/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "glsl/ir.h" #include "main/shaderimage.h" #include "brw_fs.h" #include "brw_fs_surface_builder.h" #include "brw_nir.h" #include "brw_program.h" using namespace brw; using namespace brw::surface_access; void fs_visitor::emit_nir_code() { /* emit the arrays used for inputs and outputs - load/store intrinsics will * be converted to reads/writes of these arrays */ nir_setup_inputs(); nir_setup_outputs(); nir_setup_uniforms(); nir_emit_system_values(); /* get the main function and emit it */ nir_foreach_overload(nir, overload) { assert(strcmp(overload->function->name, "main") == 0); assert(overload->impl); nir_emit_impl(overload->impl); } } void fs_visitor::nir_setup_inputs() { if (stage != MESA_SHADER_FRAGMENT) return; nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs); nir_foreach_variable(var, &nir->inputs) { fs_reg input = offset(nir_inputs, bld, var->data.driver_location); fs_reg reg; if (var->data.location == VARYING_SLOT_POS) { reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer, var->data.origin_upper_left); emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(), input, reg), 0xF); } else if (var->data.location == VARYING_SLOT_LAYER) { struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3); reg.type = BRW_REGISTER_TYPE_D; bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg); } else if (var->data.location == VARYING_SLOT_VIEWPORT) { struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3); reg.type = BRW_REGISTER_TYPE_D; bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg); } else { int location = var->data.location; emit_general_interpolation(&input, var->name, var->type, (glsl_interp_qualifier) var->data.interpolation, &location, var->data.centroid, var->data.sample); } } } void fs_visitor::nir_setup_single_output_varying(fs_reg *reg, const glsl_type *type, unsigned *location) { if (type->is_array() || type->is_matrix()) { const struct glsl_type *elem_type = glsl_get_array_element(type); const unsigned length = glsl_get_length(type); for (unsigned i = 0; i < length; i++) { nir_setup_single_output_varying(reg, elem_type, location); } } else if (type->is_record()) { for (unsigned i = 0; i < type->length; i++) { const struct glsl_type *field_type = type->fields.structure[i].type; nir_setup_single_output_varying(reg, field_type, location); } } else { assert(type->is_scalar() || type->is_vector()); this->outputs[*location] = *reg; this->output_components[*location] = type->vector_elements; *reg = offset(*reg, bld, 4); (*location)++; } } void fs_visitor::nir_setup_outputs() { brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs); nir_foreach_variable(var, &nir->outputs) { fs_reg reg = offset(nir_outputs, bld, var->data.driver_location); switch (stage) { case MESA_SHADER_VERTEX: case MESA_SHADER_GEOMETRY: { unsigned location = var->data.location; nir_setup_single_output_varying(®, var->type, &location); break; } case MESA_SHADER_FRAGMENT: if (var->data.index > 0) { assert(var->data.location == FRAG_RESULT_DATA0); assert(var->data.index == 1); this->dual_src_output = reg; this->do_dual_src = true; } else if (var->data.location == FRAG_RESULT_COLOR) { /* Writing gl_FragColor outputs to all color regions. */ for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) { this->outputs[i] = reg; this->output_components[i] = 4; } } else if (var->data.location == FRAG_RESULT_DEPTH) { this->frag_depth = reg; } else if (var->data.location == FRAG_RESULT_STENCIL) { this->frag_stencil = reg; } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) { this->sample_mask = reg; } else { int vector_elements = var->type->without_array()->vector_elements; /* gl_FragData or a user-defined FS output */ assert(var->data.location >= FRAG_RESULT_DATA0 && var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS); /* General color output. */ for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) { int output = var->data.location - FRAG_RESULT_DATA0 + i; this->outputs[output] = offset(reg, bld, vector_elements * i); this->output_components[output] = vector_elements; } } break; default: unreachable("unhandled shader stage"); } } } void fs_visitor::nir_setup_uniforms() { if (dispatch_width != 8) return; uniforms = nir->num_uniforms / 4; nir_foreach_variable(var, &nir->uniforms) { /* UBO's and atomics don't take up space in the uniform file */ if (var->interface_type != NULL || var->type->contains_atomic()) continue; if (type_size_scalar(var->type) > 0) param_size[var->data.driver_location / 4] = type_size_scalar(var->type); } } static bool emit_system_values_block(nir_block *block, void *void_visitor) { fs_visitor *v = (fs_visitor *)void_visitor; fs_reg *reg; nir_foreach_instr(block, instr) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_load_vertex_id: unreachable("should be lowered by lower_vertex_id()."); case nir_intrinsic_load_vertex_id_zero_base: assert(v->stage == MESA_SHADER_VERTEX); reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE]; if (reg->file == BAD_FILE) *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE); break; case nir_intrinsic_load_base_vertex: assert(v->stage == MESA_SHADER_VERTEX); reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX]; if (reg->file == BAD_FILE) *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX); break; case nir_intrinsic_load_instance_id: assert(v->stage == MESA_SHADER_VERTEX); reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID]; if (reg->file == BAD_FILE) *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID); break; case nir_intrinsic_load_invocation_id: assert(v->stage == MESA_SHADER_GEOMETRY); reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID]; if (reg->file == BAD_FILE) { const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL); fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)); fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.SHR(iid, g1, brw_imm_ud(27u)); *reg = iid; } break; case nir_intrinsic_load_sample_pos: assert(v->stage == MESA_SHADER_FRAGMENT); reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS]; if (reg->file == BAD_FILE) *reg = *v->emit_samplepos_setup(); break; case nir_intrinsic_load_sample_id: assert(v->stage == MESA_SHADER_FRAGMENT); reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID]; if (reg->file == BAD_FILE) *reg = *v->emit_sampleid_setup(); break; case nir_intrinsic_load_sample_mask_in: assert(v->stage == MESA_SHADER_FRAGMENT); assert(v->devinfo->gen >= 7); reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN]; if (reg->file == BAD_FILE) *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0), BRW_REGISTER_TYPE_D)); break; case nir_intrinsic_load_local_invocation_id: assert(v->stage == MESA_SHADER_COMPUTE); reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID]; if (reg->file == BAD_FILE) *reg = *v->emit_cs_local_invocation_id_setup(); break; case nir_intrinsic_load_work_group_id: assert(v->stage == MESA_SHADER_COMPUTE); reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID]; if (reg->file == BAD_FILE) *reg = *v->emit_cs_work_group_id_setup(); break; case nir_intrinsic_load_helper_invocation: assert(v->stage == MESA_SHADER_FRAGMENT); reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION]; if (reg->file == BAD_FILE) { const fs_builder abld = v->bld.annotate("gl_HelperInvocation", NULL); /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the * pixel mask is in g1.7 of the thread payload. * * We move the per-channel pixel enable bit to the low bit of each * channel by shifting the byte containing the pixel mask by the * vector immediate 0x76543210UV. * * The region of <1,8,0> reads only 1 byte (the pixel masks for * subspans 0 and 1) in SIMD8 and an additional byte (the pixel * masks for 2 and 3) in SIMD16. */ fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1); abld.SHR(shifted, stride(byte_offset(retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UB), 28), 1, 8, 0), brw_imm_uv(0x76543210)); /* A set bit in the pixel mask means the channel is enabled, but * that is the opposite of gl_HelperInvocation so we need to invert * the mask. * * The negate source-modifier bit of logical instructions on Gen8+ * performs 1's complement negation, so we can use that instead of * a NOT instruction. */ fs_reg inverted = negate(shifted); if (v->devinfo->gen < 8) { inverted = abld.vgrf(BRW_REGISTER_TYPE_UW); abld.NOT(inverted, shifted); } /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing * with 1 and negating. */ fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.AND(anded, inverted, brw_imm_uw(1)); fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1); abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D))); *reg = dst; } break; default: break; } } return true; } void fs_visitor::nir_emit_system_values() { nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX); for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) { nir_system_values[i] = fs_reg(); } nir_foreach_overload(nir, overload) { assert(strcmp(overload->function->name, "main") == 0); assert(overload->impl); nir_foreach_block(overload->impl, emit_system_values_block, this); } } void fs_visitor::nir_emit_impl(nir_function_impl *impl) { nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc); for (unsigned i = 0; i < impl->reg_alloc; i++) { nir_locals[i] = fs_reg(); } foreach_list_typed(nir_register, reg, node, &impl->registers) { unsigned array_elems = reg->num_array_elems == 0 ? 1 : reg->num_array_elems; unsigned size = array_elems * reg->num_components; nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size); } nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg, impl->ssa_alloc); nir_emit_cf_list(&impl->body); } void fs_visitor::nir_emit_cf_list(exec_list *list) { exec_list_validate(list); foreach_list_typed(nir_cf_node, node, node, list) { switch (node->type) { case nir_cf_node_if: nir_emit_if(nir_cf_node_as_if(node)); break; case nir_cf_node_loop: nir_emit_loop(nir_cf_node_as_loop(node)); break; case nir_cf_node_block: nir_emit_block(nir_cf_node_as_block(node)); break; default: unreachable("Invalid CFG node block"); } } } void fs_visitor::nir_emit_if(nir_if *if_stmt) { /* first, put the condition into f0 */ fs_inst *inst = bld.MOV(bld.null_reg_d(), retype(get_nir_src(if_stmt->condition), BRW_REGISTER_TYPE_D)); inst->conditional_mod = BRW_CONDITIONAL_NZ; bld.IF(BRW_PREDICATE_NORMAL); nir_emit_cf_list(&if_stmt->then_list); /* note: if the else is empty, dead CF elimination will remove it */ bld.emit(BRW_OPCODE_ELSE); nir_emit_cf_list(&if_stmt->else_list); bld.emit(BRW_OPCODE_ENDIF); } void fs_visitor::nir_emit_loop(nir_loop *loop) { bld.emit(BRW_OPCODE_DO); nir_emit_cf_list(&loop->body); bld.emit(BRW_OPCODE_WHILE); } void fs_visitor::nir_emit_block(nir_block *block) { nir_foreach_instr(block, instr) { nir_emit_instr(instr); } } void fs_visitor::nir_emit_instr(nir_instr *instr) { const fs_builder abld = bld.annotate(NULL, instr); switch (instr->type) { case nir_instr_type_alu: nir_emit_alu(abld, nir_instr_as_alu(instr)); break; case nir_instr_type_intrinsic: switch (stage) { case MESA_SHADER_VERTEX: nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_GEOMETRY: nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_FRAGMENT: nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr)); break; case MESA_SHADER_COMPUTE: nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr)); break; default: unreachable("unsupported shader stage"); } break; case nir_instr_type_tex: nir_emit_texture(abld, nir_instr_as_tex(instr)); break; case nir_instr_type_load_const: nir_emit_load_const(abld, nir_instr_as_load_const(instr)); break; case nir_instr_type_ssa_undef: nir_emit_undef(abld, nir_instr_as_ssa_undef(instr)); break; case nir_instr_type_jump: nir_emit_jump(abld, nir_instr_as_jump(instr)); break; default: unreachable("unknown instruction type"); } } bool fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr, const fs_reg &result) { if (!instr->src[0].src.is_ssa || instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic) return false; nir_intrinsic_instr *src0 = nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr); if (src0->intrinsic != nir_intrinsic_load_front_face) return false; nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src); if (!value1 || fabsf(value1->f[0]) != 1.0f) return false; nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src); if (!value2 || fabsf(value2->f[0]) != 1.0f) return false; fs_reg tmp = vgrf(glsl_type::int_type); if (devinfo->gen >= 6) { /* Bit 15 of g0.0 is 0 if the polygon is front facing. */ fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W)); /* For (gl_FrontFacing ? 1.0 : -1.0), emit: * * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D * * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0). * * This negation looks like it's safe in practice, because bits 0:4 will * surely be TRIANGLES */ if (value1->f[0] == -1.0f) { g0.negate = true; } tmp.type = BRW_REGISTER_TYPE_W; tmp.subreg_offset = 2; tmp.stride = 2; bld.OR(tmp, g0, brw_imm_uw(0x3f80)); tmp.type = BRW_REGISTER_TYPE_D; tmp.subreg_offset = 0; tmp.stride = 1; } else { /* Bit 31 of g1.6 is 0 if the polygon is front facing. */ fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D)); /* For (gl_FrontFacing ? 1.0 : -1.0), emit: * * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D * * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0). * * This negation looks like it's safe in practice, because bits 0:4 will * surely be TRIANGLES */ if (value1->f[0] == -1.0f) { g1_6.negate = true; } bld.OR(tmp, g1_6, brw_imm_d(0x3f800000)); } bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000)); return true; } void fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr) { struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key; fs_inst *inst; fs_reg result = get_nir_dest(instr->dest.dest); result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type); fs_reg op[4]; for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { op[i] = get_nir_src(instr->src[i].src); op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]); op[i].abs = instr->src[i].abs; op[i].negate = instr->src[i].negate; } /* We get a bunch of mov's out of the from_ssa pass and they may still * be vectorized. We'll handle them as a special-case. We'll also * handle vecN here because it's basically the same thing. */ switch (instr->op) { case nir_op_imov: case nir_op_fmov: case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: { fs_reg temp = result; bool need_extra_copy = false; for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { if (!instr->src[i].src.is_ssa && instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) { need_extra_copy = true; temp = bld.vgrf(result.type, 4); break; } } for (unsigned i = 0; i < 4; i++) { if (!(instr->dest.write_mask & (1 << i))) continue; if (instr->op == nir_op_imov || instr->op == nir_op_fmov) { inst = bld.MOV(offset(temp, bld, i), offset(op[0], bld, instr->src[0].swizzle[i])); } else { inst = bld.MOV(offset(temp, bld, i), offset(op[i], bld, instr->src[i].swizzle[0])); } inst->saturate = instr->dest.saturate; } /* In this case the source and destination registers were the same, * so we need to insert an extra set of moves in order to deal with * any swizzling. */ if (need_extra_copy) { for (unsigned i = 0; i < 4; i++) { if (!(instr->dest.write_mask & (1 << i))) continue; bld.MOV(offset(result, bld, i), offset(temp, bld, i)); } } return; } default: break; } /* At this point, we have dealt with any instruction that operates on * more than a single channel. Therefore, we can just adjust the source * and destination registers for that channel and emit the instruction. */ unsigned channel = 0; if (nir_op_infos[instr->op].output_size == 0) { /* Since NIR is doing the scalarizing for us, we should only ever see * vectorized operations with a single channel. */ assert(_mesa_bitcount(instr->dest.write_mask) == 1); channel = ffs(instr->dest.write_mask) - 1; result = offset(result, bld, channel); } for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { assert(nir_op_infos[instr->op].input_sizes[i] < 2); op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]); } switch (instr->op) { case nir_op_i2f: case nir_op_u2f: inst = bld.MOV(result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_f2i: case nir_op_f2u: bld.MOV(result, op[0]); break; case nir_op_fsign: { /* AND(val, 0x80000000) gives the sign bit. * * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not * zero. */ bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ); fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD); op[0].type = BRW_REGISTER_TYPE_UD; result.type = BRW_REGISTER_TYPE_UD; bld.AND(result_int, op[0], brw_imm_ud(0x80000000u)); inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u)); inst->predicate = BRW_PREDICATE_NORMAL; if (instr->dest.saturate) { inst = bld.MOV(result, result); inst->saturate = true; } break; } case nir_op_isign: /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1). * -> non-negative val generates 0x00000000. * Predicated OR sets 1 if val is positive. */ bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G); bld.ASR(result, op[0], brw_imm_d(31)); inst = bld.OR(result, result, brw_imm_d(1)); inst->predicate = BRW_PREDICATE_NORMAL; break; case nir_op_frcp: inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fexp2: inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_flog2: inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fsin: inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fcos: inst = bld.emit(SHADER_OPCODE_COS, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fddx: if (fs_key->high_quality_derivatives) { inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]); } else { inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]); } inst->saturate = instr->dest.saturate; break; case nir_op_fddx_fine: inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fddx_coarse: inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fddy: if (fs_key->high_quality_derivatives) { inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0], brw_imm_d(fs_key->render_to_fbo)); } else { inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0], brw_imm_d(fs_key->render_to_fbo)); } inst->saturate = instr->dest.saturate; break; case nir_op_fddy_fine: inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0], brw_imm_d(fs_key->render_to_fbo)); inst->saturate = instr->dest.saturate; break; case nir_op_fddy_coarse: inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0], brw_imm_d(fs_key->render_to_fbo)); inst->saturate = instr->dest.saturate; break; case nir_op_fadd: case nir_op_iadd: inst = bld.ADD(result, op[0], op[1]); inst->saturate = instr->dest.saturate; break; case nir_op_fmul: inst = bld.MUL(result, op[0], op[1]); inst->saturate = instr->dest.saturate; break; case nir_op_imul: bld.MUL(result, op[0], op[1]); break; case nir_op_imul_high: case nir_op_umul_high: bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]); break; case nir_op_idiv: case nir_op_udiv: bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]); break; case nir_op_uadd_carry: unreachable("Should have been lowered by carry_to_arith()."); case nir_op_usub_borrow: unreachable("Should have been lowered by borrow_to_arith()."); case nir_op_umod: bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]); break; case nir_op_flt: case nir_op_ilt: case nir_op_ult: bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L); break; case nir_op_fge: case nir_op_ige: case nir_op_uge: bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE); break; case nir_op_feq: case nir_op_ieq: bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z); break; case nir_op_fne: case nir_op_ine: bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ); break; case nir_op_inot: if (devinfo->gen >= 8) { op[0] = resolve_source_modifiers(op[0]); } bld.NOT(result, op[0]); break; case nir_op_ixor: if (devinfo->gen >= 8) { op[0] = resolve_source_modifiers(op[0]); op[1] = resolve_source_modifiers(op[1]); } bld.XOR(result, op[0], op[1]); break; case nir_op_ior: if (devinfo->gen >= 8) { op[0] = resolve_source_modifiers(op[0]); op[1] = resolve_source_modifiers(op[1]); } bld.OR(result, op[0], op[1]); break; case nir_op_iand: if (devinfo->gen >= 8) { op[0] = resolve_source_modifiers(op[0]); op[1] = resolve_source_modifiers(op[1]); } bld.AND(result, op[0], op[1]); break; case nir_op_fdot2: case nir_op_fdot3: case nir_op_fdot4: case nir_op_bany2: case nir_op_bany3: case nir_op_bany4: case nir_op_ball2: case nir_op_ball3: case nir_op_ball4: case nir_op_ball_fequal2: case nir_op_ball_iequal2: case nir_op_ball_fequal3: case nir_op_ball_iequal3: case nir_op_ball_fequal4: case nir_op_ball_iequal4: case nir_op_bany_fnequal2: case nir_op_bany_inequal2: case nir_op_bany_fnequal3: case nir_op_bany_inequal3: case nir_op_bany_fnequal4: case nir_op_bany_inequal4: unreachable("Lowered by nir_lower_alu_reductions"); case nir_op_fnoise1_1: case nir_op_fnoise1_2: case nir_op_fnoise1_3: case nir_op_fnoise1_4: case nir_op_fnoise2_1: case nir_op_fnoise2_2: case nir_op_fnoise2_3: case nir_op_fnoise2_4: case nir_op_fnoise3_1: case nir_op_fnoise3_2: case nir_op_fnoise3_3: case nir_op_fnoise3_4: case nir_op_fnoise4_1: case nir_op_fnoise4_2: case nir_op_fnoise4_3: case nir_op_fnoise4_4: unreachable("not reached: should be handled by lower_noise"); case nir_op_ldexp: unreachable("not reached: should be handled by ldexp_to_arith()"); case nir_op_fsqrt: inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_frsq: inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_b2i: case nir_op_b2f: bld.MOV(result, negate(op[0])); break; case nir_op_f2b: bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ); break; case nir_op_i2b: bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ); break; case nir_op_ftrunc: inst = bld.RNDZ(result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fceil: { op[0].negate = !op[0].negate; fs_reg temp = vgrf(glsl_type::float_type); bld.RNDD(temp, op[0]); temp.negate = true; inst = bld.MOV(result, temp); inst->saturate = instr->dest.saturate; break; } case nir_op_ffloor: inst = bld.RNDD(result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_ffract: inst = bld.FRC(result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fround_even: inst = bld.RNDE(result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fmin: case nir_op_imin: case nir_op_umin: if (devinfo->gen >= 6) { inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]); inst->conditional_mod = BRW_CONDITIONAL_L; } else { bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_L); inst = bld.SEL(result, op[0], op[1]); inst->predicate = BRW_PREDICATE_NORMAL; } inst->saturate = instr->dest.saturate; break; case nir_op_fmax: case nir_op_imax: case nir_op_umax: if (devinfo->gen >= 6) { inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]); inst->conditional_mod = BRW_CONDITIONAL_GE; } else { bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_GE); inst = bld.SEL(result, op[0], op[1]); inst->predicate = BRW_PREDICATE_NORMAL; } inst->saturate = instr->dest.saturate; break; case nir_op_pack_snorm_2x16: case nir_op_pack_snorm_4x8: case nir_op_pack_unorm_2x16: case nir_op_pack_unorm_4x8: case nir_op_unpack_snorm_2x16: case nir_op_unpack_snorm_4x8: case nir_op_unpack_unorm_2x16: case nir_op_unpack_unorm_4x8: case nir_op_unpack_half_2x16: case nir_op_pack_half_2x16: unreachable("not reached: should be handled by lower_packing_builtins"); case nir_op_unpack_half_2x16_split_x: inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_unpack_half_2x16_split_y: inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_fpow: inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]); inst->saturate = instr->dest.saturate; break; case nir_op_bitfield_reverse: bld.BFREV(result, op[0]); break; case nir_op_bit_count: bld.CBIT(result, op[0]); break; case nir_op_ufind_msb: case nir_op_ifind_msb: { bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]); /* FBH counts from the MSB side, while GLSL's findMSB() wants the count * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then * subtract the result from 31 to convert the MSB count into an LSB count. */ bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ); inst = bld.ADD(result, result, brw_imm_d(31)); inst->predicate = BRW_PREDICATE_NORMAL; inst->src[0].negate = true; break; } case nir_op_find_lsb: bld.FBL(result, op[0]); break; case nir_op_ubitfield_extract: case nir_op_ibitfield_extract: bld.BFE(result, op[2], op[1], op[0]); break; case nir_op_bfm: bld.BFI1(result, op[0], op[1]); break; case nir_op_bfi: bld.BFI2(result, op[0], op[1], op[2]); break; case nir_op_bitfield_insert: unreachable("not reached: should be handled by " "lower_instructions::bitfield_insert_to_bfm_bfi"); case nir_op_ishl: bld.SHL(result, op[0], op[1]); break; case nir_op_ishr: bld.ASR(result, op[0], op[1]); break; case nir_op_ushr: bld.SHR(result, op[0], op[1]); break; case nir_op_pack_half_2x16_split: bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]); break; case nir_op_ffma: inst = bld.MAD(result, op[2], op[1], op[0]); inst->saturate = instr->dest.saturate; break; case nir_op_flrp: inst = bld.LRP(result, op[0], op[1], op[2]); inst->saturate = instr->dest.saturate; break; case nir_op_bcsel: if (optimize_frontfacing_ternary(instr, result)) return; bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ); inst = bld.SEL(result, op[1], op[2]); inst->predicate = BRW_PREDICATE_NORMAL; break; default: unreachable("unhandled instruction"); } /* If we need to do a boolean resolve, replace the result with -(x & 1) * to sign extend the low bit to 0/~0 */ if (devinfo->gen <= 5 && (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) { fs_reg masked = vgrf(glsl_type::int_type); bld.AND(masked, result, brw_imm_d(1)); masked.negate = true; bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked); } } void fs_visitor::nir_emit_load_const(const fs_builder &bld, nir_load_const_instr *instr) { fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components); for (unsigned i = 0; i < instr->def.num_components; i++) bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i[i])); nir_ssa_values[instr->def.index] = reg; } void fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr) { nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components); } fs_reg fs_visitor::get_nir_src(nir_src src) { fs_reg reg; if (src.is_ssa) { reg = nir_ssa_values[src.ssa->index]; } else { /* We don't handle indirects on locals */ assert(src.reg.indirect == NULL); reg = offset(nir_locals[src.reg.reg->index], bld, src.reg.base_offset * src.reg.reg->num_components); } /* to avoid floating-point denorm flushing problems, set the type by * default to D - instructions that need floating point semantics will set * this to F if they need to */ return retype(reg, BRW_REGISTER_TYPE_D); } fs_reg fs_visitor::get_nir_dest(nir_dest dest) { if (dest.is_ssa) { nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F, dest.ssa.num_components); return nir_ssa_values[dest.ssa.index]; } else { /* We don't handle indirects on locals */ assert(dest.reg.indirect == NULL); return offset(nir_locals[dest.reg.reg->index], bld, dest.reg.base_offset * dest.reg.reg->num_components); } } fs_reg fs_visitor::get_nir_image_deref(const nir_deref_var *deref) { fs_reg image(UNIFORM, deref->var->data.driver_location / 4, BRW_REGISTER_TYPE_UD); for (const nir_deref *tail = &deref->deref; tail->child; tail = tail->child) { const nir_deref_array *deref_array = nir_deref_as_array(tail->child); assert(tail->child->deref_type == nir_deref_type_array); const unsigned size = glsl_get_length(tail->type); const unsigned element_size = type_size_scalar(deref_array->deref.type); const unsigned base = MIN2(deref_array->base_offset, size - 1); image = offset(image, bld, base * element_size); if (deref_array->deref_array_type == nir_deref_array_type_indirect) { fs_reg tmp = vgrf(glsl_type::int_type); if (devinfo->gen == 7 && !devinfo->is_haswell) { /* IVB hangs when trying to access an invalid surface index with * the dataport. According to the spec "if the index used to * select an individual element is negative or greater than or * equal to the size of the array, the results of the operation * are undefined but may not lead to termination" -- which is one * of the possible outcomes of the hang. Clamp the index to * prevent access outside of the array bounds. */ bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect), BRW_REGISTER_TYPE_UD), brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L); } else { bld.MOV(tmp, get_nir_src(deref_array->indirect)); } bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4)); if (image.reladdr) bld.ADD(*image.reladdr, *image.reladdr, tmp); else image.reladdr = new(mem_ctx) fs_reg(tmp); } } return image; } void fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst, unsigned wr_mask) { for (unsigned i = 0; i < 4; i++) { if (!((wr_mask >> i) & 1)) continue; fs_inst *new_inst = new(mem_ctx) fs_inst(inst); new_inst->dst = offset(new_inst->dst, bld, i); for (unsigned j = 0; j < new_inst->sources; j++) if (new_inst->src[j].file == VGRF) new_inst->src[j] = offset(new_inst->src[j], bld, i); bld.emit(new_inst); } } /** * Get the matching channel register datatype for an image intrinsic of the * specified GLSL image type. */ static brw_reg_type get_image_base_type(const glsl_type *type) { switch ((glsl_base_type)type->sampler_type) { case GLSL_TYPE_UINT: return BRW_REGISTER_TYPE_UD; case GLSL_TYPE_INT: return BRW_REGISTER_TYPE_D; case GLSL_TYPE_FLOAT: return BRW_REGISTER_TYPE_F; default: unreachable("Not reached."); } } /** * Get the appropriate atomic op for an image atomic intrinsic. */ static unsigned get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type) { switch (op) { case nir_intrinsic_image_atomic_add: return BRW_AOP_ADD; case nir_intrinsic_image_atomic_min: return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ? BRW_AOP_IMIN : BRW_AOP_UMIN); case nir_intrinsic_image_atomic_max: return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ? BRW_AOP_IMAX : BRW_AOP_UMAX); case nir_intrinsic_image_atomic_and: return BRW_AOP_AND; case nir_intrinsic_image_atomic_or: return BRW_AOP_OR; case nir_intrinsic_image_atomic_xor: return BRW_AOP_XOR; case nir_intrinsic_image_atomic_exchange: return BRW_AOP_MOV; case nir_intrinsic_image_atomic_comp_swap: return BRW_AOP_CMPWR; default: unreachable("Not reachable."); } } static fs_inst * emit_pixel_interpolater_send(const fs_builder &bld, enum opcode opcode, const fs_reg &dst, const fs_reg &src, const fs_reg &desc, glsl_interp_qualifier interpolation) { fs_inst *inst; fs_reg payload; int mlen; if (src.file == BAD_FILE) { /* Dummy payload */ payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1); mlen = 1; } else { payload = src; mlen = 2 * bld.dispatch_width() / 8; } inst = bld.emit(opcode, dst, payload, desc); inst->mlen = mlen; /* 2 floats per slot returned */ inst->regs_written = 2 * bld.dispatch_width() / 8; inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE; return inst; } /** * Computes 1 << x, given a D/UD register containing some value x. */ static fs_reg intexp2(const fs_builder &bld, const fs_reg &x) { assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D); fs_reg result = bld.vgrf(x.type, 1); fs_reg one = bld.vgrf(x.type, 1); bld.MOV(one, retype(brw_imm_d(1), one.type)); bld.SHL(result, one, x); return result; } void fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src) { assert(stage == MESA_SHADER_GEOMETRY); struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data; /* We can only do EndPrimitive() functionality when the control data * consists of cut bits. Fortunately, the only time it isn't is when the * output type is points, in which case EndPrimitive() is a no-op. */ if (gs_prog_data->control_data_format != GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) { return; } /* Cut bits use one bit per vertex. */ assert(gs_compile->control_data_bits_per_vertex == 1); fs_reg vertex_count = get_nir_src(vertex_count_nir_src); vertex_count.type = BRW_REGISTER_TYPE_UD; /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting * vertex n, 0 otherwise. So all we need to do here is mark bit * (vertex_count - 1) % 32 in the cut_bits register to indicate that * EndPrimitive() was called after emitting vertex (vertex_count - 1); * vec4_gs_visitor::emit_control_data_bits() will take care of the rest. * * Note that if EndPrimitive() is called before emitting any vertices, this * will cause us to set bit 31 of the control_data_bits register to 1. * That's fine because: * * - If max_vertices < 32, then vertex number 31 (zero-based) will never be * output, so the hardware will ignore cut bit 31. * * - If max_vertices == 32, then vertex number 31 is guaranteed to be the * last vertex, so setting cut bit 31 has no effect (since the primitive * is automatically ended when the GS terminates). * * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the * control_data_bits register to 0 when the first vertex is emitted. */ const fs_builder abld = bld.annotate("end primitive"); /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */ fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu)); fs_reg mask = intexp2(abld, prev_count); /* Note: we're relying on the fact that the GEN SHL instruction only pays * attention to the lower 5 bits of its second source argument, so on this * architecture, 1 << (vertex_count - 1) is equivalent to 1 << * ((vertex_count - 1) % 32). */ abld.OR(this->control_data_bits, this->control_data_bits, mask); } void fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count) { assert(stage == MESA_SHADER_GEOMETRY); assert(gs_compile->control_data_bits_per_vertex != 0); struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data; const fs_builder abld = bld.annotate("emit control data bits"); const fs_builder fwa_bld = bld.exec_all(); /* We use a single UD register to accumulate control data bits (32 bits * for each of the SIMD8 channels). So we need to write a DWord (32 bits) * at a time. * * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets. * We have select a 128-bit group via the Global and Per-Slot Offsets, then * use the Channel Mask phase to enable/disable which DWord within that * group to write. (Remember, different SIMD8 channels may have emitted * different numbers of vertices, so we may need per-slot offsets.) * * Channel masking presents an annoying problem: we may have to replicate * the data up to 4 times: * * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data. * * To avoid penalizing shaders that emit a small number of vertices, we * can avoid these sometimes: if the size of the control data header is * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land * land in the same 128-bit group, so we can skip per-slot offsets. * * Similarly, if the control data header is <= 32 bits, there is only one * DWord, so we can skip channel masks. */ enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8; fs_reg channel_mask, per_slot_offset; if (gs_compile->control_data_header_size_bits > 32) { opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED; channel_mask = vgrf(glsl_type::uint_type); } if (gs_compile->control_data_header_size_bits > 128) { opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT; per_slot_offset = vgrf(glsl_type::uint_type); } /* Figure out which DWord we're trying to write to using the formula: * * dword_index = (vertex_count - 1) * bits_per_vertex / 32 * * Since bits_per_vertex is a power of two, and is known at compile * time, this can be optimized to: * * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex)) */ if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) { fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu)); unsigned log2_bits_per_vertex = _mesa_fls(gs_compile->control_data_bits_per_vertex); abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex)); if (per_slot_offset.file != BAD_FILE) { /* Set the per-slot offset to dword_index / 4, so that we'll write to * the appropriate OWord within the control data header. */ abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u)); } /* Set the channel masks to 1 << (dword_index % 4), so that we'll * write to the appropriate DWORD within the OWORD. */ fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); fwa_bld.AND(channel, dword_index, brw_imm_ud(3u)); channel_mask = intexp2(fwa_bld, channel); /* Then the channel masks need to be in bits 23:16. */ fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u)); } /* Store the control data bits in the message payload and send it. */ int mlen = 2; if (channel_mask.file != BAD_FILE) mlen += 4; /* channel masks, plus 3 extra copies of the data */ if (per_slot_offset.file != BAD_FILE) mlen++; fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen); fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen); int i = 0; sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)); if (per_slot_offset.file != BAD_FILE) sources[i++] = per_slot_offset; if (channel_mask.file != BAD_FILE) sources[i++] = channel_mask; while (i < mlen) { sources[i++] = this->control_data_bits; } abld.LOAD_PAYLOAD(payload, sources, mlen, mlen); fs_inst *inst = abld.emit(opcode, reg_undef, payload); inst->mlen = mlen; /* We need to increment Global Offset by 256-bits to make room for * Broadwell's extra "Vertex Count" payload at the beginning of the * URB entry. Since this is an OWord message, Global Offset is counted * in 128-bit units, so we must set it to 2. */ if (gs_prog_data->static_vertex_count == -1) inst->offset = 2; } void fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count, unsigned stream_id) { /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */ /* Note: we are calling this *before* increasing vertex_count, so * this->vertex_count == vertex_count - 1 in the formula above. */ /* Stream mode uses 2 bits per vertex */ assert(gs_compile->control_data_bits_per_vertex == 2); /* Must be a valid stream */ assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS); /* Control data bits are initialized to 0 so we don't have to set any * bits when sending vertices to stream 0. */ if (stream_id == 0) return; const fs_builder abld = bld.annotate("set stream control data bits", NULL); /* reg::sid = stream_id */ fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.MOV(sid, brw_imm_ud(stream_id)); /* reg:shift_count = 2 * (vertex_count - 1) */ fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.SHL(shift_count, vertex_count, brw_imm_ud(1u)); /* Note: we're relying on the fact that the GEN SHL instruction only pays * attention to the lower 5 bits of its second source argument, so on this * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to * stream_id << ((2 * (vertex_count - 1)) % 32). */ fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); abld.SHL(mask, sid, shift_count); abld.OR(this->control_data_bits, this->control_data_bits, mask); } void fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src, unsigned stream_id) { assert(stage == MESA_SHADER_GEOMETRY); struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data; fs_reg vertex_count = get_nir_src(vertex_count_nir_src); vertex_count.type = BRW_REGISTER_TYPE_UD; /* Haswell and later hardware ignores the "Render Stream Select" bits * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled, * and instead sends all primitives down the pipeline for rasterization. * If the SOL stage is enabled, "Render Stream Select" is honored and * primitives bound to non-zero streams are discarded after stream output. * * Since the only purpose of primives sent to non-zero streams is to * be recorded by transform feedback, we can simply discard all geometry * bound to these streams when transform feedback is disabled. */ if (stream_id > 0 && !nir->info.has_transform_feedback_varyings) return; /* If we're outputting 32 control data bits or less, then we can wait * until the shader is over to output them all. Otherwise we need to * output them as we go. Now is the time to do it, since we're about to * output the vertex_count'th vertex, so it's guaranteed that the * control data bits associated with the (vertex_count - 1)th vertex are * correct. */ if (gs_compile->control_data_header_size_bits > 32) { const fs_builder abld = bld.annotate("emit vertex: emit control data bits"); /* Only emit control data bits if we've finished accumulating a batch * of 32 bits. This is the case when: * * (vertex_count * bits_per_vertex) % 32 == 0 * * (in other words, when the last 5 bits of vertex_count * * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some * integer n (which is always the case, since bits_per_vertex is * always 1 or 2), this is equivalent to requiring that the last 5-n * bits of vertex_count are 0: * * vertex_count & (2^(5-n) - 1) == 0 * * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is * equivalent to: * * vertex_count & (32 / bits_per_vertex - 1) == 0 * * TODO: If vertex_count is an immediate, we could do some of this math * at compile time... */ fs_inst *inst = abld.AND(bld.null_reg_d(), vertex_count, brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u)); inst->conditional_mod = BRW_CONDITIONAL_Z; abld.IF(BRW_PREDICATE_NORMAL); /* If vertex_count is 0, then no control data bits have been * accumulated yet, so we can skip emitting them. */ abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u), BRW_CONDITIONAL_NEQ); abld.IF(BRW_PREDICATE_NORMAL); emit_gs_control_data_bits(vertex_count); abld.emit(BRW_OPCODE_ENDIF); /* Reset control_data_bits to 0 so we can start accumulating a new * batch. * * Note: in the case where vertex_count == 0, this neutralizes the * effect of any call to EndPrimitive() that the shader may have * made before outputting its first vertex. */ inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u)); inst->force_writemask_all = true; abld.emit(BRW_OPCODE_ENDIF); } emit_urb_writes(vertex_count); /* In stream mode we have to set control data bits for all vertices * unless we have disabled control data bits completely (which we do * do for GL_POINTS outputs that don't use streams). */ if (gs_compile->control_data_header_size_bits > 0 && gs_prog_data->control_data_format == GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) { set_gs_stream_control_data_bits(vertex_count, stream_id); } } void fs_visitor::emit_gs_input_load(const fs_reg &dst, const nir_src &vertex_src, const fs_reg &indirect_offset, unsigned imm_offset, unsigned num_components) { struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data; /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y], * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only * gl_PointSize is available as a GS input, however, so it must be that. */ const bool is_point_size = indirect_offset.file == BAD_FILE && imm_offset == 0; nir_const_value *vertex_const = nir_src_as_const_value(vertex_src); const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8; if (indirect_offset.file == BAD_FILE && vertex_const != NULL && 4 * imm_offset < push_reg_count) { imm_offset = 4 * imm_offset + vertex_const->u[0] * push_reg_count; /* This input was pushed into registers. */ if (is_point_size) { /* gl_PointSize comes in .w */ bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type)); } else { for (unsigned i = 0; i < num_components; i++) { bld.MOV(offset(dst, bld, i), fs_reg(ATTR, imm_offset + i, dst.type)); } } } else { /* Resort to the pull model. Ensure the VUE handles are provided. */ gs_prog_data->base.include_vue_handles = true; unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2; fs_reg icp_handle; if (vertex_const) { /* The vertex index is constant; just select the proper URB handle. */ icp_handle = retype(brw_vec8_grf(first_icp_handle + vertex_const->i[0], 0), BRW_REGISTER_TYPE_UD); } else { /* The vertex index is non-constant. We need to use indirect * addressing to fetch the proper URB handle. * * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0> * indicating that channel should read the handle from * DWord . We convert that to bytes by multiplying by 4. * * Next, we convert the vertex index to bytes by multiplying * by 32 (shifting by 5), and add the two together. This is * the final indirect byte offset. */ fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1); fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */ bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210))); /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */ bld.SHL(channel_offsets, sequence, brw_imm_ud(2u)); /* Convert vertex_index to bytes (multiply by 32) */ bld.SHL(vertex_offset_bytes, retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD), brw_imm_ud(5u)); bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets); /* Use first_icp_handle as the base offset. There is one register * of URB handles per vertex, so inform the register allocator that * we might read up to nir->info.gs.vertices_in registers. */ bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle, fs_reg(brw_vec8_grf(first_icp_handle, 0)), fs_reg(icp_offset_bytes), brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE)); } fs_inst *inst; if (indirect_offset.file == BAD_FILE) { /* Constant indexing - use global offset. */ inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle); inst->offset = imm_offset; inst->base_mrf = -1; inst->mlen = 1; inst->regs_written = num_components; } else { /* Indirect indexing - use per-slot offsets as well. */ const fs_reg srcs[] = { icp_handle, indirect_offset }; fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2); bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0); inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload); inst->offset = imm_offset; inst->base_mrf = -1; inst->mlen = 2; inst->regs_written = num_components; } if (is_point_size) { /* Read the whole VUE header (because of alignment) and read .w. */ fs_reg tmp = bld.vgrf(dst.type, 4); inst->dst = tmp; inst->regs_written = 4; bld.MOV(dst, offset(tmp, bld, 3)); } } } void fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr) { assert(stage == MESA_SHADER_VERTEX); fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); switch (instr->intrinsic) { case nir_intrinsic_load_vertex_id: unreachable("should be lowered by lower_vertex_id()"); case nir_intrinsic_load_vertex_id_zero_base: case nir_intrinsic_load_base_vertex: case nir_intrinsic_load_instance_id: { gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic); fs_reg val = nir_system_values[sv]; assert(val.file != BAD_FILE); dest.type = val.type; bld.MOV(dest, val); break; } default: nir_emit_intrinsic(bld, instr); break; } } void fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr) { assert(stage == MESA_SHADER_GEOMETRY); fs_reg indirect_offset; fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); switch (instr->intrinsic) { case nir_intrinsic_load_primitive_id: assert(stage == MESA_SHADER_GEOMETRY); assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id); bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD)); break; case nir_intrinsic_load_input_indirect: case nir_intrinsic_load_input: unreachable("load_input intrinsics are invalid for the GS stage"); case nir_intrinsic_load_per_vertex_input_indirect: indirect_offset = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_D); /* fallthrough */ case nir_intrinsic_load_per_vertex_input: emit_gs_input_load(dest, instr->src[0], indirect_offset, instr->const_index[0], instr->num_components); break; case nir_intrinsic_emit_vertex_with_counter: emit_gs_vertex(instr->src[0], instr->const_index[0]); break; case nir_intrinsic_end_primitive_with_counter: emit_gs_end_primitive(instr->src[0]); break; case nir_intrinsic_set_vertex_count: bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0])); break; case nir_intrinsic_load_invocation_id: { fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID]; assert(val.file != BAD_FILE); dest.type = val.type; bld.MOV(dest, val); break; } default: nir_emit_intrinsic(bld, instr); break; } } void fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr) { assert(stage == MESA_SHADER_FRAGMENT); struct brw_wm_prog_data *wm_prog_data = (struct brw_wm_prog_data *) prog_data; fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); switch (instr->intrinsic) { case nir_intrinsic_load_front_face: bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), *emit_frontfacing_interpolation()); break; case nir_intrinsic_load_sample_pos: { fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS]; assert(sample_pos.file != BAD_FILE); dest.type = sample_pos.type; bld.MOV(dest, sample_pos); bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1)); break; } case nir_intrinsic_load_helper_invocation: case nir_intrinsic_load_sample_mask_in: case nir_intrinsic_load_sample_id: { gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic); fs_reg val = nir_system_values[sv]; assert(val.file != BAD_FILE); dest.type = val.type; bld.MOV(dest, val); break; } case nir_intrinsic_discard: case nir_intrinsic_discard_if: { /* We track our discarded pixels in f0.1. By predicating on it, we can * update just the flag bits that aren't yet discarded. If there's no * condition, we emit a CMP of g0 != g0, so all currently executing * channels will get turned off. */ fs_inst *cmp; if (instr->intrinsic == nir_intrinsic_discard_if) { cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_Z); } else { fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW)); cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ); } cmp->predicate = BRW_PREDICATE_NORMAL; cmp->flag_subreg = 1; if (devinfo->gen >= 6) { emit_discard_jump(); } break; } case nir_intrinsic_interp_var_at_centroid: case nir_intrinsic_interp_var_at_sample: case nir_intrinsic_interp_var_at_offset: { /* Handle ARB_gpu_shader5 interpolation intrinsics * * It's worth a quick word of explanation as to why we handle the full * variable-based interpolation intrinsic rather than a lowered version * with like we do for other inputs. We have to do that because the way * we set up inputs doesn't allow us to use the already setup inputs for * interpolation. At the beginning of the shader, we go through all of * the input variables and do the initial interpolation and put it in * the nir_inputs array based on its location as determined in * nir_lower_io. If the input isn't used, dead code cleans up and * everything works fine. However, when we get to the ARB_gpu_shader5 * interpolation intrinsics, we need to reinterpolate the input * differently. If we used an intrinsic that just had an index it would * only give us the offset into the nir_inputs array. However, this is * useless because that value is post-interpolation and we need * pre-interpolation. In order to get the actual location of the bits * we get from the vertex fetching hardware, we need the variable. */ wm_prog_data->pulls_bary = true; fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2); const glsl_interp_qualifier interpolation = (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation; switch (instr->intrinsic) { case nir_intrinsic_interp_var_at_centroid: emit_pixel_interpolater_send(bld, FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_xy, fs_reg(), /* src */ brw_imm_ud(0u), interpolation); break; case nir_intrinsic_interp_var_at_sample: { nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]); if (const_sample) { unsigned msg_data = const_sample->i[0] << 4; emit_pixel_interpolater_send(bld, FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, fs_reg(), /* src */ brw_imm_ud(msg_data), interpolation); } else { const fs_reg sample_src = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD); if (nir_src_is_dynamically_uniform(instr->src[0])) { const fs_reg sample_id = bld.emit_uniformize(sample_src); const fs_reg msg_data = vgrf(glsl_type::uint_type); bld.exec_all().group(1, 0) .SHL(msg_data, sample_id, brw_imm_ud(4u)); emit_pixel_interpolater_send(bld, FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, fs_reg(), /* src */ msg_data, interpolation); } else { /* Make a loop that sends a message to the pixel interpolater * for the sample number in each live channel. If there are * multiple channels with the same sample number then these * will be handled simultaneously with a single interation of * the loop. */ bld.emit(BRW_OPCODE_DO); /* Get the next live sample number into sample_id_reg */ const fs_reg sample_id = bld.emit_uniformize(sample_src); /* Set the flag register so that we can perform the send * message on all channels that have the same sample number */ bld.CMP(bld.null_reg_ud(), sample_src, sample_id, BRW_CONDITIONAL_EQ); const fs_reg msg_data = vgrf(glsl_type::uint_type); bld.exec_all().group(1, 0) .SHL(msg_data, sample_id, brw_imm_ud(4u)); fs_inst *inst = emit_pixel_interpolater_send(bld, FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, fs_reg(), /* src */ msg_data, interpolation); set_predicate(BRW_PREDICATE_NORMAL, inst); /* Continue the loop if there are any live channels left */ set_predicate_inv(BRW_PREDICATE_NORMAL, true, /* inverse */ bld.emit(BRW_OPCODE_WHILE)); } } break; } case nir_intrinsic_interp_var_at_offset: { nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]); if (const_offset) { unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf; unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf; emit_pixel_interpolater_send(bld, FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, fs_reg(), /* src */ brw_imm_ud(off_x | (off_y << 4)), interpolation); } else { fs_reg src = vgrf(glsl_type::ivec2_type); fs_reg offset_src = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F); for (int i = 0; i < 2; i++) { fs_reg temp = vgrf(glsl_type::float_type); bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f)); fs_reg itemp = vgrf(glsl_type::int_type); bld.MOV(itemp, temp); /* float to int */ /* Clamp the upper end of the range to +7/16. * ARB_gpu_shader5 requires that we support a maximum offset * of +0.5, which isn't representable in a S0.4 value -- if * we didn't clamp it, we'd end up with -8/16, which is the * opposite of what the shader author wanted. * * This is legal due to ARB_gpu_shader5's quantization * rules: * * "Not all values of may be supported; x and y * offsets may be rounded to fixed-point values with the * number of fraction bits given by the * implementation-dependent constant * FRAGMENT_INTERPOLATION_OFFSET_BITS" */ set_condmod(BRW_CONDITIONAL_L, bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7))); } const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET; emit_pixel_interpolater_send(bld, opcode, dst_xy, src, brw_imm_ud(0u), interpolation); } break; } default: unreachable("Invalid intrinsic"); } for (unsigned j = 0; j < instr->num_components; j++) { fs_reg src = interp_reg(instr->variables[0]->var->data.location, j); src.type = dest.type; bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src); dest = offset(dest, bld, 1); } break; } default: nir_emit_intrinsic(bld, instr); break; } } void fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr) { assert(stage == MESA_SHADER_COMPUTE); struct brw_cs_prog_data *cs_prog_data = (struct brw_cs_prog_data *) prog_data; fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); switch (instr->intrinsic) { case nir_intrinsic_barrier: emit_barrier(); cs_prog_data->uses_barrier = true; break; case nir_intrinsic_load_local_invocation_id: case nir_intrinsic_load_work_group_id: { gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic); fs_reg val = nir_system_values[sv]; assert(val.file != BAD_FILE); dest.type = val.type; for (unsigned i = 0; i < 3; i++) bld.MOV(offset(dest, bld, i), offset(val, bld, i)); break; } case nir_intrinsic_load_num_work_groups: { const unsigned surface = cs_prog_data->binding_table.work_groups_start; cs_prog_data->uses_num_work_groups = true; fs_reg surf_index = brw_imm_ud(surface); brw_mark_surface_used(prog_data, surface); /* Read the 3 GLuint components of gl_NumWorkGroups */ for (unsigned i = 0; i < 3; i++) { fs_reg read_result = emit_untyped_read(bld, surf_index, brw_imm_ud(i << 2), 1 /* dims */, 1 /* size */, BRW_PREDICATE_NONE); read_result.type = dest.type; bld.MOV(dest, read_result); dest = offset(dest, bld, 1); } break; } default: nir_emit_intrinsic(bld, instr); break; } } void fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr) { fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); bool has_indirect = false; switch (instr->intrinsic) { case nir_intrinsic_atomic_counter_inc: case nir_intrinsic_atomic_counter_dec: case nir_intrinsic_atomic_counter_read: { using namespace surface_access; /* Get the arguments of the atomic intrinsic. */ const fs_reg offset = get_nir_src(instr->src[0]); const unsigned surface = (stage_prog_data->binding_table.abo_start + instr->const_index[0]); fs_reg tmp; /* Emit a surface read or atomic op. */ switch (instr->intrinsic) { case nir_intrinsic_atomic_counter_read: tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1); break; case nir_intrinsic_atomic_counter_inc: tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(), fs_reg(), 1, 1, BRW_AOP_INC); break; case nir_intrinsic_atomic_counter_dec: tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(), fs_reg(), 1, 1, BRW_AOP_PREDEC); break; default: unreachable("Unreachable"); } /* Assign the result. */ bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp); /* Mark the surface as used. */ brw_mark_surface_used(stage_prog_data, surface); break; } case nir_intrinsic_image_load: case nir_intrinsic_image_store: case nir_intrinsic_image_atomic_add: case nir_intrinsic_image_atomic_min: case nir_intrinsic_image_atomic_max: case nir_intrinsic_image_atomic_and: case nir_intrinsic_image_atomic_or: case nir_intrinsic_image_atomic_xor: case nir_intrinsic_image_atomic_exchange: case nir_intrinsic_image_atomic_comp_swap: { using namespace image_access; /* Get the referenced image variable and type. */ const nir_variable *var = instr->variables[0]->var; const glsl_type *type = var->type->without_array(); const brw_reg_type base_type = get_image_base_type(type); /* Get some metadata from the image intrinsic. */ const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; const unsigned arr_dims = type->sampler_array ? 1 : 0; const unsigned surf_dims = type->coordinate_components() - arr_dims; const mesa_format format = (var->data.image.write_only ? MESA_FORMAT_NONE : _mesa_get_shader_image_format(var->data.image.format)); /* Get the arguments of the image intrinsic. */ const fs_reg image = get_nir_image_deref(instr->variables[0]); const fs_reg addr = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD); const fs_reg src0 = (info->num_srcs >= 3 ? retype(get_nir_src(instr->src[2]), base_type) : fs_reg()); const fs_reg src1 = (info->num_srcs >= 4 ? retype(get_nir_src(instr->src[3]), base_type) : fs_reg()); fs_reg tmp; /* Emit an image load, store or atomic op. */ if (instr->intrinsic == nir_intrinsic_image_load) tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format); else if (instr->intrinsic == nir_intrinsic_image_store) emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format); else tmp = emit_image_atomic(bld, image, addr, src0, src1, surf_dims, arr_dims, info->dest_components, get_image_atomic_op(instr->intrinsic, type)); /* Assign the result. */ for (unsigned c = 0; c < info->dest_components; ++c) bld.MOV(offset(retype(dest, base_type), bld, c), offset(tmp, bld, c)); break; } case nir_intrinsic_memory_barrier_atomic_counter: case nir_intrinsic_memory_barrier_buffer: case nir_intrinsic_memory_barrier_image: case nir_intrinsic_memory_barrier: { const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width); bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp) ->regs_written = 2; break; } case nir_intrinsic_group_memory_barrier: case nir_intrinsic_memory_barrier_shared: /* We treat these workgroup-level barriers as no-ops. This should be * safe at present and as long as: * * - Memory access instructions are not subsequently reordered by the * compiler back-end. * * - All threads from a given compute shader workgroup fit within a * single subslice and therefore talk to the same HDC shared unit * what supposedly guarantees ordering and coherency between threads * from the same workgroup. This may change in the future when we * start splitting workgroups across multiple subslices. * * - The context is not in fault-and-stream mode, which could cause * memory transactions (including to SLM) prior to the barrier to be * replayed after the barrier if a pagefault occurs. This shouldn't * be a problem up to and including SKL because fault-and-stream is * not usable due to hardware issues, but that's likely to change in * the future. */ break; case nir_intrinsic_shader_clock: { /* We cannot do anything if there is an event, so ignore it for now */ fs_reg shader_clock = get_timestamp(bld); const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) }; bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0); break; } case nir_intrinsic_image_size: { /* Get the referenced image variable and type. */ const nir_variable *var = instr->variables[0]->var; const glsl_type *type = var->type->without_array(); /* Get the size of the image. */ const fs_reg image = get_nir_image_deref(instr->variables[0]); const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET); /* For 1DArray image types, the array index is stored in the Z component. * Fix this by swizzling the Z component to the Y component. */ const bool is_1d_array_image = type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D && type->sampler_array; /* For CubeArray images, we should count the number of cubes instead * of the number of faces. Fix it by dividing the (Z component) by 6. */ const bool is_cube_array_image = type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE && type->sampler_array; /* Copy all the components. */ const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; for (unsigned c = 0; c < info->dest_components; ++c) { if ((int)c >= type->coordinate_components()) { bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c), brw_imm_d(1)); } else if (c == 1 && is_1d_array_image) { bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c), offset(size, bld, 2)); } else if (c == 2 && is_cube_array_image) { bld.emit(SHADER_OPCODE_INT_QUOTIENT, offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c), offset(size, bld, c), brw_imm_d(6)); } else { bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c), offset(size, bld, c)); } } break; } case nir_intrinsic_image_samples: /* The driver does not support multi-sampled images. */ bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1)); break; case nir_intrinsic_load_uniform_indirect: has_indirect = true; /* fallthrough */ case nir_intrinsic_load_uniform: { /* Offsets are in bytes but they should always be multiples of 4 */ assert(instr->const_index[0] % 4 == 0); assert(instr->const_index[1] % 4 == 0); fs_reg uniform_reg(UNIFORM, instr->const_index[0] / 4); uniform_reg.reg_offset = instr->const_index[1] / 4; for (unsigned j = 0; j < instr->num_components; j++) { fs_reg src = offset(retype(uniform_reg, dest.type), bld, j); if (has_indirect) src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0])); bld.MOV(dest, src); dest = offset(dest, bld, 1); } break; } case nir_intrinsic_load_ubo_indirect: has_indirect = true; /* fallthrough */ case nir_intrinsic_load_ubo: { nir_const_value *const_index = nir_src_as_const_value(instr->src[0]); fs_reg surf_index; if (const_index) { const unsigned index = stage_prog_data->binding_table.ubo_start + const_index->u[0]; surf_index = brw_imm_ud(index); brw_mark_surface_used(prog_data, index); } else { /* The block index is not a constant. Evaluate the index expression * per-channel and add the base UBO index; we have to select a value * from any live channel. */ surf_index = vgrf(glsl_type::uint_type); bld.ADD(surf_index, get_nir_src(instr->src[0]), brw_imm_ud(stage_prog_data->binding_table.ubo_start)); surf_index = bld.emit_uniformize(surf_index); /* Assume this may touch any UBO. It would be nice to provide * a tighter bound, but the array information is already lowered away. */ brw_mark_surface_used(prog_data, stage_prog_data->binding_table.ubo_start + nir->info.num_ubos - 1); } if (has_indirect) { fs_reg base_offset = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_D); unsigned vec4_offset = instr->const_index[0]; for (int i = 0; i < instr->num_components; i++) VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index, base_offset, vec4_offset + i * 4); } else { fs_reg packed_consts = vgrf(glsl_type::float_type); packed_consts.type = dest.type; struct brw_reg const_offset_reg = brw_imm_ud(instr->const_index[0] & ~15); bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts, surf_index, const_offset_reg); for (unsigned i = 0; i < instr->num_components; i++) { packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i); /* The std140 packing rules don't allow vectors to cross 16-byte * boundaries, and a reg is 32 bytes. */ assert(packed_consts.subreg_offset < 32); bld.MOV(dest, packed_consts); dest = offset(dest, bld, 1); } } break; } case nir_intrinsic_load_ssbo_indirect: has_indirect = true; /* fallthrough */ case nir_intrinsic_load_ssbo: { assert(devinfo->gen >= 7); nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]); fs_reg surf_index; if (const_uniform_block) { unsigned index = stage_prog_data->binding_table.ssbo_start + const_uniform_block->u[0]; surf_index = brw_imm_ud(index); brw_mark_surface_used(prog_data, index); } else { surf_index = vgrf(glsl_type::uint_type); bld.ADD(surf_index, get_nir_src(instr->src[0]), brw_imm_ud(stage_prog_data->binding_table.ssbo_start)); /* Assume this may touch any UBO. It would be nice to provide * a tighter bound, but the array information is already lowered away. */ brw_mark_surface_used(prog_data, stage_prog_data->binding_table.ssbo_start + nir->info.num_ssbos - 1); } /* Get the offset to read from */ fs_reg offset_reg; if (has_indirect) { offset_reg = get_nir_src(instr->src[1]); } else { offset_reg = brw_imm_ud(instr->const_index[0]); } /* Read the vector */ fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg, 1 /* dims */, instr->num_components, BRW_PREDICATE_NONE); read_result.type = dest.type; for (int i = 0; i < instr->num_components; i++) bld.MOV(offset(dest, bld, i), offset(read_result, bld, i)); break; } case nir_intrinsic_load_shared_indirect: has_indirect = true; /* fallthrough */ case nir_intrinsic_load_shared: { assert(devinfo->gen >= 7); fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM); /* Get the offset to read from */ fs_reg offset_reg; if (has_indirect) { offset_reg = get_nir_src(instr->src[0]); } else { offset_reg = brw_imm_ud(instr->const_index[0]); } /* Read the vector */ fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg, 1 /* dims */, instr->num_components, BRW_PREDICATE_NONE); read_result.type = dest.type; for (int i = 0; i < instr->num_components; i++) bld.MOV(offset(dest, bld, i), offset(read_result, bld, i)); break; } case nir_intrinsic_load_input_indirect: unreachable("Not allowed"); /* fallthrough */ case nir_intrinsic_load_input: { unsigned index = 0; for (unsigned j = 0; j < instr->num_components; j++) { fs_reg src; if (stage == MESA_SHADER_VERTEX) { src = offset(fs_reg(ATTR, instr->const_index[0], dest.type), bld, index); } else { src = offset(retype(nir_inputs, dest.type), bld, instr->const_index[0] + index); } index++; bld.MOV(dest, src); dest = offset(dest, bld, 1); } break; } case nir_intrinsic_store_ssbo_indirect: has_indirect = true; /* fallthrough */ case nir_intrinsic_store_ssbo: { assert(devinfo->gen >= 7); /* Block index */ fs_reg surf_index; nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[1]); if (const_uniform_block) { unsigned index = stage_prog_data->binding_table.ssbo_start + const_uniform_block->u[0]; surf_index = brw_imm_ud(index); brw_mark_surface_used(prog_data, index); } else { surf_index = vgrf(glsl_type::uint_type); bld.ADD(surf_index, get_nir_src(instr->src[1]), brw_imm_ud(stage_prog_data->binding_table.ssbo_start)); brw_mark_surface_used(prog_data, stage_prog_data->binding_table.ssbo_start + nir->info.num_ssbos - 1); } /* Value */ fs_reg val_reg = get_nir_src(instr->src[0]); /* Writemask */ unsigned writemask = instr->const_index[1]; /* Combine groups of consecutive enabled channels in one write * message. We use ffs to find the first enabled channel and then ffs on * the bit-inverse, down-shifted writemask to determine the length of * the block of enabled bits. */ while (writemask) { unsigned first_component = ffs(writemask) - 1; unsigned length = ffs(~(writemask >> first_component)) - 1; fs_reg offset_reg; if (!has_indirect) { offset_reg = brw_imm_ud(instr->const_index[0] + 4 * first_component); } else { offset_reg = vgrf(glsl_type::uint_type); bld.ADD(offset_reg, retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD), brw_imm_ud(4 * first_component)); } emit_untyped_write(bld, surf_index, offset_reg, offset(val_reg, bld, first_component), 1 /* dims */, length, BRW_PREDICATE_NONE); /* Clear the bits in the writemask that we just wrote, then try * again to see if more channels are left. */ writemask &= (15 << (first_component + length)); } break; } case nir_intrinsic_store_output_indirect: unreachable("Not allowed"); /* fallthrough */ case nir_intrinsic_store_output: { fs_reg src = get_nir_src(instr->src[0]); unsigned index = 0; for (unsigned j = 0; j < instr->num_components; j++) { fs_reg new_dest = offset(retype(nir_outputs, src.type), bld, instr->const_index[0] + index); index++; bld.MOV(new_dest, src); src = offset(src, bld, 1); } break; } case nir_intrinsic_ssbo_atomic_add: nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr); break; case nir_intrinsic_ssbo_atomic_imin: nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr); break; case nir_intrinsic_ssbo_atomic_umin: nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr); break; case nir_intrinsic_ssbo_atomic_imax: nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr); break; case nir_intrinsic_ssbo_atomic_umax: nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr); break; case nir_intrinsic_ssbo_atomic_and: nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr); break; case nir_intrinsic_ssbo_atomic_or: nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr); break; case nir_intrinsic_ssbo_atomic_xor: nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr); break; case nir_intrinsic_ssbo_atomic_exchange: nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr); break; case nir_intrinsic_ssbo_atomic_comp_swap: nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr); break; case nir_intrinsic_get_buffer_size: { nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]); unsigned ssbo_index = const_uniform_block ? const_uniform_block->u[0] : 0; int reg_width = dispatch_width / 8; /* Set LOD = 0 */ fs_reg source = brw_imm_d(0); int mlen = 1 * reg_width; /* A resinfo's sampler message is used to get the buffer size. * The SIMD8's writeback message consists of four registers and * SIMD16's writeback message consists of 8 destination registers * (two per each component), although we are only interested on the * first component, where resinfo returns the buffer size for * SURFTYPE_BUFFER. */ int regs_written = 4 * mlen; fs_reg src_payload = fs_reg(VGRF, alloc.allocate(mlen), BRW_REGISTER_TYPE_UD); bld.LOAD_PAYLOAD(src_payload, &source, 1, 0); fs_reg buffer_size = fs_reg(VGRF, alloc.allocate(regs_written), BRW_REGISTER_TYPE_UD); const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index; fs_inst *inst = bld.emit(FS_OPCODE_GET_BUFFER_SIZE, buffer_size, src_payload, brw_imm_ud(index)); inst->header_size = 0; inst->mlen = mlen; inst->regs_written = regs_written; bld.emit(inst); bld.MOV(retype(dest, buffer_size.type), buffer_size); brw_mark_surface_used(prog_data, index); break; } default: unreachable("unknown intrinsic"); } } void fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld, int op, nir_intrinsic_instr *instr) { fs_reg dest; if (nir_intrinsic_infos[instr->intrinsic].has_dest) dest = get_nir_dest(instr->dest); fs_reg surface; nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]); if (const_surface) { unsigned surf_index = stage_prog_data->binding_table.ssbo_start + const_surface->u[0]; surface = brw_imm_ud(surf_index); brw_mark_surface_used(prog_data, surf_index); } else { surface = vgrf(glsl_type::uint_type); bld.ADD(surface, get_nir_src(instr->src[0]), brw_imm_ud(stage_prog_data->binding_table.ssbo_start)); /* Assume this may touch any SSBO. This is the same we do for other * UBO/SSBO accesses with non-constant surface. */ brw_mark_surface_used(prog_data, stage_prog_data->binding_table.ssbo_start + nir->info.num_ssbos - 1); } fs_reg offset = get_nir_src(instr->src[1]); fs_reg data1 = get_nir_src(instr->src[2]); fs_reg data2; if (op == BRW_AOP_CMPWR) data2 = get_nir_src(instr->src[3]); /* Emit the actual atomic operation operation */ fs_reg atomic_result = surface_access::emit_untyped_atomic(bld, surface, offset, data1, data2, 1 /* dims */, 1 /* rsize */, op, BRW_PREDICATE_NONE); dest.type = atomic_result.type; bld.MOV(dest, atomic_result); } void fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr) { unsigned sampler = instr->sampler_index; fs_reg sampler_reg(brw_imm_ud(sampler)); int gather_component = instr->component; bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->is_array; int lod_components = 0; int UNUSED offset_components = 0; fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset; for (unsigned i = 0; i < instr->num_srcs; i++) { fs_reg src = get_nir_src(instr->src[i].src); switch (instr->src[i].src_type) { case nir_tex_src_bias: lod = retype(src, BRW_REGISTER_TYPE_F); break; case nir_tex_src_comparitor: shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F); break; case nir_tex_src_coord: switch (instr->op) { case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_samples_identical: coordinate = retype(src, BRW_REGISTER_TYPE_D); break; default: coordinate = retype(src, BRW_REGISTER_TYPE_F); break; } break; case nir_tex_src_ddx: lod = retype(src, BRW_REGISTER_TYPE_F); lod_components = nir_tex_instr_src_size(instr, i); break; case nir_tex_src_ddy: lod2 = retype(src, BRW_REGISTER_TYPE_F); break; case nir_tex_src_lod: switch (instr->op) { case nir_texop_txs: lod = retype(src, BRW_REGISTER_TYPE_UD); break; case nir_texop_txf: lod = retype(src, BRW_REGISTER_TYPE_D); break; default: lod = retype(src, BRW_REGISTER_TYPE_F); break; } break; case nir_tex_src_ms_index: sample_index = retype(src, BRW_REGISTER_TYPE_UD); break; case nir_tex_src_offset: tex_offset = retype(src, BRW_REGISTER_TYPE_D); if (instr->is_array) offset_components = instr->coord_components - 1; else offset_components = instr->coord_components; break; case nir_tex_src_projector: unreachable("should be lowered"); case nir_tex_src_sampler_offset: { /* Figure out the highest possible sampler index and mark it as used */ uint32_t max_used = sampler + instr->sampler_array_size - 1; if (instr->op == nir_texop_tg4 && devinfo->gen < 8) { max_used += stage_prog_data->binding_table.gather_texture_start; } else { max_used += stage_prog_data->binding_table.texture_start; } brw_mark_surface_used(prog_data, max_used); /* Emit code to evaluate the actual indexing expression */ sampler_reg = vgrf(glsl_type::uint_type); bld.ADD(sampler_reg, src, brw_imm_ud(sampler)); sampler_reg = bld.emit_uniformize(sampler_reg); break; } default: unreachable("unknown texture source"); } } if (instr->op == nir_texop_txf_ms || instr->op == nir_texop_samples_identical) { if (devinfo->gen >= 7 && key_tex->compressed_multisample_layout_mask & (1 << sampler)) { mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg); } else { mcs = brw_imm_ud(0u); } } for (unsigned i = 0; i < 3; i++) { if (instr->const_offset[i] != 0) { assert(offset_components == 0); tex_offset = brw_imm_ud(brw_texture_offset(instr->const_offset, 3)); break; } } enum glsl_base_type dest_base_type = brw_glsl_base_type_for_nir_type (instr->dest_type); const glsl_type *dest_type = glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr), 1); ir_texture_opcode op; switch (instr->op) { case nir_texop_lod: op = ir_lod; break; case nir_texop_query_levels: op = ir_query_levels; break; case nir_texop_tex: op = ir_tex; break; case nir_texop_tg4: op = ir_tg4; break; case nir_texop_txb: op = ir_txb; break; case nir_texop_txd: op = ir_txd; break; case nir_texop_txf: op = ir_txf; break; case nir_texop_txf_ms: op = ir_txf_ms; break; case nir_texop_txl: op = ir_txl; break; case nir_texop_txs: op = ir_txs; break; case nir_texop_texture_samples: { fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D); fs_inst *inst = bld.emit(SHADER_OPCODE_SAMPLEINFO, dst, bld.vgrf(BRW_REGISTER_TYPE_D, 1), sampler_reg); inst->mlen = 1; inst->header_size = 1; inst->base_mrf = -1; return; } case nir_texop_samples_identical: op = ir_samples_identical; break; default: unreachable("unknown texture opcode"); } emit_texture(op, dest_type, coordinate, instr->coord_components, shadow_comparitor, lod, lod2, lod_components, sample_index, tex_offset, mcs, gather_component, is_cube_array, sampler, sampler_reg); fs_reg dest = get_nir_dest(instr->dest); dest.type = this->result.type; unsigned num_components = nir_tex_instr_dest_size(instr); emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(), dest, this->result), (1 << num_components) - 1); } void fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr) { switch (instr->type) { case nir_jump_break: bld.emit(BRW_OPCODE_BREAK); break; case nir_jump_continue: bld.emit(BRW_OPCODE_CONTINUE); break; case nir_jump_return: default: unreachable("unknown jump"); } }