld.RNDD(result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_ffract: inst = bld.FRC(result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fround_even: inst = bld.RNDE(result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fquantize2f16: { fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D); fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F); fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F); /* The destination stride must be at least as big as the source stride. */ tmp16.type = BRW_REGISTER_TYPE_W; tmp16.stride = 2; /* Check for denormal */ fs_reg abs_src0 = op[0]; abs_src0.abs = true; bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)), BRW_CONDITIONAL_L); /* Get the appropriately signed zero */ bld.AND(retype(zero, BRW_REGISTER_TYPE_UD), retype(op[0], BRW_REGISTER_TYPE_UD), brw_imm_ud(0x80000000)); /* Do the actual F32 -> F16 -> F32 conversion */ bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]); bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16); /* Select that or zero based on normal status */ inst = bld.SEL(result, zero, tmp32); inst->predicate = BRW_PREDICATE_NORMAL; inst->saturate = instr->dest.saturate; break; } case nir_op_imin: case nir_op_umin: assert(nir_dest_bit_size(instr->dest.dest) < 64); case nir_op_fmin: inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L); inst->saturate = instr->dest.saturate; break; case nir_op_imax: case nir_op_umax: assert(nir_dest_bit_size(instr->dest.dest) < 64); case nir_op_fmax: inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE); inst->saturate = instr->dest.saturate; break; case nir_op_pack_snorm_2x16: case nir_op_pack_snorm_4x8: case nir_op_pack_unorm_2x16: case nir_op_pack_unorm_4x8: case nir_op_unpack_snorm_2x16: case nir_op_unpack_snorm_4x8: case nir_op_unpack_unorm_2x16: case nir_op_unpack_unorm_4x8: case nir_op_unpack_half_2x16: case nir_op_pack_half_2x16: unreachable("not reached: should be handled by lower_packing_builtins"); case nir_op_unpack_half_2x16_split_x: inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_unpack_half_2x16_split_y: inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_pack_double_2x32_split: /* Optimize the common case where we are re-packing a double with * the result of a previous double unpack. In this case we can take the * 32-bit value to use in the re-pack from the original double and bypass * the unpack operation. */ for (int i = 0; i < 2; i++) { if (instr->src[i].src.is_ssa) continue; const nir_instr *parent_instr = instr->src[i].src.ssa->parent_instr; if (parent_instr->type == nir_instr_type_alu) continue; const nir_alu_instr *alu_parent = nir_instr_as_alu(parent_instr); if (alu_parent->op == nir_op_unpack_double_2x32_split_x || alu_parent->op == nir_op_unpack_double_2x32_split_y) continue; if (!alu_parent->src[0].src.is_ssa) continue; op[i] = get_nir_src(alu_parent->src[0].src); op[i] = offset(retype(op[i], BRW_REGISTER_TYPE_DF), bld, alu_parent->src[0].swizzle[channel]); if (alu_parent->op == nir_op_unpack_double_2x32_split_y) op[i] = subscript(op[i], BRW_REGISTER_TYPE_UD, 1); else op[i] = subscript(op[i], BRW_REGISTER_TYPE_UD, 0); } bld.emit(FS_OPCODE_PACK, result, op[0], op[1]); break; case nir_op_unpack_double_2x32_split_x: case nir_op_unpack_double_2x32_split_y: { /* Optimize the common case where we are unpacking from a double we have * previously packed. In this case we can just bypass the pack operation * and source directly from its arguments. */ unsigned index = (instr->op == nir_op_unpack_double_2x32_split_x) ? 0 : 1; if (instr->src[0].src.is_ssa) { nir_instr *parent_instr = instr->src[0].src.ssa->parent_instr; if (parent_instr->type == nir_instr_type_alu) { nir_alu_instr *alu_parent = nir_instr_as_alu(parent_instr); if (alu_parent->op == nir_op_pack_double_2x32_split && alu_parent->src[index].src.is_ssa) { op[0] = retype(get_nir_src(alu_parent->src[index].src), BRW_REGISTER_TYPE_UD); op[0] = offset(op[0], bld, alu_parent->src[index].swizzle[channel]); bld.MOV(result, op[0]); break; } } } if (instr->op == nir_op_unpack_double_2x32_split_x) bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0)); else bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1)); break; } case nir_op_fpow: inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]); inst->saturate = instr->dest.saturate; break; case nir_op_bitfield_reverse: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.BFREV(result, op[0]); break; case nir_op_bit_count: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.CBIT(result, op[0]); break; case nir_op_ufind_msb: { assert(nir_dest_bit_size(instr->dest.dest) < 64); emit_find_msb_using_lzd(bld, result, op[0], false); break; } case nir_op_ifind_msb: { assert(nir_dest_bit_size(instr->dest.dest) < 64); if (devinfo->gen < 7) { emit_find_msb_using_lzd(bld, result, op[0], true); } else { bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]); /* FBH counts from the MSB side, while GLSL's findMSB() wants the * count from the LSB side. If FBH didn't return an error * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB * count into an LSB count. */ bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ); inst = bld.ADD(result, result, brw_imm_d(31)); inst->predicate = BRW_PREDICATE_NORMAL; inst->src[0].negate = true; } break; } case nir_op_find_lsb: assert(nir_dest_bit_size(instr->dest.dest) < 64); if (devinfo->gen < 7) { fs_reg temp = vgrf(glsl_type::int_type); /* (x & -x) generates a value that consists of only the LSB of x. * For all powers of 2, findMSB(y) == findLSB(y). */ fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D); fs_reg negated_src = src; /* One must be negated, and the other must be non-negated. It * doesn't matter which is which. */ negated_src.negate = true; src.negate = false; bld.AND(temp, src, negated_src); emit_find_msb_using_lzd(bld, result, temp, false); } else { bld.FBL(result, op[0]); } break; case nir_op_ubitfield_extract: case nir_op_ibitfield_extract: unreachable("should have been lowered"); case nir_op_ubfe: case nir_op_ibfe: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.BFE(result, op[2], op[1], op[0]); break; case nir_op_bfm: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.BFI1(result, op[0], op[1]); break; case nir_op_bfi: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.BFI2(result, op[0], op[1], op[2]); break; case nir_op_bitfield_insert: unreachable("not reached: should have been lowered"); case nir_op_ishl: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.SHL(result, op[0], op[1]); break; case nir_op_ishr: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.ASR(result, op[0], op[1]); break; case nir_op_ushr: assert(nir_dest_bit_size(instr->dest.dest) < 64); bld.SHR(result, op[0], op[1]); break; case nir_op_pack_half_2x16_split: bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]); break; case nir_op_ffma: inst = bld.MAD(result, op[2], op[1], op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_flrp: inst = bld.LRP(result, op[0], op[1], op[2]); inst->saturate = instr->dest.saturate; break; case nir_op_bcsel: if (optimize_frontfacing_ternary(instr, result)) return; bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ); inst = bld.SEL(result, op[1], op[2]); inst->predicate = BRW_PREDICATE_NORMAL; break; case nir_op_extract_u8: case nir_op_extract_i8: { const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8); nir_const_value *byte = nir_src_as_const_value(instr->src[1].src); assert(byte != NULL); bld.MOV(result, subscript(op[0], type, byte->u32[0])); break; } case nir_op_extract_u16: case nir_op_extract_i16: { const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16); nir_const_value *word = nir_src_as_const_value(instr->src[1].src); assert(word != NULL); bld.MOV(result, subscript(op[0], type, word->u32[0])); break; } default: unreachable("unhandled instruction"); } /* If we need to do a boolean resolve, replace the result with -(x & 1) * to sign extend the low bit to 0/~0 */ if (devinfo->gen <= 5 && (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) { fs_reg masked = vgrf(glsl_type::int_type); bld.AND(masked, result, brw_imm_d(1)); masked.negate = true; bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked); } } void fs_visitor::nir_emit_load_const(const fs_builder &bld, nir_load_const_instr *instr) { const brw_reg_type reg_type = instr->def.bit_size == 32 ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF; fs_reg reg = bld.vgrf(reg_type, instr->def.num_components); switch (instr->def.bit_size) { case 32: for (unsigned i = 0; i < instr->def.num_components; i++) bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i])); break; case 64: for (unsigned i = 0; i < instr->def.num_components; i++) bld.MOV(offset(reg, bld, i), setup_imm_df(bld, instr->value.f64[i])); break; default: unreachable("Invalid bit size"); } nir_ssa_values[instr->def.index] = reg; } fs_reg fs_visitor::get_nir_src(const nir_src &src) { fs_reg reg; if (src.is_ssa) { if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) { const brw_reg_type reg_type = src.ssa->bit_size == 32 ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF; reg = bld.vgrf(reg_type, src.ssa->num_components); } else { reg = nir_ssa_values[src.ssa->index]; } } else { /* We don't handle indirects on locals */ assert(src.reg.indirect == NULL); reg = offset(nir_locals[src.reg.reg->index], bld, src.reg.base_offset * src.reg.reg->num_components); } /* to avoid floating-point denorm flushing problems, set the type by * default to D - instructions that need floating point semantics will set * this to F if they need to */ return retype(reg, BRW_REGISTER_TYPE_D); } /** * Return an IMM for constants; otherwise call get_nir_src() as normal. */ fs_reg fs_visitor::get_nir_src_imm(const nir_src &src) { nir_const_value *val = nir_src_as_const_value(src); return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src); } fs_reg fs_visitor::get_nir_dest(const nir_dest &dest) { if (dest.is_ssa) { const brw_reg_type reg_type = dest.ssa.bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF; nir_ssa_values[dest.ssa.index] = bld.vgrf(reg_type, dest.ssa.num_components); return nir_ssa_values[dest.ssa.index]; } else { /* We don't handle indirects on locals */ assert(dest.reg.indirect == NULL); return offset(nir_locals[dest.reg.reg->index], bld, dest.reg.base_offset * dest.reg.reg->num_components); } } fs_reg fs_visitor::get_nir_image_deref(const nir_deref_var *deref) { fs_reg image(UNIFORM, deref->var->data.driver_location / 4, BRW_REGISTER_TYPE_UD); fs_reg indirect; unsigned indirect_max = 0; for (const nir_deref *tail = &deref->deref; tail->child; tail = tail->child) { const nir_deref_array *deref_array = nir_deref_as_array(tail->child); assert(tail->child->deref_type == nir_deref_type_array); const unsigned size = glsl_get_length(tail->type); const unsigned element_size = type_size_scalar(deref_array->deref.type); const unsigned base = MIN2(deref_array->base_offset, size - 1); image = offset(image, bld, base * element_size); if (deref_array->deref_array_type == nir_deref_array_type_indirect) { fs_reg tmp = vgrf(glsl_type::uint_type); /* Accessing an invalid surface index with the dataport can result * in a hang. According to the spec "if the index used to * select an individual element is negative or greater than or * equal to the size of the array, the results of the operation * are undefined but may not lead to termination" -- which is one * of the possible outcomes of the hang. Clamp the index to * prevent access outside of the array bounds. */ bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect), BRW_REGISTER_TYPE_UD), brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L); indirect_max += element_size * (tail->type->length - 1); bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4)); if (indirect.file == BAD_FILE) { indirect = tmp; } else { bld.ADD(indirect, indirect, tmp); } } } if (indirect.file == BAD_FILE) { return image; } else { /* Emit a pile of MOVs to load the uniform into a temporary. The * dead-code elimination pass will get rid of what we don't use. */ fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE); for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) { bld.emit(SHADER_OPCODE_MOV_INDIRECT, offset(tmp, bld, j), offset(image, bld, j), indirect, brw_imm_ud((indirect_max + 1) * 4)); } return tmp; } } void fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst, unsigned wr_mask) { for (unsigned i = 0; i < 4; i++) { if (!((wr_mask >> i) & 1)) continue; fs_inst *new_inst = new(mem_ctx) fs_inst(inst); new_inst->dst = offset(new_inst->dst, bld, i); for (unsigned j = 0; j < new_inst->sources; j++) if (new_inst->src[j].file == VGRF) new_inst->src[j] = offset(new_inst->src[j], bld, i); bld.emit(new_inst); } } /** * Get the matching channel register datatype for an image intrinsic of the * specified GLSL image type. */ static brw_reg_type get_image_base_type(const glsl_type *type) { switch ((glsl_base_type)type->sampled_type) { case GLSL_TYPE_UINT: return BRW_REGISTER_TYPE_UD; case GLSL_TYPE_INT: return BRW_REGISTER_TYPE_D; case GLSL_TYPE_FLOAT: return BRW_REGISTER_TYPE_F; default: unreachable("Not reached."); } } /** * Get the appropriate atomic op for an image atomic intrinsic. */ static unsigned get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type) { switch (op) { case nir_intrinsic_image_atomic_add: return BRW_AOP_ADD; case nir_intrinsic_image_atomic_min: return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ? BRW_AOP_IMIN : BRW_AOP_UMIN); case nir_intrinsic_image_atomic_max: return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ? BRW_AOP_IMAX : BRW_AOP_UMAX); case nir_intrinsic_image_atomic_and: return BRW_AOP_AND; case nir_intrinsic_image_atomic_or: return BRW_AOP_OR; case nir_intrinsic_image_atomic_xor: return BRW_AOP_XOR; case nir_intrinsic_image_atomic_exchange: return BRW_AOP_MOV; case nir_intrinsic_image_atomic_comp_swap: return BRW_AOP_CMPWR; default: unreachable("Not reachable."); } } static fs_inst * emit_pixel_interpolater_send(const fs_builder &bld, enum opcode opcode, const fs_reg &dst, const fs_reg &src, const fs_reg &desc, glsl_interp_mode interpolation) { struct brw_wm_prog_data *wm_prog_data = (struct brw_wm_prog_data *) bld.shader->stage_prog_data; fs_inst *inst; fs_reg payload; int mlen; if (src.file == BAD_FILE) { /* Dummy payload */ payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1); mlen = 1; } else { payload = src; mlen = 2 * bld.dispatch_width() / 8; } inst = bld.emit(opcode, dst, payload, desc); inst->mlen = mlen; /* 2 floats per slot returned */ inst->regs_written = 2 * bld.dispatch_width() / 8; inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE; wm_prog_data->pulls_bary = true; return inst; } /** * Computes 1 << x, given a D/UD register containing some value x. */ static fs_reg intexp2(const fs_builder &bld, const fs_reg &x) { assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D); fs_reg result = bld.vgrf(x.type, 1); fs_reg one = bld.vgrf(x.type, 1); bld.MOV(one, retype(brw_imm_d(1), one.type)); bld.SHL(result, one, x); return result; } void fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src) { assert(stage == MESA_SHADER_GEOMETRY); struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data; if (gs_compile->control_data_header_size_bits == 0) return; /* We can only do EndPrimitive() functionality when the control data * consists of cut bits. Fortunately, the only time it isn't is when the * output type is points, in which case EndPrimitive() is a no-op. */ if (gs_prog_data->control_data_format != GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) { return; } /* Cut bits use one bit per vertex. */ assert(gs_compile->control_data_bits_per_vertex == 1); fs_reg vertex_count = get_nir_src(vertex_count_nir_src); vertex_count.type = BRW_REGISTER_TYPE_UD; /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting * vertex n, 0 otherwise. So all we need to do here is mark bit * (vertex_count - 1) % 32 in the cut_bits register to indicate that * EndPrimitive() was called after emitting vertex (vertex_count - 1); * vec4_gs_visitor::emit_control_data_bits() will take care of the rest. * * Note that if EndPrimitive() is called before emitting any vertices, this * will cause us to set bit 31 of the control_data_bits register to 1. * That's fine because: * * - If max_vertices < 32, then vertex number 31 (zero-based) will never be * output, so the hardware will ignore cut bit 31. * * - If max_vertices == 32, then vertex number 31 is guaranteed to be the * last vertex, so setting cut bit 31 has no effect (since the primitive * is automatically ended when the GS terminates). * * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the * control_data_bits register to 0 when the first vertex is emitted. */ const fs_builder abld = bld.annotate("end primitive"); /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */ fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu)); fs_reg mask = intexp2(abld, prev_count); /* Note: we're relying on the fact that the GEN SHL instruction only pays * attention to the lower 5 bits of its second source argument, so on this * architecture, 1 << (vertex_count - 1) is equivalent to 1 << * ((vertex_count - 1) % 32). */ abld.OR(this->control_data_bits, this->control_data_bits, mask); } void fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count) { assert(stage == MESA_SHADER_GEOMETRY); assert(gs_compile->control_data_bits_per_vertex != 0); struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data; const fs_builder abld = bld.annotate("emit control data bits"); const fs_builder fwa_bld = bld.exec_all(); /* We use a single UD register to accumulate control data bits (32 bits * for each of the SIMD8 channels). So we need to write a DWord (32 bits) * at a time. * * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets. * We have select a 128-bit group via the Global and Per-Slot Offsets, then * use the Channel Mask phase to enable/disable which DWord within that * group to write. (Remember, different SIMD8 channels may have emitted * different numbers of vertices, so we may need per-slot offsets.) * * Channel masking presents an annoying problem: we may have to replicate * the data up to 4 times: * * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data. * * To avoid penalizing shaders that emit a small number of vertices, we * can avoid these sometimes: if the size of the control data header is * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land * land in the same 128-bit group, so we can skip per-slot offsets. * * Similarly, if the control data header is <= 32 bits, there is only one * DWord, so we can skip channel masks. */ enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8; fs_reg channel_mask, per_slot_offset; if (gs_compile->control_data_header_size_bits > 32) { opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED; channel_mask = vgrf(glsl_type::uint_type); } if (gs_compile->control_data_header_size_bits > 128) { opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT; per_slot_offset = vgrf(glsl_type::uint_type); } /* Figure out which DWord we're trying to write to using the formula: * * dword_index = (vertex_count - 1) * bits_per_vertex / 32 * * Since bits_per_vertex is a power of two, and is known at compile * time, this can be optimized to: * * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex)) */ if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) { fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu)); unsigned log2_bits_per_vertex = util_last_bit(gs_compile->control_data_bits_per_vertex); abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex)); if (per_slot_offset.file != BAD_FILE) { /* Set the per-slot offset to dword_index / 4, so that we'll write to * the appropriate OWord within the control data header. */ abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u)); } /* Set the channel masks to 1 << (dword_index % 4), so that we'll * write to the appropriate DWORD within the OWORD. */ fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); fwa_bld.AND(channel, dword_index, brw_imm_ud(3u)); channel_mask = intexp2(fwa_bld, channel); /* Then the channel masks need to be in bits 23:16. */ fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u)); } /* Store the control data bits in the message payload and send it. */ int mlen = 2; if (channel_mask.file != BAD_FILE) mlen += 4; /* channel masks, plus 3 extra copies of the data */ if (per_slot_offset.file != BAD_FILE) mlen++; fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen); fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen); int i = 0; sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)); if (per_slot_offset.file != BAD_FILE) sources[i++] = per_slot_offset; if (channel_mask.file != BAD_FILE) sources[i++] = channel_mask; while (i < mlen) { sources[i++] = this->control_data_bits; } abld.LOAD_PAYLOAD(payload, sources, mlen, mlen); fs_inst *inst = abld.emit(opcode, reg_undef, payload); inst->mlen = mlen; /* We need to increment Global Offset by 256-bits to make room for * Broadwell's extra "Vertex Count" payload at the beginning of the * URB entry. Since this is an OWord message, Global Offset is counted * in 128-bit units, so we must set it to 2. */ if (gs_prog_data->static_vertex_count == -1) inst->offset = 2; } void fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count, unsigned stream_id) { /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */ /* Note: we are calling this *before* increasing vertex_count, so * this->vertex_count == vertex_count - 1 in the formula above. */ /* Stream mode uses 2 bits per vertex */ assert(gs_compile->control_data_bits_per_vertex == 2); /* Must be a valid stream */ assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS); /* Control data bits are initialized to 0 so we don't have to set any * bits when sending vertices to stream 0. */ if (stream_id == 0) return; const fs_builder abld = bld.annotate("set stream control data bits", NULL); /* reg::sid = stream_id */ fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.MOV(sid, brw_imm_ud(stream_id)); /* reg:shift_count = 2 * (vertex_count - 1) */ fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.SHL(shift_count, vertex_count, brw_imm_ud(1u)); /* Note: we're relying on the fact that the GEN SHL instruction only pays * attention to the lower 5 bits of its second source argument, so on this * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to * stream_id << ((2 * (vertex_count - 1)) % 32). */ fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.SHL(mask, sid, shift_count); abld.OR(this->control_data_bits, this->control_data_bits, mask); } void fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src, unsigned stream_id) { assert(stage == MESA_SHADER_GEOMETRY); struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data; fs_reg vertex_count = get_nir_src(vertex_count_nir_src); vertex_count.type = BRW_REGISTER_TYPE_UD; /* Haswell and later hardware ignores the "Render Stream Select" bits * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled, * and instead sends all primitives down the pipeline for rasterization. * If the SOL stage is enabled, "Render Stream Select" is honored and * primitives bound to non-zero streams are discarded after stream output. * * Since the only purpose of primives sent to non-zero streams is to * be recorded by transform feedback, we can simply discard all geometry * bound to these streams when transform feedback is disabled. */ if (stream_id > 0 && !nir->info.has_transform_feedback_varyings) return; /* If we're outputting 32 control data bits or less, then we can wait * until the shader is over to output them all. Otherwise we need to * output them as we go. Now is the time to do it, since we're about to * output the vertex_count'th vertex, so it's guaranteed that the * control data bits associated with the (vertex_count - 1)th vertex are * correct. */ if (gs_compile->control_data_header_size_bits > 32) { const fs_builder abld = bld.annotate("emit vertex: emit control data bits"); /* Only emit control data bits if we've finished accumulating a batch * of 32 bits. This is the case when: * * (vertex_count * bits_per_vertex) % 32 == 0 * * (in other words, when the last 5 bits of vertex_count * * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some * integer n (which is always the case, since bits_per_vertex is * always 1 or 2), this is equivalent to requiring that the last 5-n * bits of vertex_count are 0: * * vertex_count & (2^(5-n) - 1) == 0 * * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is * equivalent to: * * vertex_count & (32 / bits_per_vertex - 1) == 0 * * TODO: If vertex_count is an immediate, we could do some of this math * at compile time... */ fs_inst *inst = abld.AND(bld.null_reg_d(), vertex_count, brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u)); inst->conditional_mod = BRW_CONDITIONAL_Z; abld.IF(BRW_PREDICATE_NORMAL); /* If vertex_count is 0, then no control data bits have been * accumulated yet, so we can skip emitting them. */ abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u), BRW_CONDITIONAL_NEQ); abld.IF(BRW_PREDICATE_NORMAL); emit_gs_control_data_bits(vertex_count); abld.emit(BRW_OPCODE_ENDIF); /* Reset control_data_bits to 0 so we can start accumulating a new * batch. * * Note: in the case where vertex_count == 0, this neutralizes the * effect of any call to EndPrimitive() that the shader may have * made before outputting its first vertex. */ inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u)); inst->force_writemask_all = true; abld.emit(BRW_OPCODE_ENDIF); } emit_urb_writes(vertex_count); /* In stream mode we have to set control data bits for all vertices * unless we have disabled control data bits completely (which we do * do for GL_POINTS outputs that don't use streams). */ if (gs_compile->control_data_header_size_bits > 0 && gs_prog_data->control_data_format == GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) { set_gs_stream_control_data_bits(vertex_count, stream_id); } } void fs_visitor::emit_gs_input_load(const fs_reg &dst, const nir_src &vertex_src, unsigned base_offset, const nir_src &offset_src, unsigned num_components, unsigned first_component) { struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data; nir_const_value *vertex_const = nir_src_as_const_value(vertex_src); nir_const_value *offset_const = nir_src_as_const_value(offset_src); const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8; /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y], * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only * gl_PointSize is available as a GS input, however, so it must be that. */ const bool is_point_size = (base_offset == 0); /* TODO: figure out push input layout for invocations == 1 */ if (gs_prog_data->invocations == 1 && offset_const != NULL && vertex_const != NULL && 4 * (base_offset + offset_const->u32[0]) < push_reg_count) { int imm_offset = (base_offset + offset_const->u32[0]) * 4 + vertex_const->u32[0] * push_reg_count; /* This input was pushed into registers. */ if (is_point_size) { /* gl_PointSize comes in .w */ bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type)); } else { for (unsigned i = 0; i < num_components; i++) { bld.MOV(offset(dst, bld, i), fs_reg(ATTR, imm_offset + i, dst.type)); } } return; } /* Resort to the pull model. Ensure the VUE handles are provided. */ gs_prog_data->base.include_vue_handles = true; unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2; fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); if (gs_prog_data->invocations == 1) { if (vertex_const) { /* The vertex index is constant; just select the proper URB handle. */ icp_handle = retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0), BRW_REGISTER_TYPE_UD); } else { /* The vertex index is non-constant. We need to use indirect * addressing to fetch the proper URB handle. * * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0> * indicating that channel should read the handle from * DWord . We convert that to bytes by multiplying by 4. * * Next, we convert the vertex index to bytes by multiplying * by 32 (shifting by 5), and add the two together. This is * the final indirect byte offset. */ fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1); fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */ bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210))); /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */ bld.SHL(channel_offsets, sequence, brw_imm_ud(2u)); /* Convert vertex_index to bytes (multiply by 32) */ bld.SHL(vertex_offset_bytes, retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD), brw_imm_ud(5u)); bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets); /* Use first_icp_handle as the base offset. There is one register * of URB handles per vertex, so inform the register allocator that * we might read up to nir->info.gs.vertices_in registers. */ bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle, fs_reg(brw_vec8_grf(first_icp_handle, 0)), fs_reg(icp_offset_bytes), brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE)); } } else { assert(gs_prog_data->invocations > 1); if (vertex_const) { assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5); bld.MOV(icp_handle, retype(brw_vec1_grf(first_icp_handle + vertex_const->i32[0] / 8, vertex_const->i32[0] % 8), BRW_REGISTER_TYPE_UD)); } else { /* The vertex index is non-constant. We need to use indirect * addressing to fetch the proper URB handle. * */ fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); /* Convert vertex_index to bytes (multiply by 4) */ bld.SHL(icp_offset_bytes, retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD), brw_imm_ud(2u)); /* Use first_icp_handle as the base offset. There is one DWord * of URB handles per vertex, so inform the register allocator that * we might read up to ceil(nir->info.gs.vertices_in / 8) registers. */ bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle, fs_reg(brw_vec8_grf(first_icp_handle, 0)), fs_reg(icp_offset_bytes), brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) * REG_SIZE)); } } fs_inst *inst; fs_reg tmp_dst = dst; fs_reg indirect_offset = get_nir_src(offset_src); unsigned num_iterations = 1; unsigned orig_num_components = num_components; if (type_sz(dst.type) == 8) { if (num_components > 2) { num_iterations = 2; num_components = 2; } fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type); tmp_dst = tmp; first_component = first_component / 2; } for (unsigned iter = 0; iter < num_iterations; iter++) { if (offset_const) { /* Constant indexing - use global offset. */ if (first_component != 0) { unsigned read_components = num_components + first_component; fs_reg tmp = bld.vgrf(dst.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle); inst->regs_written = read_components * type_sz(tmp_dst.type) / 4; for (unsigned i = 0; i < num_components; i++) { bld.MOV(offset(tmp_dst, bld, i), offset(tmp, bld, i + first_component)); } } else { inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst, icp_handle); inst->regs_written = num_components * type_sz(tmp_dst.type) / 4; } inst->offset = base_offset + offset_const->u32[0]; inst->mlen = 1; } else { /* Indirect indexing - use per-slot offsets as well. */ const fs_reg srcs[] = { icp_handle, indirect_offset }; unsigned read_components = num_components + first_component; fs_reg tmp = bld.vgrf(dst.type, read_components); fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2); bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0); if (first_component != 0) { inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp, payload); inst->regs_written = read_components * type_sz(tmp_dst.type) / 4; for (unsigned i = 0; i < num_components; i++) { bld.MOV(offset(tmp_dst, bld, i), offset(tmp, bld, i + first_component)); } } else { inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst, payload); inst->regs_written = num_components * type_sz(tmp_dst.type) / 4; } inst->offset = base_offset; inst->mlen = 2; } if (type_sz(dst.type) == 8) { shuffle_32bit_load_result_to_64bit_data( bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components); for (unsigned c = 0; c < num_components; c++) bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c)); } if (num_iterations > 1) { num_components = orig_num_components - 2; if(offset_const) { base_offset++; } else { fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u)); indirect_offset = new_indirect; } } } if (is_point_size) { /* Read the whole VUE header (because of alignment) and read .w. */ fs_reg tmp = bld.vgrf(dst.type, 4); inst->dst = tmp; inst->regs_written = 4; bld.MOV(dst, offset(tmp, bld, 3)); } } fs_reg fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr) { nir_src *offset_src = nir_get_io_offset_src(instr); nir_const_value *const_value = nir_src_as_const_value(*offset_src); if (const_value) { /* The only constant offset we should find is 0. brw_nir.c's * add_const_offset_to_base() will fold other constant offsets * into instr->const_index[0]. */ assert(const_value->u32[0] == 0); return fs_reg(); } return get_nir_src(*offset_src); } static void do_untyped_vector_read(const fs_builder &bld, const fs_reg dest, const fs_reg surf_index, const fs_reg offset_reg, unsigned num_components) { if (type_sz(dest.type) == 4) { fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg, 1 /* dims */, num_components, BRW_PREDICATE_NONE); read_result.type = dest.type; for (unsigned i = 0; i < num_components; i++) bld.MOV(offset(dest, bld, i), offset(read_result, bld, i)); } else if (type_sz(dest.type) == 8) { /* Reading a dvec, so we need to: * * 1. Multiply num_components by 2, to account for the fact that we * need to read 64-bit components. * 2. Shuffle the result of the load to form valid 64-bit elements * 3. Emit a second load (for components z/w) if needed. */ fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD); bld.MOV(read_offset, offset_reg); int iters = num_components <= 2 ? 1 : 2; /* Load the dvec, the first iteration loads components x/y, the second * iteration, if needed, loads components z/w */ for (int it = 0; it < iters; it++) { /* Compute number of components to read in this iteration */ int iter_components = MIN2(2, num_components); num_components -= iter_components; /* Read. Since this message reads 32-bit components, we need to * read twice as many components. */ fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset, 1 /* dims */, iter_components * 2, BRW_PREDICATE_NONE); /* Shuffle the 32-bit load result into valid 64-bit data */ const fs_reg packed_result = bld.vgrf(dest.type, iter_components); shuffle_32bit_load_result_to_64bit_data( bld, packed_result, read_result, iter_components); /* Move each component to its destination */ read_result = retype(read_result, BRW_REGISTER_TYPE_DF); for (int c = 0; c < iter_components; c++) { bld.MOV(offset(dest, bld, it * 2 + c), offset(packed_result, bld, c)); } bld.ADD(read_offset, read_offset, brw_imm_ud(16)); } } else { unreachable("Unsupported type"); } } void fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr) { assert(stage == MESA_SHADER_VERTEX); fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); switch (instr->intrinsic) { case nir_intrinsic_load_vertex_id: unreachable("should be lowered by lower_vertex_id()"); case nir_intrinsic_load_vertex_id_zero_base: case nir_intrinsic_load_base_vertex: case nir_intrinsic_load_instance_id: case nir_intrinsic_load_base_instance: case nir_intrinsic_load_draw_id: { gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic); fs_reg val = nir_system_values[sv]; assert(val.file != BAD_FILE); dest.type = val.type; bld.MOV(dest, val); break; } case nir_intrinsic_load_input: { fs_reg src = fs_reg(ATTR, instr->const_index[0], dest.type); unsigned first_component = nir_intrinsic_component(instr); unsigned num_components = instr->num_components; enum brw_reg_type type = dest.type; nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]); assert(const_offset && "Indirect input loads not allowed"); src = offset(src, bld, const_offset->u32[0]); for (unsigned j = 0; j < num_components; j++) { bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component)); } if (type == BRW_REGISTER_TYPE_DF) { /* Once the double vector is read, set again its original register * type to continue with normal execution. */ src = retype(src, type); dest = retype(dest, type); } if (type_sz(src.type) == 8) { shuffle_32bit_load_result_to_64bit_data(bld, dest, retype(dest, BRW_REGISTER_TYPE_F), instr->num_components); } break; } default: nir_emit_intrinsic(bld, instr); break; } } void fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr) { assert(stage == MESA_SHADER_TESS_CTRL); struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key; struct brw_tcs_prog_data *tcs_prog_data = (struct brw_tcs_prog_data *) prog_data; fs_reg dst; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dst = get_nir_dest(instr->dest); switch (instr->intrinsic) { case nir_intrinsic_load_primitive_id: bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1))); break; case nir_intrinsic_load_invocation_id: bld.MOV(retype(dst, invocation_id.type), invocation_id); break; case nir_intrinsic_load_patch_vertices_in: bld.MOV(retype(dst, BRW_REGISTER_TYPE_D), brw_imm_d(tcs_key->input_vertices)); break; case nir_intrinsic_barrier: { if (tcs_prog_data->instances == 1) break; fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); fs_reg m0_2 = component(m0, 2); const fs_builder chanbld = bld.exec_all().group(1, 0); /* Zero the message header */ bld.exec_all().MOV(m0, brw_imm_ud(0u)); /* Copy "Barrier ID" from r0.2, bits 16:13 */ chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD), brw_imm_ud(INTEL_MASK(16, 13))); /* Shift it up to bits 27:24. */ chanbld.SHL(m0_2, m0_2, brw_imm_ud(11)); /* Set the Barrier Count and the enable bit */ chanbld.OR(m0_2, m0_2, brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15))); bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0); break; } case nir_intrinsic_load_input: unreachable("nir_lower_io should never give us these."); break; case nir_intrinsic_load_per_vertex_input: { fs_reg indirect_offset = get_indirect_offset(instr); unsigned imm_offset = instr->const_index[0]; const nir_src &vertex_src = instr->src[0]; nir_const_value *vertex_const = nir_src_as_const_value(vertex_src); fs_inst *inst; fs_reg icp_handle; if (vertex_const) { /* Emit a MOV to resolve <0,1,0> regioning. */ icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); bld.MOV(icp_handle, retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3), vertex_const->i32[0] & 7), BRW_REGISTER_TYPE_UD)); } else if (tcs_prog_data->instances == 1 && vertex_src.is_ssa && vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic && nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) { /* For the common case of only 1 instance, an array index of * gl_InvocationID means reading g1. Skip all the indirect work. */ icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD); } else { /* The vertex index is non-constant. We need to use indirect * addressing to fetch the proper URB handle. */ icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); /* Each ICP handle is a single DWord (4 bytes) */ fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); bld.SHL(vertex_offset_bytes, retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD), brw_imm_ud(2u)); /* Start at g1. We might read up to 4 registers. */ bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle, fs_reg(brw_vec8_grf(1, 0)), vertex_offset_bytes, brw_imm_ud(4 * REG_SIZE)); } /* We can only read two double components with each URB read, so * we send two read messages in that case, each one loading up to * two double components. */ unsigned num_iterations = 1; unsigned num_components = instr->num_components; unsigned first_component = nir_intrinsic_component(instr); fs_reg orig_dst = dst; if (type_sz(dst.type) == 8) { first_component = first_component / 2; if (instr->num_components > 2) { num_iterations = 2; num_components = 2; } fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type); dst = tmp; } for (unsigned iter = 0; iter < num_iterations; iter++) { if (indirect_offset.file == BAD_FILE) { /* Constant indexing - use global offset. */ if (first_component != 0) { unsigned read_components = num_components + first_component; fs_reg tmp = bld.vgrf(dst.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle); for (unsigned i = 0; i < num_components; i++) { bld.MOV(offset(dst, bld, i), offset(tmp, bld, i + first_component)); } } else { inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle); } inst->offset = imm_offset; inst->mlen = 1; } else { /* Indirect indexing - use per-slot offsets as well. */ const fs_reg srcs[] = { icp_handle, indirect_offset }; fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2); bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0); if (first_component != 0) { unsigned read_components = num_components + first_component; fs_reg tmp = bld.vgrf(dst.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp, payload); for (unsigned i = 0; i < num_components; i++) { bld.MOV(offset(dst, bld, i), offset(tmp, bld, i + first_component)); } } else { inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload); } inst->offset = imm_offset; inst->mlen = 2; } inst->regs_written = ((num_components + first_component) * type_sz(dst.type) / 4); /* If we are reading 64-bit data using 32-bit read messages we need * build proper 64-bit data elements by shuffling the low and high * 32-bit components around like we do for other things like UBOs * or SSBOs. */ if (type_sz(dst.type) == 8) { shuffle_32bit_load_result_to_64bit_data( bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components); for (unsigned c = 0; c < num_components; c++) { bld.MOV(offset(orig_dst, bld, iter * 2 + c), offset(dst, bld, c)); } } /* Copy the temporary to the destination to deal with writemasking. * * Also attempt to deal with gl_PointSize being in the .w component. */ if (inst->offset == 0 && indirect_offset.file == BAD_FILE) { assert(type_sz(dst.type) < 8); inst->dst = bld.vgrf(dst.type, 4); inst->regs_written = 4; bld.MOV(dst, offset(inst->dst, bld, 3)); } /* If we are loading double data and we need a second read message * adjust the write offset */ if (num_iterations > 1) { num_components = instr->num_components - 2; imm_offset++; } } break; } case nir_intrinsic_load_output: case nir_intrinsic_load_per_vertex_output: { fs_reg indirect_offset = get_indirect_offset(instr); unsigned imm_offset = instr->const_index[0]; unsigned first_component = nir_intrinsic_component(instr); fs_inst *inst; if (indirect_offset.file == BAD_FILE) { /* Replicate the patch handle to all enabled channels */ fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); bld.MOV(patch_handle, retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)); if (imm_offset == 0) { /* This is a read of gl_TessLevelInner[], which lives in the * Patch URB header. The layout depends on the domain. */ dst.type = BRW_REGISTER_TYPE_F; switch (tcs_key->tes_primitive_mode) { case GL_QUADS: { /* DWords 3-2 (reversed) */ fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4); inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, patch_handle); inst->offset = 0; inst->mlen = 1; inst->regs_written = 4; /* dst.xy = tmp.wz */ bld.MOV(dst, offset(tmp, bld, 3)); bld.MOV(offset(dst, bld, 1), offset(tmp, bld, 2)); break; } case GL_TRIANGLES: /* DWord 4; hardcode offset = 1 and regs_written = 1 */ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, patch_handle); inst->offset = 1; inst->mlen = 1; inst->regs_written = 1; break; case GL_ISOLINES: /* All channels are undefined. */ break; default: unreachable("Bogus tessellation domain"); } } else if (imm_offset == 1) { /* This is a read of gl_TessLevelOuter[], which lives in the * Patch URB header. The layout depends on the domain. */ dst.type = BRW_REGISTER_TYPE_F; fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4); inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, patch_handle); inst->offset = 1; inst->mlen = 1; inst->regs_written = 4; /* Reswizzle: WZYX */ fs_reg srcs[4] = { offset(tmp, bld, 3), offset(tmp, bld, 2), offset(tmp, bld, 1), offset(tmp, bld, 0), }; unsigned num_components; switch (tcs_key->tes_primitive_mode) { case GL_QUADS: num_components = 4; break; case GL_TRIANGLES: num_components = 3; break; case GL_ISOLINES: /* Isolines are not reversed; swizzle .zw -> .xy */ srcs[0] = offset(tmp, bld, 2); srcs[1] = offset(tmp, bld, 3); num_components = 2; break; default: unreachable("Bogus tessellation domain"); } bld.LOAD_PAYLOAD(dst, srcs, num_components, 0); } else { if (first_component != 0) { unsigned read_components = instr->num_components + first_component; fs_reg tmp = bld.vgrf(dst.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, patch_handle); inst->regs_written = read_components; for (unsigned i = 0; i < instr->num_components; i++) { bld.MOV(offset(dst, bld, i), offset(tmp, bld, i + first_component)); } } else { inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, patch_handle); inst->regs_written = instr->num_components; } inst->offset = imm_offset; inst->mlen = 1; } } else { /* Indirect indexing - use per-slot offsets as well. */ const fs_reg srcs[] = { retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD), indirect_offset }; fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2); bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0); if (first_component != 0) { unsigned read_components = instr->num_components + first_component; fs_reg tmp = bld.vgrf(dst.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp, payload); inst->regs_written = read_components; for (unsigned i = 0; i < instr->num_components; i++) { bld.MOV(offset(dst, bld, i), offset(tmp, bld, i + first_component)); } } else { inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload); inst->regs_written = instr->num_components; } inst->offset = imm_offset; inst->mlen = 2; } break; } case nir_intrinsic_store_output: case nir_intrinsic_store_per_vertex_output: { fs_reg value = get_nir_src(instr->src[0]); bool is_64bit = (instr->src[0].is_ssa ? instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64; fs_reg indirect_offset = get_indirect_offset(instr); unsigned imm_offset = instr->const_index[0]; unsigned swiz = BRW_SWIZZLE_XYZW; unsigned mask = instr->const_index[1]; unsigned header_regs = 0; fs_reg srcs[7]; srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD); if (indirect_offset.file != BAD_FILE) { srcs[header_regs++] = indirect_offset; } else if (!is_passthrough_shader) { if (imm_offset == 0) { value.type = BRW_REGISTER_TYPE_F; mask &= (1 << tesslevel_inner_components(tcs_key->tes_primitive_mode)) - 1; /* This is a write to gl_TessLevelInner[], which lives in the * Patch URB header. The layout depends on the domain. */ switch (tcs_key->tes_primitive_mode) { case GL_QUADS: /* gl_TessLevelInner[].xy lives at DWords 3-2 (reversed). * We use an XXYX swizzle to reverse put .xy in the .wz * channels, and use a .zw writemask. */ mask = writemask_for_backwards_vector(mask); swiz = BRW_SWIZZLE4(0, 0, 1, 0); break; case GL_TRIANGLES: /* gl_TessLevelInner[].x lives at DWord 4, so we set the * writemask to X and bump the URB offset by 1. */ imm_offset = 1; break; case GL_ISOLINES: /* Skip; gl_TessLevelInner[] doesn't exist for isolines. */ return; default: unreachable("Bogus tessellation domain"); } } else if (imm_offset == 1) { /* This is a write to gl_TessLevelOuter[] which lives in the * Patch URB Header at DWords 4-7. However, it's reversed, so * instead of .xyzw we have .wzyx. */ value.type = BRW_REGISTER_TYPE_F; mask &= (1 << tesslevel_outer_components(tcs_key->tes_primitive_mode)) - 1; if (tcs_key->tes_primitive_mode == GL_ISOLINES) { /* Isolines .xy should be stored in .zw, in order. */ swiz = BRW_SWIZZLE4(0, 0, 0, 1); mask <<= 2; } else { /* Other domains are reversed; store .wzyx instead of .xyzw */ swiz = BRW_SWIZZLE_WZYX; mask = writemask_for_backwards_vector(mask); } } } if (mask == 0) break; unsigned num_components = util_last_bit(mask); enum opcode opcode; /* We can only pack two 64-bit components in a single message, so send * 2 messages if we have more components */ unsigned num_iterations = 1; unsigned iter_components = num_components; unsigned first_component = nir_intrinsic_component(instr); if (is_64bit) { first_component = first_component / 2; if (instr->num_components > 2) { num_iterations = 2; iter_components = 2; } } /* 64-bit data needs to me shuffled before we can write it to the URB. * We will use this temporary to shuffle the components in each * iteration. */ fs_reg tmp = fs_reg(VGRF, alloc.allocate(2 * iter_components), value.type); mask = mask << first_component; for (unsigned iter = 0; iter < num_iterations; iter++) { if (!is_64bit && mask != WRITEMASK_XYZW) { srcs[header_regs++] = brw_imm_ud(mask << 16); opcode = indirect_offset.file != BAD_FILE ? SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT : SHADER_OPCODE_URB_WRITE_SIMD8_MASKED; } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) { /* Expand the 64-bit mask to 32-bit channels. We only handle * two channels in each iteration, so we only care about X/Y. */ unsigned mask32 = 0; if (mask & WRITEMASK_X) mask32 |= WRITEMASK_XY; if (mask & WRITEMASK_Y) mask32 |= WRITEMASK_ZW; /* If the mask does not include any of the channels X or Y there * is nothing to do in this iteration. Move on to the next couple * of 64-bit channels. */ if (!mask32) { mask >>= 2; imm_offset++; continue; } srcs[header_regs++] = brw_imm_ud(mask32 << 16); opcode = indirect_offset.file != BAD_FILE ? SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT : SHADER_OPCODE_URB_WRITE_SIMD8_MASKED; } else { opcode = indirect_offset.file != BAD_FILE ? SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT : SHADER_OPCODE_URB_WRITE_SIMD8; } for (unsigned i = 0; i < iter_components; i++) { if (!(mask & (1 << (i + first_component)))) continue; if (!is_64bit) { srcs[header_regs + i + first_component] = offset(value, bld, BRW_GET_SWZ(swiz, i)); } else { /* We need to shuffle the 64-bit data to match the layout * expected by our 32-bit URB write messages. We use a temporary * for that. */ unsigned channel = BRW_GET_SWZ(swiz, iter * 2 + i); shuffle_64bit_data_for_32bit_write(bld, retype(offset(tmp, bld, 2 * i), BRW_REGISTER_TYPE_F), retype(offset(value, bld, 2 * channel), BRW_REGISTER_TYPE_DF), 1); /* Now copy the data to the destination */ fs_reg dest = fs_reg(VGRF, alloc.allocate(2), value.type); unsigned idx = 2 * i; bld.MOV(dest, offset(tmp, bld, idx)); bld.MOV(offset(dest, bld, 1), offset(tmp, bld, idx + 1)); srcs[header_regs + idx + first_component * 2] = dest; srcs[header_regs + idx + 1 + first_component * 2] = offset(dest, bld, 1); } } unsigned mlen = header_regs + (is_64bit ? 2 * iter_components : iter_components) + (is_64bit ? 2 * first_component : first_component); fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen); bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs); fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload); inst->offset = imm_offset; inst->mlen = mlen; /* If this is a 64-bit attribute, select the next two 64-bit channels * to be handled in the next iteration. */ if (is_64bit) { mask >>= 2; imm_offset++; } } break; } default: nir_emit_intrinsic(bld, instr); break; } } void fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr) { assert(stage == MESA_SHADER_TESS_EVAL); struct brw_tes_prog_data *tes_prog_data = (struct brw_tes_prog_data *) prog_data; fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); switch (instr->intrinsic) { case nir_intrinsic_load_primitive_id: bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1))); break; case nir_intrinsic_load_tess_coord: /* gl_TessCoord is part of the payload in g1-3 */ for (unsigned i = 0; i < 3; i++) { bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0))); } break; case nir_intrinsic_load_tess_level_outer: /* When the TES reads gl_TessLevelOuter, we ensure that the patch header * appears as a push-model input. So, we can simply use the ATTR file * rather than issuing URB read messages. The data is stored in the * high DWords in reverse order - DWord 7 contains .x, DWord 6 contains * .y, and so on. */ switch (tes_prog_data->domain) { case BRW_TESS_DOMAIN_QUAD: for (unsigned i = 0; i < 4; i++) bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i)); break; case BRW_TESS_DOMAIN_TRI: for (unsigned i = 0; i < 3; i++) bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i)); break; case BRW_TESS_DOMAIN_ISOLINE: for (unsigned i = 0; i < 2; i++) bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 6 + i)); break; } break; case nir_intrinsic_load_tess_level_inner: /* When the TES reads gl_TessLevelInner, we ensure that the patch header * appears as a push-model input. So, we can simply use the ATTR file * rather than issuing URB read messages. */ switch (tes_prog_data->domain) { case BRW_TESS_DOMAIN_QUAD: bld.MOV(dest, component(fs_reg(ATTR, 0), 3)); bld.MOV(offset(dest, bld, 1), component(fs_reg(ATTR, 0), 2)); break; case BRW_TESS_DOMAIN_TRI: bld.MOV(dest, component(fs_reg(ATTR, 0), 4)); break; case BRW_TESS_DOMAIN_ISOLINE: /* ignore - value is undefined */ break; } break; case nir_intrinsic_load_input: case nir_intrinsic_load_per_vertex_input: { fs_reg indirect_offset = get_indirect_offset(instr); unsigned imm_offset = instr->const_index[0]; unsigned first_component = nir_intrinsic_component(instr); if (type_sz(dest.type) == 8) { first_component = first_component / 2; } fs_inst *inst; if (indirect_offset.file == BAD_FILE) { /* Arbitrarily only push up to 32 vec4 slots worth of data, * which is 16 registers (since each holds 2 vec4 slots). */ const unsigned max_push_slots = 32; if (imm_offset < max_push_slots) { fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type); for (int i = 0; i < instr->num_components; i++) { unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) + i + first_component; bld.MOV(offset(dest, bld, i), component(src, comp)); } tes_prog_data->base.urb_read_length = MAX2(tes_prog_data->base.urb_read_length, DIV_ROUND_UP(imm_offset + 1, 2)); } else { /* Replicate the patch handle to all enabled channels */ const fs_reg srcs[] = { retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD) }; fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0); if (first_component != 0) { unsigned read_components = instr->num_components + first_component; fs_reg tmp = bld.vgrf(dest.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, patch_handle); inst->regs_written = read_components; for (unsigned i = 0; i < instr->num_components; i++) { bld.MOV(offset(dest, bld, i), offset(tmp, bld, i + first_component)); } } else { inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest, patch_handle); inst->regs_written = instr->num_components; } inst->mlen = 1; inst->offset = imm_offset; } } else { /* Indirect indexing - use per-slot offsets as well. */ /* We can only read two double components with each URB read, so * we send two read messages in that case, each one loading up to * two double components. */ unsigned num_iterations = 1; unsigned num_components = instr->num_components; fs_reg orig_dest = dest; if (type_sz(dest.type) == 8) { if (instr->num_components > 2) { num_iterations = 2; num_components = 2; } fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type); dest = tmp; } for (unsigned iter = 0; iter < num_iterations; iter++) { const fs_reg srcs[] = { retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD), indirect_offset }; fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2); bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0); if (first_component != 0) { unsigned read_components = num_components + first_component; fs_reg tmp = bld.vgrf(dest.type, read_components); inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp, payload); for (unsigned i = 0; i < num_components; i++) { bld.MOV(offset(dest, bld, i), offset(tmp, bld, i + first_component)); } } else { inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest, payload); } inst->mlen = 2; inst->offset = imm_offset; inst->regs_written = ((num_components + first_component) * type_sz(dest.type) / 4); /* If we are reading 64-bit data using 32-bit read messages we need * build proper 64-bit data elements by shuffling the low and high * 32-bit components around like we do for other things like UBOs * or SSBOs. */ if (type_sz(dest.type) == 8) { shuffle_32bit_load_result_to_64bit_data( bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components); for (unsigned c = 0; c < num_components; c++) { bld.MOV(offset(orig_dest, bld, iter * 2 + c), offset(dest, bld, c)); } } /* If we are loading double data and we need a second read message * adjust the offset */ if (num_iterations > 1) { num_components = instr->num_components - 2; imm_offset++; } } } break; } default: nir_emit_intrinsic(bld, instr); break; } } void fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr) { assert(stage == MESA_SHADER_GEOMETRY); fs_reg indirect_offset; fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); switch (instr->intrinsic) { case nir_intrinsic_load_primitive_id: assert(stage == MESA_SHADER_GEOMETRY); assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id); bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD)); break; case nir_intrinsic_load_input: unreachable("load_input intrinsics are invalid for the GS stage"); case nir_intrinsic_load_per_vertex_input: emit_gs_input_load(dest, instr->src[0], instr->const_index[0], instr->src[1], instr->num_components, nir_intrinsic_component(instr)); break; case nir_intrinsic_emit_vertex_with_counter: emit_gs_vertex(instr->src[0], instr->const_index[0]); break; case nir_intrinsic_end_primitive_with_counter: emit_gs_end_primitive(instr->src[0]); break; case nir_intrinsic_set_vertex_count: bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0])); break; case nir_intrinsic_load_invocation_id: { fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID]; assert(val.file != BAD_FILE); dest.type = val.type; bld.MOV(dest, val); break; } default: nir_emit_intrinsic(bld, instr); break; } } /** * Fetch the current render target layer index. */ static fs_reg fetch_render_target_array_index(const fs_builder &bld) { if (bld.shader->devinfo->gen >= 6) { /* The render target array index is provided in the thread payload as * bits 26:16 of r0.0. */ const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD); bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1), brw_imm_uw(0x7ff)); return idx; } else { /* Pre-SNB we only ever render into the first layer of the framebuffer * since layered rendering is not implemented. */ return brw_imm_ud(0); } } /** * Fake non-coherent framebuffer read implemented using TXF to fetch from the * framebuffer at the current fragment coordinates and sample index. */ fs_inst * fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target) { const struct gen_device_info *devinfo = bld.shader->devinfo; assert(bld.shader->stage == MESA_SHADER_FRAGMENT); const brw_wm_prog_key *wm_key = reinterpret_cast(key); assert(!wm_key->coherent_fb_fetch); const brw_wm_prog_data *wm_prog_data = reinterpret_cast(stage_prog_data); /* Calculate the surface index relative to the start of the texture binding * table block, since that's what the texturing messages expect. */ const unsigned surface = target + wm_prog_data->binding_table.render_target_read_start - wm_prog_data->base.binding_table.texture_start; brw_mark_surface_used( bld.shader->stage_prog_data, wm_prog_data->binding_table.render_target_read_start + target); /* Calculate the fragment coordinates. */ const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3); bld.MOV(offset(coords, bld, 0), pixel_x); bld.MOV(offset(coords, bld, 1), pixel_y); bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld)); /* Calculate the sample index and MCS payload when multisampling. Luckily * the MCS fetch message behaves deterministically for UMS surfaces, so it * shouldn't be necessary to recompile based on whether the framebuffer is * CMS or UMS. */ if (wm_key->multisample_fbo && nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE) nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup(); const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID]; const fs_reg mcs = wm_key->multisample_fbo ? emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg(); /* Use either a normal or a CMS texel fetch message depending on whether * the framebuffer is single or multisample. On SKL+ use the wide CMS * message just in case the framebuffer uses 16x multisampling, it should * be equivalent to the normal CMS fetch for lower multisampling modes. */ const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL : devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL : SHADER_OPCODE_TXF_CMS_LOGICAL; /* Emit the instruction. */ const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(), sample, mcs, brw_imm_ud(surface), brw_imm_ud(0), fs_reg(), brw_imm_ud(3), brw_imm_ud(0) }; STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS); fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs)); inst->regs_written = 4 * inst->dst.component_size(inst->exec_size) / REG_SIZE; return inst; } /** * Actual coherent framebuffer read implemented using the native render target * read message. Requires SKL+. */ static fs_inst * emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target) { assert(bld.shader->devinfo->gen >= 9); fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst); inst->target = target; inst->regs_written = 4 * inst->dst.component_size(inst->exec_size) / REG_SIZE; return inst; } static fs_reg alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n) { if (n && regs[0].file != BAD_FILE) { return regs[0]; } else { const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size); for (unsigned i = 0; i < n; i++) regs[i] = tmp; return tmp; } } static fs_reg alloc_frag_output(fs_visitor *v, unsigned location) { assert(v->stage == MESA_SHADER_FRAGMENT); const brw_wm_prog_key *const key = reinterpret_cast(v->key); const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION); const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX); if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1)) return alloc_temporary(v->bld, 4, &v->dual_src_output, 1); else if (l == FRAG_RESULT_COLOR) return alloc_temporary(v->bld, 4, v->outputs, MAX2(key->nr_color_regions, 1)); else if (l == FRAG_RESULT_DEPTH) return alloc_temporary(v->bld, 1, &v->frag_depth, 1); else if (l == FRAG_RESULT_STENCIL) return alloc_temporary(v->bld, 1, &v->frag_stencil, 1); else if (l == FRAG_RESULT_SAMPLE_MASK) return alloc_temporary(v->bld, 1, &v->sample_mask, 1); else if (l >= FRAG_RESULT_DATA0 && l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS) return alloc_temporary(v->bld, 4, &v->outputs[l - FRAG_RESULT_DATA0], 1); else unreachable("Invalid location"); } void fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr) { assert(stage == MESA_SHADER_FRAGMENT); fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); switch (instr->intrinsic) { case nir_intrinsic_load_front_face: bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), *emit_frontfacing_interpolation()); break; case nir_intrinsic_load_sample_pos: { fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS]; assert(sample_pos.file != BAD_FILE); dest.type = sample_pos.type; bld.MOV(dest, sample_pos); bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1)); break; } case nir_intrinsic_load_helper_invocation: case nir_intrinsic_load_sample_mask_in: case nir_intrinsic_load_sample_id: { gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic); fs_reg val = nir_system_values[sv]; assert(val.file != BAD_FILE); dest.type = val.type; bld.MOV(dest, val); break; } case nir_intrinsic_store_output: { const fs_reg src = get_nir_src(instr->src[0]); const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]); assert(const_offset && "Indirect output stores not allowed"); const unsigned location = nir_intrinsic_base(instr) + SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION); const fs_reg new_dest = retype(alloc_frag_output(this, location), src.type); for (unsigned j = 0; j < instr->num_components; j++) bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j), offset(src, bld, j)); break; } case nir_intrinsic_load_output: { const unsigned l = GET_FIELD(nir_intrinsic_base(instr), BRW_NIR_FRAG_OUTPUT_LOCATION); assert(l >= FRAG_RESULT_DATA0); nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]); assert(const_offset && "Indirect output loads not allowed"); const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0]; const fs_reg tmp = bld.vgrf(dest.type, 4); if (reinterpret_cast(key)->coherent_fb_fetch) emit_coherent_fb_read(bld, tmp, target); else emit_non_coherent_fb_read(bld, tmp, target); for (unsigned j = 0; j < instr->num_components; j++) { bld.MOV(offset(dest, bld, j), offset(tmp, bld, nir_intrinsic_component(instr) + j)); } break; } case nir_intrinsic_discard: case nir_intrinsic_discard_if: { /* We track our discarded pixels in f0.1. By predicating on it, we can * update just the flag bits that aren't yet discarded. If there's no * condition, we emit a CMP of g0 != g0, so all currently executing * channels will get turned off. */ fs_inst *cmp; if (instr->intrinsic == nir_intrinsic_discard_if) { cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_Z); } else { fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW)); cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ); } cmp->predicate = BRW_PREDICATE_NORMAL; cmp->flag_subreg = 1; if (devinfo->gen >= 6) { emit_discard_jump(); } break; } case nir_intrinsic_load_input: { /* load_input is only used for flat inputs */ unsigned base = nir_intrinsic_base(instr); unsigned component = nir_intrinsic_component(instr); unsigned num_components = instr->num_components; enum brw_reg_type type = dest.type; /* Special case fields in the VUE header */ if (base == VARYING_SLOT_LAYER) component = 1; else if (base == VARYING_SLOT_VIEWPORT) component = 2; if (nir_dest_bit_size(instr->dest) == 64) { /* const_index is in 32-bit type size units that could not be aligned * with DF. We need to read the double vector as if it was a float * vector of twice the number of components to fetch the right data. */ type = BRW_REGISTER_TYPE_F; num_components *= 2; } for (unsigned int i = 0; i < num_components; i++) { struct brw_reg interp = interp_reg(base, component + i); interp = suboffset(interp, 3); bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i), retype(fs_reg(interp), type)); } if (nir_dest_bit_size(instr->dest) == 64) { shuffle_32bit_load_result_to_64bit_data(bld, dest, retype(dest, type), instr->num_components); } break; } case nir_intrinsic_load_barycentric_pixel: case nir_intrinsic_load_barycentric_centroid: case nir_intrinsic_load_barycentric_sample: /* Do nothing - load_interpolated_input handling will handle it later. */ break; case nir_intrinsic_load_barycentric_at_sample: { const glsl_interp_mode interpolation = (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr); nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]); if (const_sample) { unsigned msg_data = const_sample->i32[0] << 4; emit_pixel_interpolater_send(bld, FS_OPCODE_INTERPOLATE_AT_SAMPLE, dest, fs_reg(), /* src */ brw_imm_ud(msg_data), interpolation); } else { const fs_reg sample_src = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD); if (nir_src_is_dynamically_uniform(instr->src[0])) { const fs_reg sample_id = bld.emit_uniformize(sample_src); const fs_reg msg_data = vgrf(glsl_type::uint_type); bld.exec_all().group(1, 0) .SHL(msg_data, sample_id, brw_imm_ud(4u)); emit_pixel_interpolater_send(bld, FS_OPCODE_INTERPOLATE_AT_SAMPLE, dest, fs_reg(), /* src */ msg_data, interpolation); } else { /* Make a loop that sends a message to the pixel interpolater * for the sample number in each live channel. If there are * multiple channels with the same sample number then these * will be handled simultaneously with a single interation of * the loop. */ bld.emit(BRW_OPCODE_DO); /* Get the next live sample number into sample_id_reg */ const fs_reg sample_id = bld.emit_uniformize(sample_src); /* Set the flag register so that we can perform the send * message on all channels that have the same sample number */ bld.CMP(bld.null_reg_ud(), sample_src, sample_id, BRW_CONDITIONAL_EQ); const fs_reg msg_data = vgrf(glsl_type::uint_type); bld.exec_all().group(1, 0) .SHL(msg_data, sample_id, brw_imm_ud(4u)); fs_inst *inst = emit_pixel_interpolater_send(bld, FS_OPCODE_INTERPOLATE_AT_SAMPLE, dest, fs_reg(), /* src */ msg_data, interpolation); set_predicate(BRW_PREDICATE_NORMAL, inst); /* Continue the loop if there are any live channels left */ set_predicate_inv(BRW_PREDICATE_NORMAL, true, /* inverse */ bld.emit(BRW_OPCODE_WHILE)); } } break; } case nir_intrinsic_load_barycentric_at_offset: { const glsl_interp_mode interpolation = (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr); nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]); if (const_offset) { unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf; unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf; emit_pixel_interpolater_send(bld, FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dest, fs_reg(), /* src */ brw_imm_ud(off_x | (off_y << 4)), interpolation); } else { fs_reg src = vgrf(glsl_type::ivec2_type); fs_reg offset_src = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F); for (int i = 0; i < 2; i++) { fs_reg temp = vgrf(glsl_type::float_type); bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f)); fs_reg itemp = vgrf(glsl_type::int_type); /* float to int */ bld.MOV(itemp, temp); /* Clamp the upper end of the range to +7/16. * ARB_gpu_shader5 requires that we support a maximum offset * of +0.5, which isn't representable in a S0.4 value -- if * we didn't clamp it, we'd end up with -8/16, which is the * opposite of what the shader author wanted. * * This is legal due to ARB_gpu_shader5's quantization * rules: * * "Not all values of may be supported; x and y * offsets may be rounded to fixed-point values with the * number of fraction bits given by the * implementation-dependent constant * FRAGMENT_INTERPOLATION_OFFSET_BITS" */ set_condmod(BRW_CONDITIONAL_L, bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7))); } const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET; emit_pixel_interpolater_send(bld, opcode, dest, src, brw_imm_ud(0u), interpolation); } break; } case nir_intrinsic_load_interpolated_input: { if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) { emit_fragcoord_interpolation(dest); break; } assert(instr->src[0].ssa && instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic); nir_intrinsic_instr *bary_intrinsic = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr); nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic; enum glsl_interp_mode interp_mode = (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic); fs_reg dst_xy; if (bary_intrin == nir_intrinsic_load_barycentric_at_offset || bary_intrin == nir_intrinsic_load_barycentric_at_sample) { /* Use the result of the PI message */ dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F); } else { /* Use the delta_xy values computed from the payload */ enum brw_barycentric_mode bary = brw_barycentric_mode(interp_mode, bary_intrin); dst_xy = this->delta_xy[bary]; } for (unsigned int i = 0; i < instr->num_components; i++) { fs_reg interp = fs_reg(interp_reg(nir_intrinsic_base(instr), nir_intrinsic_component(instr) + i)); interp.type = BRW_REGISTER_TYPE_F; dest.type = BRW_REGISTER_TYPE_F; if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) { fs_reg tmp = vgrf(glsl_type::float_type); bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp); bld.MUL(offset(dest, bld, i), tmp, this->pixel_w); } else { bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp); } } break; } default: nir_emit_intrinsic(bld, instr); break; } } void fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr) { assert(stage == MESA_SHADER_COMPUTE); struct brw_cs_prog_data *cs_prog_data = (struct brw_cs_prog_data *) prog_data; fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); switch (instr->intrinsic) { case nir_intrinsic_barrier: emit_barrier(); cs_prog_data->uses_barrier = true; break; case nir_intrinsic_load_local_invocation_id: case nir_intrinsic_load_work_group_id: { gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic); fs_reg val = nir_system_values[sv]; assert(val.file != BAD_FILE); dest.type = val.type; for (unsigned i = 0; i < 3; i++) bld.MOV(offset(dest, bld, i), offset(val, bld, i)); break; } case nir_intrinsic_load_num_work_groups: { const unsigned surface = cs_prog_data->binding_table.work_groups_start; cs_prog_data->uses_num_work_groups = true; fs_reg surf_index = brw_imm_ud(surface); brw_mark_surface_used(prog_data, surface); /* Read the 3 GLuint components of gl_NumWorkGroups */ for (unsigned i = 0; i < 3; i++) { fs_reg read_result = emit_untyped_read(bld, surf_index, brw_imm_ud(i << 2), 1 /* dims */, 1 /* size */, BRW_PREDICATE_NONE); read_result.type = dest.type; bld.MOV(dest, read_result); dest = offset(dest, bld, 1); } break; } case nir_intrinsic_shared_atomic_add: nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr); break; case nir_intrinsic_shared_atomic_imin: nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr); break; case nir_intrinsic_shared_atomic_umin: nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr); break; case nir_intrinsic_shared_atomic_imax: nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr); break; case nir_intrinsic_shared_atomic_umax: nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr); break; case nir_intrinsic_shared_atomic_and: nir_emit_shared_atomic(bld, BRW_AOP_AND, instr); break; case nir_intrinsic_shared_atomic_or: nir_emit_shared_atomic(bld, BRW_AOP_OR, instr); break; case nir_intrinsic_shared_atomic_xor: nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr); break; case nir_intrinsic_shared_atomic_exchange: nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr); break; case nir_intrinsic_shared_atomic_comp_swap: nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr); break; case nir_intrinsic_load_shared: { assert(devinfo->gen >= 7); fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM); /* Get the offset to read from */ fs_reg offset_reg; nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]); if (const_offset) { offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]); } else { offset_reg = vgrf(glsl_type::uint_type); bld.ADD(offset_reg, retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD), brw_imm_ud(instr->const_index[0])); } /* Read the vector */ do_untyped_vector_read(bld, dest, surf_index, offset_reg, instr->num_components); break; } case nir_intrinsic_store_shared: { assert(devinfo->gen >= 7); /* Block index */ fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM); /* Value */ fs_reg val_reg = get_nir_src(instr->src[0]); /* Writemask */ unsigned writemask = instr->const_index[1]; /* get_nir_src() retypes to integer. Be wary of 64-bit types though * since the untyped writes below operate in units of 32-bits, which * means that we need to write twice as many components each time. * Also, we have to suffle 64-bit data to be in the appropriate layout * expected by our 32-bit write messages. */ unsigned type_size = 4; unsigned bit_size = instr->src[0].is_ssa ? instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size; if (bit_size == 64) { type_size = 8; fs_reg tmp = fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type); shuffle_64bit_data_for_32bit_write( bld, retype(tmp, BRW_REGISTER_TYPE_F), retype(val_reg, BRW_REGISTER_TYPE_DF), instr->num_components); val_reg = tmp; } unsigned type_slots = type_size / 4; /* Combine groups of consecutive enabled channels in one write * message. We use ffs to find the first enabled channel and then ffs on * the bit-inverse, down-shifted writemask to determine the length of * the block of enabled bits. */ while (writemask) { unsigned first_component = ffs(writemask) - 1; unsigned length = ffs(~(writemask >> first_component)) - 1; /* We can't write more than 2 64-bit components at once. Limit the * length of the write to what we can do and let the next iteration * handle the rest */ if (type_size > 4) length = MIN2(2, length); fs_reg offset_reg; nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]); if (const_offset) { offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] + type_size * first_component); } else { offset_reg = vgrf(glsl_type::uint_type); bld.ADD(offset_reg, retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD), brw_imm_ud(instr->const_index[0] + type_size * first_component)); } emit_untyped_write(bld, surf_index, offset_reg, offset(val_reg, bld, first_component * type_slots), 1 /* dims */, length * type_slots, BRW_PREDICATE_NONE); /* Clear the bits in the writemask that we just wrote, then try * again to see if more channels are left. */ writemask &= (15 << (first_component + length)); } break; } default: nir_emit_intrinsic(bld, instr); break; } } void fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr) { fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); switch (instr->intrinsic) { case nir_intrinsic_atomic_counter_inc: case nir_intrinsic_atomic_counter_dec: case nir_intrinsic_atomic_counter_read: { if (stage == MESA_SHADER_FRAGMENT && instr->intrinsic != nir_intrinsic_atomic_counter_read) ((struct brw_wm_prog_data *)prog_data)->has_side_effects = true; /* Get the arguments of the atomic intrinsic. */ const fs_reg offset = get_nir_src(instr->src[0]); const unsigned surface = (stage_prog_data->binding_table.abo_start + instr->const_index[0]); fs_reg tmp; /* Emit a surface read or atomic op. */ switch (instr->intrinsic) { case nir_intrinsic_atomic_counter_read: tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1); break; case nir_intrinsic_atomic_counter_inc: tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(), fs_reg(), 1, 1, BRW_AOP_INC); break; case nir_intrinsic_atomic_counter_dec: tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(), fs_reg(), 1, 1, BRW_AOP_PREDEC); break; default: unreachable("Unreachable"); } /* Assign the result. */ bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp); /* Mark the surface as used. */ brw_mark_surface_used(stage_prog_data, surface); break; } case nir_intrinsic_image_load: case nir_intrinsic_image_store: case nir_intrinsic_image_atomic_add: case nir_intrinsic_image_atomic_min: case nir_intrinsic_image_atomic_max: case nir_intrinsic_image_atomic_and: case nir_intrinsic_image_atomic_or: case nir_intrinsic_image_atomic_xor: case nir_intrinsic_image_atomic_exchange: case nir_intrinsic_image_atomic_comp_swap: { using namespace image_access; if (stage == MESA_SHADER_FRAGMENT && instr->intrinsic != nir_intrinsic_image_load) ((struct brw_wm_prog_data *)prog_data)->has_side_effects = true; /* Get the referenced image variable and type. */ const nir_variable *var = instr->variables[0]->var; const glsl_type *type = var->type->without_array(); const brw_reg_type base_type = get_image_base_type(type); /* Get some metadata from the image intrinsic. */ const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; const unsigned arr_dims = type->sampler_array ? 1 : 0; const unsigned surf_dims = type->coordinate_components() - arr_dims; const unsigned format = var->data.image.format; /* Get the arguments of the image intrinsic. */ const fs_reg image = get_nir_image_deref(instr->variables[0]); const fs_reg addr = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD); const fs_reg src0 = (info->num_srcs >= 3 ? retype(get_nir_src(instr->src[2]), base_type) : fs_reg()); const fs_reg src1 = (info->num_srcs >= 4 ? retype(get_nir_src(instr->src[3]), base_type) : fs_reg()); fs_reg tmp; /* Emit an image load, store or atomic op. */ if (instr->intrinsic == nir_intrinsic_image_load) tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format); else if (instr->intrinsic == nir_intrinsic_image_store) emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, var->data.image.write_only ? GL_NONE : format); else tmp = emit_image_atomic(bld, image, addr, src0, src1, surf_dims, arr_dims, info->dest_components, get_image_atomic_op(instr->intrinsic, type)); /* Assign the result. */ for (unsigned c = 0; c < info->dest_components; ++c) bld.MOV(offset(retype(dest, base_type), bld, c), offset(tmp, bld, c)); break; } case nir_intrinsic_memory_barrier_atomic_counter: case nir_intrinsic_memory_barrier_buffer: case nir_intrinsic_memory_barrier_image: case nir_intrinsic_memory_barrier: { const fs_builder ubld = bld.group(8, 0); const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2); ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp) ->regs_written = 2; break; } case nir_intrinsic_group_memory_barrier: case nir_intrinsic_memory_barrier_shared: /* We treat these workgroup-level barriers as no-ops. This should be * safe at present and as long as: * * - Memory access instructions are not subsequently reordered by the * compiler back-end. * * - All threads from a given compute shader workgroup fit within a * single subslice and therefore talk to the same HDC shared unit * what supposedly guarantees ordering and coherency between threads * from the same workgroup. This may change in the future when we * start splitting workgroups across multiple subslices. * * - The context is not in fault-and-stream mode, which could cause * memory transactions (including to SLM) prior to the barrier to be * replayed after the barrier if a pagefault occurs. This shouldn't * be a problem up to and including SKL because fault-and-stream is * not usable due to hardware issues, but that's likely to change in * the future. */ break; case nir_intrinsic_shader_clock: { /* We cannot do anything if there is an event, so ignore it for now */ fs_reg shader_clock = get_timestamp(bld); const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) }; bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0); break; } case nir_intrinsic_image_size: { /* Get the referenced image variable and type. */ const nir_variable *var = instr->variables[0]->var; const glsl_type *type = var->type->without_array(); /* Get the size of the image. */ const fs_reg image = get_nir_image_deref(instr->variables[0]); const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET); /* For 1DArray image types, the array index is stored in the Z component. * Fix this by swizzling the Z component to the Y component. */ const bool is_1d_array_image = type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D && type->sampler_array; /* For CubeArray images, we should count the number of cubes instead * of the number of faces. Fix it by dividing the (Z component) by 6. */ const bool is_cube_array_image = type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE && type->sampler_array; /* Copy all the components. */ const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; for (unsigned c = 0; c < info->dest_components; ++c) { if ((int)c >= type->coordinate_components()) { bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c), brw_imm_d(1)); } else if (c == 1 && is_1d_array_image) { bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c), offset(size, bld, 2)); } else if (c == 2 && is_cube_array_image) { bld.emit(SHADER_OPCODE_INT_QUOTIENT, offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c), offset(size, bld, c), brw_imm_d(6)); } else { bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c), offset(size, bld, c)); } } break; } case nir_intrinsic_image_samples: /* The driver does not support multi-sampled images. */ bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1)); break; case nir_intrinsic_load_uniform: { /* Offsets are in bytes but they should always be multiples of 4 */ assert(instr->const_index[0] % 4 == 0); fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type); nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]); if (const_offset) { /* Offsets are in bytes but they should always be multiples of 4 */ assert(const_offset->u32[0] % 4 == 0); src.reg_offset = const_offset->u32[0] / 4; for (unsigned j = 0; j < instr->num_components; j++) { bld.MOV(offset(dest, bld, j), offset(src, bld, j)); } } else { fs_reg indirect = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD); /* We need to pass a size to the MOV_INDIRECT but we don't want it to * go past the end of the uniform. In order to keep the n'th * component from running past, we subtract off the size of all but * one component of the vector. */ assert(instr->const_index[1] >= instr->num_components * (int) type_sz(dest.type)); unsigned read_size = instr->const_index[1] - (instr->num_components - 1) * type_sz(dest.type); fs_reg indirect_chv_high_32bit; bool is_chv_bxt_64bit = (devinfo->is_cherryview || devinfo->is_broxton) && type_sz(dest.type) == 8; if (is_chv_bxt_64bit) { indirect_chv_high_32bit = vgrf(glsl_type::uint_type); /* Calculate indirect address to read high 32 bits */ bld.ADD(indirect_chv_high_32bit, indirect, brw_imm_ud(4)); } for (unsigned j = 0; j < instr->num_components; j++) { if (!is_chv_bxt_64bit) { bld.emit(SHADER_OPCODE_MOV_INDIRECT, offset(dest, bld, j), offset(src, bld, j), indirect, brw_imm_ud(read_size)); } else { bld.emit(SHADER_OPCODE_MOV_INDIRECT, subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, 0), offset(src, bld, j), indirect, brw_imm_ud(read_size)); bld.emit(SHADER_OPCODE_MOV_INDIRECT, subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, 1), offset(src, bld, j), indirect_chv_high_32bit, brw_imm_ud(read_size)); } } } break; } case nir_intrinsic_load_ubo: { nir_const_value *const_index = nir_src_as_const_value(instr->src[0]); fs_reg surf_index; if (const_index) { const unsigned index = stage_prog_data->binding_table.ubo_start + const_index->u32[0]; surf_index = brw_imm_ud(index); brw_mark_surface_used(prog_data, index); } else { /* The block index is not a constant. Evaluate the index expression * per-channel and add the base UBO index; we have to select a value * from any live channel. */ surf_index = vgrf(glsl_type::uint_type); bld.ADD(surf_index, get_nir_src(instr->src[0]), brw_imm_ud(stage_prog_data->binding_table.ubo_start)); surf_index = bld.emit_uniformize(surf_index); /* Assume this may touch any UBO. It would be nice to provide * a tighter bound, but the array information is already lowered away. */ brw_mark_surface_used(prog_data, stage_prog_data->binding_table.ubo_start + nir->info.num_ubos - 1); } nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]); if (const_offset == NULL) { fs_reg base_offset = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD); for (int i = 0; i < instr->num_components; i++) VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index, base_offset, i * type_sz(dest.type)); } else { /* Even if we are loading doubles, a pull constant load will load * a 32-bit vec4, so should only reserve vgrf space for that. If we * need to load a full dvec4 we will have to emit 2 loads. This is * similar to demote_pull_constants(), except that in that case we * see individual accesses to each component of the vector and then * we let CSE deal with duplicate loads. Here we see a vector access * and we have to split it if necessary. */ const unsigned type_size = type_sz(dest.type); const fs_reg packed_consts = bld.vgrf(BRW_REGISTER_TYPE_F); for (unsigned c = 0; c < instr->num_components;) { const unsigned base = const_offset->u32[0] + c * type_size; /* Number of usable components in the next 16B-aligned load */ const unsigned count = MIN2(instr->num_components - c, (16 - base % 16) / type_size); bld.exec_all() .emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts, surf_index, brw_imm_ud(base & ~15)); const fs_reg consts = retype(byte_offset(packed_consts, base & 15), dest.type); for (unsigned d = 0; d < count; d++) bld.MOV(offset(dest, bld, c + d), component(consts, d)); c += count; } } break; } case nir_intrinsic_load_ssbo: { assert(devinfo->gen >= 7); nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]); fs_reg surf_index; if (const_uniform_block) { unsigned index = stage_prog_data->binding_table.ssbo_start + const_uniform_block->u32[0]; surf_index = brw_imm_ud(index); brw_mark_surface_used(prog_data, index); } else { surf_index = vgrf(glsl_type::uint_type); bld.ADD(surf_index, get_nir_src(instr->src[0]), brw_imm_ud(stage_prog_data->binding_table.ssbo_start)); /* Assume this may touch any UBO. It would be nice to provide * a tighter bound, but the array information is already lowered away. */ brw_mark_surface_used(prog_data, stage_prog_data->binding_table.ssbo_start + nir->info.num_ssbos - 1); } fs_reg offset_reg; nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]); if (const_offset) { offset_reg = brw_imm_ud(const_offset->u32[0]); } else { offset_reg = get_nir_src(instr->src[1]); } /* Read the vector */ do_untyped_vector_read(bld, dest, surf_index, offset_reg, instr->num_components); break; } case nir_intrinsic_store_ssbo: { assert(devinfo->gen >= 7); if (stage == MESA_SHADER_FRAGMENT) ((struct brw_wm_prog_data *)prog_data)->has_side_effects = true; /* Block index */ fs_reg surf_index; nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[1]); if (const_uniform_block) { unsigned index = stage_prog_data->binding_table.ssbo_start + const_uniform_block->u32[0]; surf_index = brw_imm_ud(index); brw_mark_surface_used(prog_data, index); } else { surf_index = vgrf(glsl_type::uint_type); bld.ADD(surf_index, get_nir_src(instr->src[1]), brw_imm_ud(stage_prog_data->binding_table.ssbo_start)); brw_mark_surface_used(prog_data, stage_prog_data->binding_table.ssbo_start + nir->info.num_ssbos - 1); } /* Value */ fs_reg val_reg = get_nir_src(instr->src[0]); /* Writemask */ unsigned writemask = instr->const_index[0]; /* get_nir_src() retypes to integer. Be wary of 64-bit types though * since the untyped writes below operate in units of 32-bits, which * means that we need to write twice as many components each time. * Also, we have to suffle 64-bit data to be in the appropriate layout * expected by our 32-bit write messages. */ unsigned type_size = 4; unsigned bit_size = instr->src[0].is_ssa ? instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size; if (bit_size == 64) { type_size = 8; fs_reg tmp = fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type); shuffle_64bit_data_for_32bit_write(bld, retype(tmp, BRW_REGISTER_TYPE_F), retype(val_reg, BRW_REGISTER_TYPE_DF), instr->num_components); val_reg = tmp; } unsigned type_slots = type_size / 4; /* Combine groups of consecutive enabled channels in one write * message. We use ffs to find the first enabled channel and then ffs on * the bit-inverse, down-shifted writemask to determine the length of * the block of enabled bits. */ while (writemask) { unsigned first_component = ffs(writemask) - 1; unsigned length = ffs(~(writemask >> first_component)) - 1; /* We can't write more than 2 64-bit components at once. Limit the * length of the write to what we can do and let the next iteration * handle the rest */ if (type_size > 4) length = MIN2(2, length); fs_reg offset_reg; nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]); if (const_offset) { offset_reg = brw_imm_ud(const_offset->u32[0] + type_size * first_component); } else { offset_reg = vgrf(glsl_type::uint_type); bld.ADD(offset_reg, retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD), brw_imm_ud(type_size * first_component)); } emit_untyped_write(bld, surf_index, offset_reg, offset(val_reg, bld, first_component * type_slots), 1 /* dims */, length * type_slots, BRW_PREDICATE_NONE); /* Clear the bits in the writemask that we just wrote, then try * again to see if more channels are left. */ writemask &= (15 << (first_component + length)); } break; } case nir_intrinsic_store_output: { fs_reg src = get_nir_src(instr->src[0]); fs_reg new_dest = offset(retype(nir_outputs, src.type), bld, instr->const_index[0]); nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]); assert(const_offset && "Indirect output stores not allowed"); new_dest = offset(new_dest, bld, const_offset->u32[0]); unsigned num_components = instr->num_components; unsigned first_component = nir_intrinsic_component(instr); unsigned bit_size = instr->src[0].is_ssa ? instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size; if (bit_size == 64) { fs_reg tmp = fs_reg(VGRF, alloc.allocate(2 * num_components), BRW_REGISTER_TYPE_F); shuffle_64bit_data_for_32bit_write( bld, tmp, retype(src, BRW_REGISTER_TYPE_DF), num_components); src = retype(tmp, src.type); num_components *= 2; } for (unsigned j = 0; j < num_components; j++) { bld.MOV(offset(new_dest, bld, j + first_component), offset(src, bld, j)); } break; } case nir_intrinsic_ssbo_atomic_add: nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr); break; case nir_intrinsic_ssbo_atomic_imin: nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr); break; case nir_intrinsic_ssbo_atomic_umin: nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr); break; case nir_intrinsic_ssbo_atomic_imax: nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr); break; case nir_intrinsic_ssbo_atomic_umax: nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr); break; case nir_intrinsic_ssbo_atomic_and: nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr); break; case nir_intrinsic_ssbo_atomic_or: nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr); break; case nir_intrinsic_ssbo_atomic_xor: nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr); break; case nir_intrinsic_ssbo_atomic_exchange: nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr); break; case nir_intrinsic_ssbo_atomic_comp_swap: nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr); break; case nir_intrinsic_get_buffer_size: { nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]); unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0; /* A resinfo's sampler message is used to get the buffer size. The * SIMD8's writeback message consists of four registers and SIMD16's * writeback message consists of 8 destination registers (two per each * component). Because we are only interested on the first channel of * the first returned component, where resinfo returns the buffer size * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of * the dispatch width. */ const fs_builder ubld = bld.exec_all().group(8, 0); fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD); fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4); /* Set LOD = 0 */ ubld.MOV(src_payload, brw_imm_d(0)); const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index; fs_inst *inst = ubld.emit(FS_OPCODE_GET_BUFFER_SIZE, ret_payload, src_payload, brw_imm_ud(index)); inst->header_size = 0; inst->mlen = 1; inst->regs_written = 4; bld.MOV(retype(dest, ret_payload.type), component(ret_payload, 0)); brw_mark_surface_used(prog_data, index); break; } case nir_intrinsic_load_channel_num: { fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UW); dest = retype(dest, BRW_REGISTER_TYPE_UD); const fs_builder allbld8 = bld.group(8, 0).exec_all(); allbld8.MOV(tmp, brw_imm_v(0x76543210)); if (dispatch_width > 8) allbld8.ADD(byte_offset(tmp, 16), tmp, brw_imm_uw(8u)); if (dispatch_width > 16) { const fs_builder allbld16 = bld.group(16, 0).exec_all(); allbld16.ADD(byte_offset(tmp, 32), tmp, brw_imm_uw(16u)); } bld.MOV(dest, tmp); break; } default: unreachable("unknown intrinsic"); } } void fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld, int op, nir_intrinsic_instr *instr) { if (stage == MESA_SHADER_FRAGMENT) ((struct brw_wm_prog_data *)prog_data)->has_side_effects = true; fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); fs_reg surface; nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]); if (const_surface) { unsigned surf_index = stage_prog_data->binding_table.ssbo_start + const_surface->u32[0]; surface = brw_imm_ud(surf_index); brw_mark_surface_used(prog_data, surf_index); } else { surface = vgrf(glsl_type::uint_type); bld.ADD(surface, get_nir_src(instr->src[0]), brw_imm_ud(stage_prog_data->binding_table.ssbo_start)); /* Assume this may touch any SSBO. This is the same we do for other * UBO/SSBO accesses with non-constant surface. */ brw_mark_surface_used(prog_data, stage_prog_data->binding_table.ssbo_start + nir->info.num_ssbos - 1); } fs_reg offset = get_nir_src(instr->src[1]); fs_reg data1 = get_nir_src(instr->src[2]); fs_reg data2; if (op == BRW_AOP_CMPWR) data2 = get_nir_src(instr->src[3]); /* Emit the actual atomic operation */ fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset, data1, data2, 1 /* dims */, 1 /* rsize */, op, BRW_PREDICATE_NONE); dest.type = atomic_result.type; bld.MOV(dest, atomic_result); } void fs_visitor::nir_emit_shared_atomic(const fs_builder &bld, int op, nir_intrinsic_instr *instr) { fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); fs_reg surface = brw_imm_ud(GEN7_BTI_SLM); fs_reg offset; fs_reg data1 = get_nir_src(instr->src[1]); fs_reg data2; if (op == BRW_AOP_CMPWR) data2 = get_nir_src(instr->src[2]); /* Get the offset */ nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]); if (const_offset) { offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]); } else { offset = vgrf(glsl_type::uint_type); bld.ADD(offset, retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD), brw_imm_ud(instr->const_index[0])); } /* Emit the actual atomic operation operation */ fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset, data1, data2, 1 /* dims */, 1 /* rsize */, op, BRW_PREDICATE_NONE); dest.type = atomic_result.type; bld.MOV(dest, atomic_result); } void fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr) { unsigned texture = instr->texture_index; unsigned sampler = instr->sampler_index; fs_reg srcs[TEX_LOGICAL_NUM_SRCS]; srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture); srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler); int lod_components = 0; /* The hardware requires a LOD for buffer textures */ if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0); for (unsigned i = 0; i < instr->num_srcs; i++) { fs_reg src = get_nir_src(instr->src[i].src); switch (instr->src[i].src_type) { case nir_tex_src_bias: srcs[TEX_LOGICAL_SRC_LOD] = retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F); break; case nir_tex_src_comparitor: srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F); break; case nir_tex_src_coord: switch (instr->op) { case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_txf_ms_mcs: case nir_texop_samples_identical: srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D); break; default: srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F); break; } break; case nir_tex_src_ddx: srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F); lod_components = nir_tex_instr_src_size(instr, i); break; case nir_tex_src_ddy: srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F); break; case nir_tex_src_lod: switch (instr->op) { case nir_texop_txs: srcs[TEX_LOGICAL_SRC_LOD] = retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD); break; case nir_texop_txf: srcs[TEX_LOGICAL_SRC_LOD] = retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D); break; default: srcs[TEX_LOGICAL_SRC_LOD] = retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F); break; } break; case nir_tex_src_ms_index: srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD); break; case nir_tex_src_offset: { nir_const_value *const_offset = nir_src_as_const_value(instr->src[i].src); if (const_offset) { unsigned header_bits = brw_texture_offset(const_offset->i32, 3); if (header_bits != 0) srcs[TEX_LOGICAL_SRC_OFFSET_VALUE] = brw_imm_ud(header_bits); } else { srcs[TEX_LOGICAL_SRC_OFFSET_VALUE] = retype(src, BRW_REGISTER_TYPE_D); } break; } case nir_tex_src_projector: unreachable("should be lowered"); case nir_tex_src_texture_offset: { /* Figure out the highest possible texture index and mark it as used */ uint32_t max_used = texture + instr->texture_array_size - 1; if (instr->op == nir_texop_tg4 && devinfo->gen < 8) { max_used += stage_prog_data->binding_table.gather_texture_start; } else { max_used += stage_prog_data->binding_table.texture_start; } brw_mark_surface_used(prog_data, max_used); /* Emit code to evaluate the actual indexing expression */ fs_reg tmp = vgrf(glsl_type::uint_type); bld.ADD(tmp, src, brw_imm_ud(texture)); srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp); break; } case nir_tex_src_sampler_offset: { /* Emit code to evaluate the actual indexing expression */ fs_reg tmp = vgrf(glsl_type::uint_type); bld.ADD(tmp, src, brw_imm_ud(sampler)); srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp); break; } case nir_tex_src_ms_mcs: assert(instr->op == nir_texop_txf_ms); srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D); break; case nir_tex_src_plane: { nir_const_value *const_plane = nir_src_as_const_value(instr->src[i].src); const uint32_t plane = const_plane->u32[0]; const uint32_t texture_index = instr->texture_index + stage_prog_data->binding_table.plane_start[plane] - stage_prog_data->binding_table.texture_start; srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index); break; } default: unreachable("unknown texture source"); } } if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE && (instr->op == nir_texop_txf_ms || instr->op == nir_texop_samples_identical)) { if (devinfo->gen >= 7 && key_tex->compressed_multisample_layout_mask & (1 << texture)) { srcs[TEX_LOGICAL_SRC_MCS] = emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE], instr->coord_components, srcs[TEX_LOGICAL_SRC_SURFACE]); } else { srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u); } } srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components); srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components); if (instr->op == nir_texop_query_levels || (instr->op == nir_texop_tex && stage != MESA_SHADER_FRAGMENT)) { /* textureQueryLevels() and texture() are implemented in terms of TXS * and TXL respectively, so we need to pass a valid LOD argument. */ assert(srcs[TEX_LOGICAL_SRC_LOD].file == BAD_FILE); srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0u); } enum opcode opcode; switch (instr->op) { case nir_texop_tex: opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL : SHADER_OPCODE_TXL_LOGICAL); break; case nir_texop_txb: opcode = FS_OPCODE_TXB_LOGICAL; break; case nir_texop_txl: opcode = SHADER_OPCODE_TXL_LOGICAL; break; case nir_texop_txd: opcode = SHADER_OPCODE_TXD_LOGICAL; break; case nir_texop_txf: opcode = SHADER_OPCODE_TXF_LOGICAL; break; case nir_texop_txf_ms: if ((key_tex->msaa_16 & (1 << sampler))) opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL; else opcode = SHADER_OPCODE_TXF_CMS_LOGICAL; break; case nir_texop_txf_ms_mcs: opcode = SHADER_OPCODE_TXF_MCS_LOGICAL; break; case nir_texop_query_levels: case nir_texop_txs: opcode = SHADER_OPCODE_TXS_LOGICAL; break; case nir_texop_lod: opcode = SHADER_OPCODE_LOD_LOGICAL; break; case nir_texop_tg4: if (srcs[TEX_LOGICAL_SRC_OFFSET_VALUE].file != BAD_FILE && srcs[TEX_LOGICAL_SRC_OFFSET_VALUE].file != IMM) opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL; else opcode = SHADER_OPCODE_TG4_LOGICAL; break; case nir_texop_texture_samples: opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL; break; case nir_texop_samples_identical: { fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D); /* If mcs is an immediate value, it means there is no MCS. In that case * just return false. */ if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) { bld.MOV(dst, brw_imm_ud(0u)); } else if ((key_tex->msaa_16 & (1 << sampler))) { fs_reg tmp = vgrf(glsl_type::uint_type); bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS], offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1)); bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ); } else { bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u), BRW_CONDITIONAL_EQ); } return; } default: unreachable("unknown texture opcode"); } fs_reg dst = bld.vgrf(brw_type_for_nir_type(instr->dest_type), 4); fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs)); const unsigned dest_size = nir_tex_instr_dest_size(instr); if (devinfo->gen >= 9 && instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) { unsigned write_mask = instr->dest.is_ssa ? nir_ssa_def_components_read(&instr->dest.ssa): (1 << dest_size) - 1; assert(write_mask != 0); /* dead code should have been eliminated */ inst->regs_written = util_last_bit(write_mask) * dispatch_width / 8; } else { inst->regs_written = 4 * dispatch_width / 8; } if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE) inst->shadow_compare = true; if (srcs[TEX_LOGICAL_SRC_OFFSET_VALUE].file == IMM) inst->offset = srcs[TEX_LOGICAL_SRC_OFFSET_VALUE].ud; if (instr->op == nir_texop_tg4) { if (instr->component == 1 && key_tex->gather_channel_quirk_mask & (1 << texture)) { /* gather4 sampler is broken for green channel on RG32F -- * we must ask for blue instead. */ inst->offset |= 2 << 16; } else { inst->offset |= instr->component << 16; } if (devinfo->gen == 6) emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst); } fs_reg nir_dest[4]; for (unsigned i = 0; i < dest_size; i++) nir_dest[i] = offset(dst, bld, i); if (instr->op == nir_texop_query_levels) { /* # levels is in .w */ nir_dest[0] = offset(dst, bld, 3); } else if (instr->op == nir_texop_txs && dest_size >= 3 && devinfo->gen < 7) { /* Gen4-6 return 0 instead of 1 for single layer surfaces. */ fs_reg depth = offset(dst, bld, 2); nir_dest[2] = vgrf(glsl_type::int_type); bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE); } bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0); } void fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr) { switch (instr->type) { case nir_jump_break: bld.emit(BRW_OPCODE_BREAK); break; case nir_jump_continue: bld.emit(BRW_OPCODE_CONTINUE); break; case nir_jump_return: default: unreachable("unknown jump"); } } /** * This helper takes the result of a load operation that reads 32-bit elements * in this format: * * x x x x x x x x * y y y y y y y y * z z z z z z z z * w w w w w w w w * * and shuffles the data to get this: * * x y x y x y x y * x y x y x y x y * z w z w z w z w * z w z w z w z w * * Which is exactly what we want if the load is reading 64-bit components * like doubles, where x represents the low 32-bit of the x double component * and y represents the high 32-bit of the x double component (likewise with * z and w for double component y). The parameter @components represents * the number of 64-bit components present in @src. This would typically be * 2 at most, since we can only fit 2 double elements in the result of a * vec4 load. * * Notice that @dst and @src can be the same register. */ void shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld, const fs_reg &dst, const fs_reg &src, uint32_t components) { assert(type_sz(src.type) == 4); assert(type_sz(dst.type) == 8); /* A temporary that we will use to shuffle the 32-bit data of each * component in the vector into valid 64-bit data. We can't write directly * to dst because dst can be (and would usually be) the same as src * and in that case the first MOV in the loop below would overwrite the * data read in the second MOV. */ fs_reg tmp = bld.vgrf(dst.type); for (unsigned i = 0; i < components; i++) { const fs_reg component_i = offset(src, bld, 2 * i); bld.MOV(subscript(tmp, src.type, 0), component_i); bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1)); bld.MOV(offset(dst, bld, i), tmp); } } /** * This helper does the inverse operation of * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA. * * We need to do this when we are going to use untyped write messsages that * operate with 32-bit components in order to arrange our 64-bit data to be * in the expected layout. * * Notice that callers of this function, unlike in the case of the inverse * operation, would typically need to call this with dst and src being * different registers, since they would otherwise corrupt the original * 64-bit data they are about to write. Because of this the function checks * that the src and dst regions involved in the operation do not overlap. */ void shuffle_64bit_data_for_32bit_write(const fs_builder &bld, const fs_reg &dst, const fs_reg &src, uint32_t components) { assert(type_sz(src.type) == 8); assert(type_sz(dst.type) == 4); assert(!src.in_range(dst, 2 * components * bld.dispatch_width() / 8)); for (unsigned i = 0; i < components; i++) { const fs_reg component_i = offset(src, bld, i); bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0)); bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1)); } } fs_reg setup_imm_df(const fs_builder &bld, double v) { const struct gen_device_info *devinfo = bld.shader->devinfo; assert(devinfo->gen >= 7); if (devinfo->gen >= 8) return brw_imm_df(v); /* gen7.5 does not support DF immediates straighforward but the DIM * instruction allows to set the 64-bit immediate value. */ if (devinfo->is_haswell) { const fs_builder ubld = bld.exec_all(); fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1); ubld.DIM(dst, brw_imm_df(v)); return component(dst, 0); } /* gen7 does not support DF immediates, so we generate a 64-bit constant by * writing the low 32-bit of the constant to suboffset 0 of a VGRF and * the high 32-bit to suboffset 4 and then applying a stride of 0. * * Alternatively, we could also produce a normal VGRF (without stride 0) * by writing to all the channels in the VGRF, however, that would hit the * gen7 bug where we have to split writes that span more than 1 register * into instructions with a width of 4 (otherwise the write to the second * register written runs into an execmask hardware bug) which isn't very * nice. */ union { double d; struct { uint32_t i1; uint32_t i2; }; } di; di.d = v; const fs_builder ubld = bld.exec_all().group(1, 0); const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2); ubld.MOV(tmp, brw_imm_ud(di.i1)); ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2)); return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0); }