/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "brw_cfg.h" #include "brw_fs_live_variables.h" using namespace brw; /** @file brw_fs_live_variables.cpp * * Support for computing at the basic block level which variables * (virtual GRFs in our case) are live at entry and exit. * * See Muchnik's Advanced Compiler Design and Implementation, section * 14.1 (p444). */ /** * Sets up the use[] and def[] bitsets. * * The basic-block-level live variable analysis needs to know which * variables get used before they're completely defined, and which * variables are completely defined before they're used. */ void fs_live_variables::setup_def_use() { int ip = 0; for (int b = 0; b < cfg->num_blocks; b++) { bblock_t *block = cfg->blocks[b]; assert(ip == block->start_ip); if (b > 0) assert(cfg->blocks[b - 1]->end_ip == ip - 1); for (fs_inst *inst = (fs_inst *)block->start; inst != block->end->next; inst = (fs_inst *)inst->next) { /* Set use[] for this instruction */ for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) { int reg = inst->src[i].reg; if (!BITSET_TEST(bd[b].def, reg)) BITSET_SET(bd[b].use, reg); } } /* Check for unconditional writes to whole registers. These * are the things that screen off preceding definitions of a * variable, and thus qualify for being in def[]. */ if (inst->dst.file == GRF && inst->regs_written == v->virtual_grf_sizes[inst->dst.reg] && !inst->is_partial_write()) { int reg = inst->dst.reg; if (!BITSET_TEST(bd[b].use, reg)) BITSET_SET(bd[b].def, reg); } ip++; } } } /** * The algorithm incrementally sets bits in liveout and livein, * propagating it through control flow. It will eventually terminate * because it only ever adds bits, and stops when no bits are added in * a pass. */ void fs_live_variables::compute_live_variables() { bool cont = true; while (cont) { cont = false; for (int b = 0; b < cfg->num_blocks; b++) { /* Update livein */ for (int i = 0; i < bitset_words; i++) { BITSET_WORD new_livein = (bd[b].use[i] | (bd[b].liveout[i] & ~bd[b].def[i])); if (new_livein & ~bd[b].livein[i]) { bd[b].livein[i] |= new_livein; cont = true; } } /* Update liveout */ foreach_list(block_node, &cfg->blocks[b]->children) { bblock_link *link = (bblock_link *)block_node; bblock_t *block = link->block; for (int i = 0; i < bitset_words; i++) { BITSET_WORD new_liveout = (bd[block->block_num].livein[i] & ~bd[b].liveout[i]); if (new_liveout) { bd[b].liveout[i] |= new_liveout; cont = true; } } } } } } fs_live_variables::fs_live_variables(fs_visitor *v, cfg_t *cfg) : v(v), cfg(cfg) { mem_ctx = ralloc_context(cfg->mem_ctx); num_vars = v->virtual_grf_count; bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks); bitset_words = BITSET_WORDS(v->virtual_grf_count); for (int i = 0; i < cfg->num_blocks; i++) { bd[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); bd[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); bd[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); bd[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); } setup_def_use(); compute_live_variables(); } fs_live_variables::~fs_live_variables() { ralloc_free(mem_ctx); } #define MAX_INSTRUCTION (1 << 30) void fs_visitor::calculate_live_intervals() { int num_vars = this->virtual_grf_count; if (this->live_intervals_valid) return; int *start = ralloc_array(mem_ctx, int, num_vars); int *end = ralloc_array(mem_ctx, int, num_vars); ralloc_free(this->virtual_grf_start); ralloc_free(this->virtual_grf_end); this->virtual_grf_start = start; this->virtual_grf_end = end; for (int i = 0; i < num_vars; i++) { start[i] = MAX_INSTRUCTION; end[i] = -1; } /* Start by setting up the intervals with no knowledge of control * flow. */ int ip = 0; foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) { int reg = inst->src[i].reg; int end_ip = ip; /* In most cases, a register can be written over safely by the * same instruction that is its last use. For a single * instruction, the sources are dereferenced before writing of the * destination starts (naturally). This gets more complicated for * simd16, because the instruction: * * mov(16) g4<1>F g4<8,8,1>F g6<8,8,1>F * * is actually decoded in hardware as: * * mov(8) g4<1>F g4<8,8,1>F g6<8,8,1>F * mov(8) g5<1>F g5<8,8,1>F g7<8,8,1>F * * Which is safe. However, if we have uniform accesses * happening, we get into trouble: * * mov(8) g4<1>F g4<0,1,0>F g6<8,8,1>F * mov(8) g5<1>F g4<0,1,0>F g7<8,8,1>F * * Now our destination for the first instruction overwrote the * second instruction's src0, and we get garbage for those 8 * pixels. There's a similar issue for the pre-gen6 * pixel_x/pixel_y, which are registers of 16-bit values and thus * would get stomped by the first decode as well. */ if (dispatch_width == 16 && (inst->src[i].smear >= 0 || (this->pixel_x.reg == reg || this->pixel_y.reg == reg))) { end_ip++; } start[reg] = MIN2(start[reg], ip); end[reg] = MAX2(end[reg], end_ip); } } if (inst->dst.file == GRF) { int reg = inst->dst.reg; start[reg] = MIN2(start[reg], ip); end[reg] = MAX2(end[reg], ip); } ip++; } /* Now, extend those intervals using our analysis of control flow. */ cfg_t cfg(this); fs_live_variables livevars(this, &cfg); for (int b = 0; b < cfg.num_blocks; b++) { for (int i = 0; i < num_vars; i++) { if (BITSET_TEST(livevars.bd[b].livein, i)) { start[i] = MIN2(start[i], cfg.blocks[b]->start_ip); end[i] = MAX2(end[i], cfg.blocks[b]->start_ip); } if (BITSET_TEST(livevars.bd[b].liveout, i)) { start[i] = MIN2(start[i], cfg.blocks[b]->end_ip); end[i] = MAX2(end[i], cfg.blocks[b]->end_ip); } } } this->live_intervals_valid = true; } bool fs_visitor::virtual_grf_interferes(int a, int b) { return !(virtual_grf_end[a] <= virtual_grf_start[b] || virtual_grf_end[b] <= virtual_grf_start[a]); }