/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file brw_fs_generator.cpp * * This file supports generating code from the FS LIR to the actual * native instructions. */ extern "C" { #include "main/macros.h" #include "brw_context.h" #include "brw_eu.h" } /* extern "C" */ #include "brw_fs.h" #include "brw_cfg.h" fs_generator::fs_generator(struct brw_context *brw, struct brw_wm_compile *c, struct gl_shader_program *prog, struct gl_fragment_program *fp, bool dual_source_output) : brw(brw), c(c), prog(prog), fp(fp), dual_source_output(dual_source_output) { ctx = &brw->ctx; shader = prog ? prog->_LinkedShaders[MESA_SHADER_FRAGMENT] : NULL; mem_ctx = c; p = rzalloc(mem_ctx, struct brw_compile); brw_init_compile(brw, p, mem_ctx); } fs_generator::~fs_generator() { } void fs_generator::mark_surface_used(unsigned surf_index) { assert(surf_index < BRW_MAX_SURFACES); c->prog_data.base.binding_table.size_bytes = MAX2(c->prog_data.base.binding_table.size_bytes, (surf_index + 1) * 4); } void fs_generator::patch_discard_jumps_to_fb_writes() { if (brw->gen < 6 || this->discard_halt_patches.is_empty()) return; /* There is a somewhat strange undocumented requirement of using * HALT, according to the simulator. If some channel has HALTed to * a particular UIP, then by the end of the program, every channel * must have HALTed to that UIP. Furthermore, the tracking is a * stack, so you can't do the final halt of a UIP after starting * halting to a new UIP. * * Symptoms of not emitting this instruction on actual hardware * included GPU hangs and sparkly rendering on the piglit discard * tests. */ struct brw_instruction *last_halt = gen6_HALT(p); last_halt->bits3.break_cont.uip = 2; last_halt->bits3.break_cont.jip = 2; int ip = p->nr_insn; foreach_list(node, &this->discard_halt_patches) { ip_record *patch_ip = (ip_record *)node; struct brw_instruction *patch = &p->store[patch_ip->ip]; assert(patch->header.opcode == BRW_OPCODE_HALT); /* HALT takes a half-instruction distance from the pre-incremented IP. */ patch->bits3.break_cont.uip = (ip - patch_ip->ip) * 2; } this->discard_halt_patches.make_empty(); } void fs_generator::generate_fb_write(fs_inst *inst) { bool eot = inst->eot; struct brw_reg implied_header; uint32_t msg_control; /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied * move, here's g1. */ brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_set_compression_control(p, BRW_COMPRESSION_NONE); if (fp->UsesKill) { struct brw_reg pixel_mask; if (brw->gen >= 6) pixel_mask = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW); else pixel_mask = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW); brw_MOV(p, pixel_mask, brw_flag_reg(0, 1)); } if (inst->header_present) { if (brw->gen >= 6) { brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); brw_MOV(p, retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD), retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); brw_set_compression_control(p, BRW_COMPRESSION_NONE); if (inst->target > 0 && c->key.replicate_alpha) { /* Set "Source0 Alpha Present to RenderTarget" bit in message * header. */ brw_OR(p, vec1(retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD)), vec1(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)), brw_imm_ud(0x1 << 11)); } if (inst->target > 0) { /* Set the render target index for choosing BLEND_STATE. */ brw_MOV(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, inst->base_mrf, 2), BRW_REGISTER_TYPE_UD), brw_imm_ud(inst->target)); } implied_header = brw_null_reg(); } else { implied_header = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW); brw_MOV(p, brw_message_reg(inst->base_mrf + 1), brw_vec8_grf(1, 0)); } } else { implied_header = brw_null_reg(); } if (this->dual_source_output) msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01; else if (dispatch_width == 16) msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE; else msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01; brw_pop_insn_state(p); uint32_t surf_index = c->prog_data.binding_table.render_target_start + inst->target; brw_fb_WRITE(p, dispatch_width, inst->base_mrf, implied_header, msg_control, surf_index, inst->mlen, 0, eot, inst->header_present); mark_surface_used(surf_index); } /* Computes the integer pixel x,y values from the origin. * * This is the basis of gl_FragCoord computation, but is also used * pre-gen6 for computing the deltas from v0 for computing * interpolation. */ void fs_generator::generate_pixel_xy(struct brw_reg dst, bool is_x) { struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW); struct brw_reg src; struct brw_reg deltas; if (is_x) { src = stride(suboffset(g1_uw, 4), 2, 4, 0); deltas = brw_imm_v(0x10101010); } else { src = stride(suboffset(g1_uw, 5), 2, 4, 0); deltas = brw_imm_v(0x11001100); } if (dispatch_width == 16) { dst = vec16(dst); } /* We do this 8 or 16-wide, but since the destination is UW we * don't do compression in the 16-wide case. */ brw_push_insn_state(p); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_ADD(p, dst, src, deltas); brw_pop_insn_state(p); } void fs_generator::generate_linterp(fs_inst *inst, struct brw_reg dst, struct brw_reg *src) { struct brw_reg delta_x = src[0]; struct brw_reg delta_y = src[1]; struct brw_reg interp = src[2]; if (brw->has_pln && delta_y.nr == delta_x.nr + 1 && (brw->gen >= 6 || (delta_x.nr & 1) == 0)) { brw_PLN(p, dst, interp, delta_x); } else { brw_LINE(p, brw_null_reg(), interp, delta_x); brw_MAC(p, dst, suboffset(interp, 1), delta_y); } } void fs_generator::generate_math1_gen7(fs_inst *inst, struct brw_reg dst, struct brw_reg src0) { assert(inst->mlen == 0); brw_math(p, dst, brw_math_function(inst->opcode), 0, src0, BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); } void fs_generator::generate_math2_gen7(fs_inst *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { assert(inst->mlen == 0); brw_math2(p, dst, brw_math_function(inst->opcode), src0, src1); } void fs_generator::generate_math1_gen6(fs_inst *inst, struct brw_reg dst, struct brw_reg src0) { int op = brw_math_function(inst->opcode); assert(inst->mlen == 0); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_math(p, dst, op, 0, src0, BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); if (dispatch_width == 16) { brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); brw_math(p, sechalf(dst), op, 0, sechalf(src0), BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } } void fs_generator::generate_math2_gen6(fs_inst *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { int op = brw_math_function(inst->opcode); assert(inst->mlen == 0); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_math2(p, dst, op, src0, src1); if (dispatch_width == 16) { brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); brw_math2(p, sechalf(dst), op, sechalf(src0), sechalf(src1)); brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } } void fs_generator::generate_math_gen4(fs_inst *inst, struct brw_reg dst, struct brw_reg src) { int op = brw_math_function(inst->opcode); assert(inst->mlen >= 1); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_math(p, dst, op, inst->base_mrf, src, BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); if (dispatch_width == 16) { brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); brw_math(p, sechalf(dst), op, inst->base_mrf + 1, sechalf(src), BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } } void fs_generator::generate_math_g45(fs_inst *inst, struct brw_reg dst, struct brw_reg src) { if (inst->opcode == SHADER_OPCODE_POW || inst->opcode == SHADER_OPCODE_INT_QUOTIENT || inst->opcode == SHADER_OPCODE_INT_REMAINDER) { generate_math_gen4(inst, dst, src); return; } int op = brw_math_function(inst->opcode); assert(inst->mlen >= 1); brw_math(p, dst, op, inst->base_mrf, src, BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); } void fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src) { int msg_type = -1; int rlen = 4; uint32_t simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8; uint32_t return_format; switch (dst.type) { case BRW_REGISTER_TYPE_D: return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32; break; case BRW_REGISTER_TYPE_UD: return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32; break; default: return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32; break; } if (dispatch_width == 16 && !inst->force_uncompressed && !inst->force_sechalf) simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; if (brw->gen >= 5) { switch (inst->opcode) { case SHADER_OPCODE_TEX: if (inst->shadow_compare) { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE; } break; case FS_OPCODE_TXB: if (inst->shadow_compare) { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS; } break; case SHADER_OPCODE_TXL: if (inst->shadow_compare) { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD; } break; case SHADER_OPCODE_TXS: msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO; break; case SHADER_OPCODE_TXD: if (inst->shadow_compare) { /* Gen7.5+. Otherwise, lowered by brw_lower_texture_gradients(). */ assert(brw->is_haswell); msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS; } break; case SHADER_OPCODE_TXF: msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD; break; case SHADER_OPCODE_TXF_MS: if (brw->gen >= 7) msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS; else msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD; break; case SHADER_OPCODE_LOD: msg_type = GEN5_SAMPLER_MESSAGE_LOD; break; case SHADER_OPCODE_TG4: if (inst->shadow_compare) { assert(brw->gen >= 7); msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C; } else { assert(brw->gen >= 6); msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4; } break; case SHADER_OPCODE_TG4_OFFSET: assert(brw->gen >= 7); if (inst->shadow_compare) { msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C; } else { msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO; } break; default: assert(!"not reached"); break; } } else { switch (inst->opcode) { case SHADER_OPCODE_TEX: /* Note that G45 and older determines shadow compare and dispatch width * from message length for most messages. */ assert(dispatch_width == 8); msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE; if (inst->shadow_compare) { assert(inst->mlen == 6); } else { assert(inst->mlen <= 4); } break; case FS_OPCODE_TXB: if (inst->shadow_compare) { assert(inst->mlen == 6); msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE; } else { assert(inst->mlen == 9); msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; } break; case SHADER_OPCODE_TXL: if (inst->shadow_compare) { assert(inst->mlen == 6); msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE; } else { assert(inst->mlen == 9); msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; } break; case SHADER_OPCODE_TXD: /* There is no sample_d_c message; comparisons are done manually */ assert(inst->mlen == 7 || inst->mlen == 10); msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS; break; case SHADER_OPCODE_TXF: assert(inst->mlen == 9); msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; break; case SHADER_OPCODE_TXS: assert(inst->mlen == 3); msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; break; default: assert(!"not reached"); break; } } assert(msg_type != -1); if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) { rlen = 8; dst = vec16(dst); } if (brw->gen >= 7 && inst->header_present && dispatch_width == 16) { /* The send-from-GRF for 16-wide texturing with a header has an extra * hardware register allocated to it, which we need to skip over (since * our coordinates in the payload are in the even-numbered registers, * and the header comes right before the first one). */ assert(src.file == BRW_GENERAL_REGISTER_FILE); src.nr++; } /* Load the message header if present. If there's a texture offset, * we need to set it up explicitly and load the offset bitfield. * Otherwise, we can use an implied move from g0 to the first message reg. */ if (inst->texture_offset) { struct brw_reg header_reg; if (brw->gen >= 7) { header_reg = src; } else { assert(inst->base_mrf != -1); header_reg = brw_message_reg(inst->base_mrf); } brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_set_compression_control(p, BRW_COMPRESSION_NONE); /* Explicitly set up the message header by copying g0 to the MRF. */ brw_MOV(p, header_reg, brw_vec8_grf(0, 0)); /* Then set the offset bits in DWord 2. */ brw_MOV(p, retype(brw_vec1_reg(header_reg.file, header_reg.nr, 2), BRW_REGISTER_TYPE_UD), brw_imm_ud(inst->texture_offset)); brw_pop_insn_state(p); } else if (inst->header_present) { if (brw->gen >= 7) { /* Explicitly set up the message header by copying g0 to the MRF. */ brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_MOV(p, src, brw_vec8_grf(0, 0)); brw_pop_insn_state(p); } else { /* Set up an implied move from g0 to the MRF. */ src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW); } } uint32_t surface_index = ((inst->opcode == SHADER_OPCODE_TG4 || inst->opcode == SHADER_OPCODE_TG4_OFFSET) ? c->prog_data.base.binding_table.gather_texture_start : c->prog_data.base.binding_table.texture_start) + inst->sampler; brw_SAMPLE(p, retype(dst, BRW_REGISTER_TYPE_UW), inst->base_mrf, src, surface_index, inst->sampler, msg_type, rlen, inst->mlen, inst->header_present, simd_mode, return_format); mark_surface_used(surface_index); } /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input * looking like: * * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br * * Ideally, we want to produce: * * DDX DDY * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl) * (ss0.tr - ss0.tl) (ss0.tr - ss0.br) * (ss0.br - ss0.bl) (ss0.tl - ss0.bl) * (ss0.br - ss0.bl) (ss0.tr - ss0.br) * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl) * (ss1.tr - ss1.tl) (ss1.tr - ss1.br) * (ss1.br - ss1.bl) (ss1.tl - ss1.bl) * (ss1.br - ss1.bl) (ss1.tr - ss1.br) * * and add another set of two more subspans if in 16-pixel dispatch mode. * * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result * for each pair, and vertstride = 2 jumps us 2 elements after processing a * pair. But the ideal approximation may impose a huge performance cost on * sample_d. On at least Haswell, sample_d instruction does some * optimizations if the same LOD is used for all pixels in the subspan. * * For DDY, we need to use ALIGN16 mode since it's capable of doing the * appropriate swizzling. */ void fs_generator::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src) { unsigned vstride, width; if (c->key.high_quality_derivatives) { /* produce accurate derivatives */ vstride = BRW_VERTICAL_STRIDE_2; width = BRW_WIDTH_2; } else { /* replicate the derivative at the top-left pixel to other pixels */ vstride = BRW_VERTICAL_STRIDE_4; width = BRW_WIDTH_4; } struct brw_reg src0 = brw_reg(src.file, src.nr, 1, BRW_REGISTER_TYPE_F, vstride, width, BRW_HORIZONTAL_STRIDE_0, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); struct brw_reg src1 = brw_reg(src.file, src.nr, 0, BRW_REGISTER_TYPE_F, vstride, width, BRW_HORIZONTAL_STRIDE_0, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); brw_ADD(p, dst, src0, negate(src1)); } /* The negate_value boolean is used to negate the derivative computation for * FBOs, since they place the origin at the upper left instead of the lower * left. */ void fs_generator::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src, bool negate_value) { if (c->key.high_quality_derivatives) { /* From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register * Region Restrictions): * * In Align16 access mode, SIMD16 is not allowed for DW operations * and SIMD8 is not allowed for DF operations. * * In this context, "DW operations" means "operations acting on 32-bit * values", so it includes operations on floats. * * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3 * (Instruction Compression -> Rules and Restrictions): * * A compressed instruction must be in Align1 access mode. Align16 * mode instructions cannot be compressed. * * Similar text exists in the g45 PRM. * * On these platforms, if we're building a SIMD16 shader, we need to * manually unroll to a pair of SIMD8 instructions. */ bool unroll_to_simd8 = (dispatch_width == 16 && (brw->gen == 4 || (brw->gen == 7 && !brw->is_haswell))); /* produce accurate derivatives */ struct brw_reg src0 = brw_reg(src.file, src.nr, 0, BRW_REGISTER_TYPE_F, BRW_VERTICAL_STRIDE_4, BRW_WIDTH_4, BRW_HORIZONTAL_STRIDE_1, BRW_SWIZZLE_XYXY, WRITEMASK_XYZW); struct brw_reg src1 = brw_reg(src.file, src.nr, 0, BRW_REGISTER_TYPE_F, BRW_VERTICAL_STRIDE_4, BRW_WIDTH_4, BRW_HORIZONTAL_STRIDE_1, BRW_SWIZZLE_ZWZW, WRITEMASK_XYZW); brw_push_insn_state(p); brw_set_access_mode(p, BRW_ALIGN_16); if (unroll_to_simd8) brw_set_compression_control(p, BRW_COMPRESSION_NONE); if (negate_value) brw_ADD(p, dst, src1, negate(src0)); else brw_ADD(p, dst, src0, negate(src1)); if (unroll_to_simd8) { brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); src0 = sechalf(src0); src1 = sechalf(src1); dst = sechalf(dst); if (negate_value) brw_ADD(p, dst, src1, negate(src0)); else brw_ADD(p, dst, src0, negate(src1)); } brw_pop_insn_state(p); } else { /* replicate the derivative at the top-left pixel to other pixels */ struct brw_reg src0 = brw_reg(src.file, src.nr, 0, BRW_REGISTER_TYPE_F, BRW_VERTICAL_STRIDE_4, BRW_WIDTH_4, BRW_HORIZONTAL_STRIDE_0, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); struct brw_reg src1 = brw_reg(src.file, src.nr, 2, BRW_REGISTER_TYPE_F, BRW_VERTICAL_STRIDE_4, BRW_WIDTH_4, BRW_HORIZONTAL_STRIDE_0, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); if (negate_value) brw_ADD(p, dst, src1, negate(src0)); else brw_ADD(p, dst, src0, negate(src1)); } } void fs_generator::generate_discard_jump(fs_inst *inst) { assert(brw->gen >= 6); /* This HALT will be patched up at FB write time to point UIP at the end of * the program, and at brw_uip_jip() JIP will be set to the end of the * current block (or the program). */ this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn)); brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); gen6_HALT(p); brw_pop_insn_state(p); } void fs_generator::generate_spill(fs_inst *inst, struct brw_reg src) { assert(inst->mlen != 0); brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), BRW_REGISTER_TYPE_UD), retype(src, BRW_REGISTER_TYPE_UD)); brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf), 1, inst->offset); } void fs_generator::generate_unspill(fs_inst *inst, struct brw_reg dst) { assert(inst->mlen != 0); brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf), 1, inst->offset); } void fs_generator::generate_uniform_pull_constant_load(fs_inst *inst, struct brw_reg dst, struct brw_reg index, struct brw_reg offset) { assert(inst->mlen != 0); assert(index.file == BRW_IMMEDIATE_VALUE && index.type == BRW_REGISTER_TYPE_UD); uint32_t surf_index = index.dw1.ud; assert(offset.file == BRW_IMMEDIATE_VALUE && offset.type == BRW_REGISTER_TYPE_UD); uint32_t read_offset = offset.dw1.ud; brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf), read_offset, surf_index); mark_surface_used(surf_index); } void fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst, struct brw_reg dst, struct brw_reg index, struct brw_reg offset) { assert(inst->mlen == 0); assert(index.file == BRW_IMMEDIATE_VALUE && index.type == BRW_REGISTER_TYPE_UD); uint32_t surf_index = index.dw1.ud; assert(offset.file == BRW_GENERAL_REGISTER_FILE); /* Reference just the dword we need, to avoid angering validate_reg(). */ offset = brw_vec1_grf(offset.nr, 0); brw_push_insn_state(p); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_set_mask_control(p, BRW_MASK_DISABLE); struct brw_instruction *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_pop_insn_state(p); /* We use the SIMD4x2 mode because we want to end up with 4 components in * the destination loaded consecutively from the same offset (which appears * in the first component, and the rest are ignored). */ dst.width = BRW_WIDTH_4; brw_set_dest(p, send, dst); brw_set_src0(p, send, offset); brw_set_sampler_message(p, send, surf_index, 0, /* LD message ignores sampler unit */ GEN5_SAMPLER_MESSAGE_SAMPLE_LD, 1, /* rlen */ 1, /* mlen */ false, /* no header */ BRW_SAMPLER_SIMD_MODE_SIMD4X2, 0); mark_surface_used(surf_index); } void fs_generator::generate_varying_pull_constant_load(fs_inst *inst, struct brw_reg dst, struct brw_reg index, struct brw_reg offset) { assert(brw->gen < 7); /* Should use the gen7 variant. */ assert(inst->header_present); assert(inst->mlen); assert(index.file == BRW_IMMEDIATE_VALUE && index.type == BRW_REGISTER_TYPE_UD); uint32_t surf_index = index.dw1.ud; uint32_t simd_mode, rlen, msg_type; if (dispatch_width == 16) { simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; rlen = 8; } else { simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8; rlen = 4; } if (brw->gen >= 5) msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD; else { /* We always use the SIMD16 message so that we only have to load U, and * not V or R. */ msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD; assert(inst->mlen == 3); assert(inst->regs_written == 8); rlen = 8; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; } struct brw_reg offset_mrf = retype(brw_message_reg(inst->base_mrf + 1), BRW_REGISTER_TYPE_D); brw_MOV(p, offset_mrf, offset); struct brw_reg header = brw_vec8_grf(0, 0); gen6_resolve_implied_move(p, &header, inst->base_mrf); struct brw_instruction *send = brw_next_insn(p, BRW_OPCODE_SEND); send->header.compression_control = BRW_COMPRESSION_NONE; brw_set_dest(p, send, dst); brw_set_src0(p, send, header); if (brw->gen < 6) send->header.destreg__conditionalmod = inst->base_mrf; /* Our surface is set up as floats, regardless of what actual data is * stored in it. */ uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32; brw_set_sampler_message(p, send, surf_index, 0, /* sampler (unused) */ msg_type, rlen, inst->mlen, inst->header_present, simd_mode, return_format); mark_surface_used(surf_index); } void fs_generator::generate_varying_pull_constant_load_gen7(fs_inst *inst, struct brw_reg dst, struct brw_reg index, struct brw_reg offset) { assert(brw->gen >= 7); /* Varying-offset pull constant loads are treated as a normal expression on * gen7, so the fact that it's a send message is hidden at the IR level. */ assert(!inst->header_present); assert(!inst->mlen); assert(index.file == BRW_IMMEDIATE_VALUE && index.type == BRW_REGISTER_TYPE_UD); uint32_t surf_index = index.dw1.ud; uint32_t simd_mode, rlen, mlen; if (dispatch_width == 16) { mlen = 2; rlen = 8; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; } else { mlen = 1; rlen = 4; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8; } struct brw_instruction *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, dst); brw_set_src0(p, send, offset); brw_set_sampler_message(p, send, surf_index, 0, /* LD message ignores sampler unit */ GEN5_SAMPLER_MESSAGE_SAMPLE_LD, rlen, mlen, false, /* no header */ simd_mode, 0); mark_surface_used(surf_index); } /** * Cause the current pixel/sample mask (from R1.7 bits 15:0) to be transferred * into the flags register (f0.0). * * Used only on Gen6 and above. */ void fs_generator::generate_mov_dispatch_to_flags(fs_inst *inst) { struct brw_reg flags = brw_flag_reg(0, inst->flag_subreg); struct brw_reg dispatch_mask; if (brw->gen >= 6) dispatch_mask = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW); else dispatch_mask = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW); brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, flags, dispatch_mask); brw_pop_insn_state(p); } static uint32_t brw_file_from_reg(fs_reg *reg) { switch (reg->file) { case GRF: return BRW_GENERAL_REGISTER_FILE; case MRF: return BRW_MESSAGE_REGISTER_FILE; case IMM: return BRW_IMMEDIATE_VALUE; default: assert(!"not reached"); return BRW_GENERAL_REGISTER_FILE; } } static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg) { struct brw_reg brw_reg; switch (reg->file) { case GRF: case MRF: if (reg->smear == -1) { brw_reg = brw_vec8_reg(brw_file_from_reg(reg), reg->reg, 0); } else { brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->reg, reg->smear); } brw_reg = retype(brw_reg, reg->type); if (reg->sechalf) brw_reg = sechalf(brw_reg); break; case IMM: switch (reg->type) { case BRW_REGISTER_TYPE_F: brw_reg = brw_imm_f(reg->imm.f); break; case BRW_REGISTER_TYPE_D: brw_reg = brw_imm_d(reg->imm.i); break; case BRW_REGISTER_TYPE_UD: brw_reg = brw_imm_ud(reg->imm.u); break; default: assert(!"not reached"); brw_reg = brw_null_reg(); break; } break; case HW_REG: brw_reg = reg->fixed_hw_reg; break; case BAD_FILE: /* Probably unused. */ brw_reg = brw_null_reg(); break; case UNIFORM: assert(!"not reached"); brw_reg = brw_null_reg(); break; default: assert(!"not reached"); brw_reg = brw_null_reg(); break; } if (reg->abs) brw_reg = brw_abs(brw_reg); if (reg->negate) brw_reg = negate(brw_reg); return brw_reg; } /** * Sets the first word of a vgrf for gen7+ simd4x2 uniform pull constant * sampler LD messages. * * We don't want to bake it into the send message's code generation because * that means we don't get a chance to schedule the instructions. */ void fs_generator::generate_set_simd4x2_offset(fs_inst *inst, struct brw_reg dst, struct brw_reg value) { assert(value.file == BRW_IMMEDIATE_VALUE); brw_push_insn_state(p); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, retype(brw_vec1_reg(dst.file, dst.nr, 0), value.type), value); brw_pop_insn_state(p); } /** * Change the register's data type from UD to W, doubling the strides in order * to compensate for halving the data type width. */ static struct brw_reg ud_reg_to_w(struct brw_reg r) { assert(r.type == BRW_REGISTER_TYPE_UD); r.type = BRW_REGISTER_TYPE_W; /* The BRW_*_STRIDE enums are defined so that incrementing the field * doubles the real stride. */ if (r.hstride != 0) ++r.hstride; if (r.vstride != 0) ++r.vstride; return r; } void fs_generator::generate_pack_half_2x16_split(fs_inst *inst, struct brw_reg dst, struct brw_reg x, struct brw_reg y) { assert(brw->gen >= 7); assert(dst.type == BRW_REGISTER_TYPE_UD); assert(x.type == BRW_REGISTER_TYPE_F); assert(y.type == BRW_REGISTER_TYPE_F); /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16: * * Because this instruction does not have a 16-bit floating-point type, * the destination data type must be Word (W). * * The destination must be DWord-aligned and specify a horizontal stride * (HorzStride) of 2. The 16-bit result is stored in the lower word of * each destination channel and the upper word is not modified. */ struct brw_reg dst_w = ud_reg_to_w(dst); /* Give each 32-bit channel of dst the form below , where "." means * unchanged. * 0x....hhhh */ brw_F32TO16(p, dst_w, y); /* Now the form: * 0xhhhh0000 */ brw_SHL(p, dst, dst, brw_imm_ud(16u)); /* And, finally the form of packHalf2x16's output: * 0xhhhhllll */ brw_F32TO16(p, dst_w, x); } void fs_generator::generate_unpack_half_2x16_split(fs_inst *inst, struct brw_reg dst, struct brw_reg src) { assert(brw->gen >= 7); assert(dst.type == BRW_REGISTER_TYPE_F); assert(src.type == BRW_REGISTER_TYPE_UD); /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32: * * Because this instruction does not have a 16-bit floating-point type, * the source data type must be Word (W). The destination type must be * F (Float). */ struct brw_reg src_w = ud_reg_to_w(src); /* Each channel of src has the form of unpackHalf2x16's input: 0xhhhhllll. * For the Y case, we wish to access only the upper word; therefore * a 16-bit subregister offset is needed. */ assert(inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X || inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y); if (inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y) src_w.subnr += 2; brw_F16TO32(p, dst, src_w); } void fs_generator::generate_shader_time_add(fs_inst *inst, struct brw_reg payload, struct brw_reg offset, struct brw_reg value) { assert(brw->gen >= 7); brw_push_insn_state(p); brw_set_mask_control(p, true); assert(payload.file == BRW_GENERAL_REGISTER_FILE); struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0), offset.type); struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0), value.type); assert(offset.file == BRW_IMMEDIATE_VALUE); if (value.file == BRW_GENERAL_REGISTER_FILE) { value.width = BRW_WIDTH_1; value.hstride = BRW_HORIZONTAL_STRIDE_0; value.vstride = BRW_VERTICAL_STRIDE_0; } else { assert(value.file == BRW_IMMEDIATE_VALUE); } /* Trying to deal with setup of the params from the IR is crazy in the FS8 * case, and we don't really care about squeezing every bit of performance * out of this path, so we just emit the MOVs from here. */ brw_MOV(p, payload_offset, offset); brw_MOV(p, payload_value, value); brw_shader_time_add(p, payload, c->prog_data.base.binding_table.shader_time_start); brw_pop_insn_state(p); mark_surface_used(c->prog_data.base.binding_table.shader_time_start); } void fs_generator::generate_untyped_atomic(fs_inst *inst, struct brw_reg dst, struct brw_reg atomic_op, struct brw_reg surf_index) { assert(atomic_op.file == BRW_IMMEDIATE_VALUE && atomic_op.type == BRW_REGISTER_TYPE_UD && surf_index.file == BRW_IMMEDIATE_VALUE && surf_index.type == BRW_REGISTER_TYPE_UD); brw_untyped_atomic(p, dst, brw_message_reg(inst->base_mrf), atomic_op.dw1.ud, surf_index.dw1.ud, inst->mlen, dispatch_width / 8); mark_surface_used(surf_index.dw1.ud); } void fs_generator::generate_code(exec_list *instructions) { int last_native_insn_offset = p->next_insn_offset; const char *last_annotation_string = NULL; const void *last_annotation_ir = NULL; if (unlikely(INTEL_DEBUG & DEBUG_WM)) { if (shader) { printf("Native code for fragment shader %d (%d-wide dispatch):\n", prog->Name, dispatch_width); } else { printf("Native code for fragment program %d (%d-wide dispatch):\n", fp->Base.Id, dispatch_width); } } cfg_t *cfg = NULL; if (unlikely(INTEL_DEBUG & DEBUG_WM)) cfg = new(mem_ctx) cfg_t(mem_ctx, instructions); foreach_list(node, instructions) { fs_inst *inst = (fs_inst *)node; struct brw_reg src[3], dst; if (unlikely(INTEL_DEBUG & DEBUG_WM)) { foreach_list(node, &cfg->block_list) { bblock_link *link = (bblock_link *)node; bblock_t *block = link->block; if (block->start == inst) { printf(" START B%d", block->block_num); foreach_list(predecessor_node, &block->parents) { bblock_link *predecessor_link = (bblock_link *)predecessor_node; bblock_t *predecessor_block = predecessor_link->block; printf(" <-B%d", predecessor_block->block_num); } printf("\n"); } } if (last_annotation_ir != inst->ir) { last_annotation_ir = inst->ir; if (last_annotation_ir) { printf(" "); if (shader) ((ir_instruction *)inst->ir)->print(); else { const prog_instruction *fpi; fpi = (const prog_instruction *)inst->ir; printf("%d: ", (int)(fpi - fp->Base.Instructions)); _mesa_fprint_instruction_opt(stdout, fpi, 0, PROG_PRINT_DEBUG, NULL); } printf("\n"); } } if (last_annotation_string != inst->annotation) { last_annotation_string = inst->annotation; if (last_annotation_string) printf(" %s\n", last_annotation_string); } } for (unsigned int i = 0; i < 3; i++) { src[i] = brw_reg_from_fs_reg(&inst->src[i]); /* The accumulator result appears to get used for the * conditional modifier generation. When negating a UD * value, there is a 33rd bit generated for the sign in the * accumulator value, so now you can't check, for example, * equality with a 32-bit value. See piglit fs-op-neg-uvec4. */ assert(!inst->conditional_mod || inst->src[i].type != BRW_REGISTER_TYPE_UD || !inst->src[i].negate); } dst = brw_reg_from_fs_reg(&inst->dst); brw_set_conditionalmod(p, inst->conditional_mod); brw_set_predicate_control(p, inst->predicate); brw_set_predicate_inverse(p, inst->predicate_inverse); brw_set_flag_reg(p, 0, inst->flag_subreg); brw_set_saturate(p, inst->saturate); brw_set_mask_control(p, inst->force_writemask_all); if (inst->force_uncompressed || dispatch_width == 8) { brw_set_compression_control(p, BRW_COMPRESSION_NONE); } else if (inst->force_sechalf) { brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); } else { brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } switch (inst->opcode) { case BRW_OPCODE_MOV: brw_MOV(p, dst, src[0]); break; case BRW_OPCODE_ADD: brw_ADD(p, dst, src[0], src[1]); break; case BRW_OPCODE_MUL: brw_MUL(p, dst, src[0], src[1]); break; case BRW_OPCODE_MACH: brw_set_acc_write_control(p, 1); brw_MACH(p, dst, src[0], src[1]); brw_set_acc_write_control(p, 0); break; case BRW_OPCODE_MAD: assert(brw->gen >= 6); brw_set_access_mode(p, BRW_ALIGN_16); if (dispatch_width == 16) { brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_MAD(p, dst, src[0], src[1], src[2]); brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); brw_MAD(p, sechalf(dst), sechalf(src[0]), sechalf(src[1]), sechalf(src[2])); brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } else { brw_MAD(p, dst, src[0], src[1], src[2]); } brw_set_access_mode(p, BRW_ALIGN_1); break; case BRW_OPCODE_LRP: assert(brw->gen >= 6); brw_set_access_mode(p, BRW_ALIGN_16); if (dispatch_width == 16) { brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_LRP(p, dst, src[0], src[1], src[2]); brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); brw_LRP(p, sechalf(dst), sechalf(src[0]), sechalf(src[1]), sechalf(src[2])); brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } else { brw_LRP(p, dst, src[0], src[1], src[2]); } brw_set_access_mode(p, BRW_ALIGN_1); break; case BRW_OPCODE_FRC: brw_FRC(p, dst, src[0]); break; case BRW_OPCODE_RNDD: brw_RNDD(p, dst, src[0]); break; case BRW_OPCODE_RNDE: brw_RNDE(p, dst, src[0]); break; case BRW_OPCODE_RNDZ: brw_RNDZ(p, dst, src[0]); break; case BRW_OPCODE_AND: brw_AND(p, dst, src[0], src[1]); break; case BRW_OPCODE_OR: brw_OR(p, dst, src[0], src[1]); break; case BRW_OPCODE_XOR: brw_XOR(p, dst, src[0], src[1]); break; case BRW_OPCODE_NOT: brw_NOT(p, dst, src[0]); break; case BRW_OPCODE_ASR: brw_ASR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHR: brw_SHR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHL: brw_SHL(p, dst, src[0], src[1]); break; case BRW_OPCODE_F32TO16: assert(brw->gen >= 7); brw_F32TO16(p, dst, src[0]); break; case BRW_OPCODE_F16TO32: assert(brw->gen >= 7); brw_F16TO32(p, dst, src[0]); break; case BRW_OPCODE_CMP: brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]); break; case BRW_OPCODE_SEL: brw_SEL(p, dst, src[0], src[1]); break; case BRW_OPCODE_BFREV: assert(brw->gen >= 7); /* BFREV only supports UD type for src and dst. */ brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD), retype(src[0], BRW_REGISTER_TYPE_UD)); break; case BRW_OPCODE_FBH: assert(brw->gen >= 7); /* FBH only supports UD type for dst. */ brw_FBH(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]); break; case BRW_OPCODE_FBL: assert(brw->gen >= 7); /* FBL only supports UD type for dst. */ brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]); break; case BRW_OPCODE_CBIT: assert(brw->gen >= 7); /* CBIT only supports UD type for dst. */ brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]); break; case BRW_OPCODE_ADDC: assert(brw->gen >= 7); brw_set_acc_write_control(p, 1); brw_ADDC(p, dst, src[0], src[1]); brw_set_acc_write_control(p, 0); break; case BRW_OPCODE_SUBB: assert(brw->gen >= 7); brw_set_acc_write_control(p, 1); brw_SUBB(p, dst, src[0], src[1]); brw_set_acc_write_control(p, 0); break; case BRW_OPCODE_BFE: assert(brw->gen >= 7); brw_set_access_mode(p, BRW_ALIGN_16); if (dispatch_width == 16) { brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_BFE(p, dst, src[0], src[1], src[2]); brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); brw_BFE(p, sechalf(dst), sechalf(src[0]), sechalf(src[1]), sechalf(src[2])); brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } else { brw_BFE(p, dst, src[0], src[1], src[2]); } brw_set_access_mode(p, BRW_ALIGN_1); break; case BRW_OPCODE_BFI1: assert(brw->gen >= 7); brw_BFI1(p, dst, src[0], src[1]); break; case BRW_OPCODE_BFI2: assert(brw->gen >= 7); brw_set_access_mode(p, BRW_ALIGN_16); if (dispatch_width == 16) { brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_BFI2(p, dst, src[0], src[1], src[2]); brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); brw_BFI2(p, sechalf(dst), sechalf(src[0]), sechalf(src[1]), sechalf(src[2])); brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } else { brw_BFI2(p, dst, src[0], src[1], src[2]); } brw_set_access_mode(p, BRW_ALIGN_1); break; case BRW_OPCODE_IF: if (inst->src[0].file != BAD_FILE) { /* The instruction has an embedded compare (only allowed on gen6) */ assert(brw->gen == 6); gen6_IF(p, inst->conditional_mod, src[0], src[1]); } else { brw_IF(p, dispatch_width == 16 ? BRW_EXECUTE_16 : BRW_EXECUTE_8); } break; case BRW_OPCODE_ELSE: brw_ELSE(p); break; case BRW_OPCODE_ENDIF: brw_ENDIF(p); break; case BRW_OPCODE_DO: brw_DO(p, BRW_EXECUTE_8); break; case BRW_OPCODE_BREAK: brw_BREAK(p); brw_set_predicate_control(p, BRW_PREDICATE_NONE); break; case BRW_OPCODE_CONTINUE: /* FINISHME: We need to write the loop instruction support still. */ if (brw->gen >= 6) gen6_CONT(p); else brw_CONT(p); brw_set_predicate_control(p, BRW_PREDICATE_NONE); break; case BRW_OPCODE_WHILE: brw_WHILE(p); break; case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SQRT: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_SIN: case SHADER_OPCODE_COS: if (brw->gen >= 7) { generate_math1_gen7(inst, dst, src[0]); } else if (brw->gen == 6) { generate_math1_gen6(inst, dst, src[0]); } else if (brw->gen == 5 || brw->is_g4x) { generate_math_g45(inst, dst, src[0]); } else { generate_math_gen4(inst, dst, src[0]); } break; case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_INT_REMAINDER: case SHADER_OPCODE_POW: if (brw->gen >= 7) { generate_math2_gen7(inst, dst, src[0], src[1]); } else if (brw->gen == 6) { generate_math2_gen6(inst, dst, src[0], src[1]); } else { generate_math_gen4(inst, dst, src[0]); } break; case FS_OPCODE_PIXEL_X: generate_pixel_xy(dst, true); break; case FS_OPCODE_PIXEL_Y: generate_pixel_xy(dst, false); break; case FS_OPCODE_CINTERP: brw_MOV(p, dst, src[0]); break; case FS_OPCODE_LINTERP: generate_linterp(inst, dst, src); break; case SHADER_OPCODE_TEX: case FS_OPCODE_TXB: case SHADER_OPCODE_TXD: case SHADER_OPCODE_TXF: case SHADER_OPCODE_TXF_MS: case SHADER_OPCODE_TXL: case SHADER_OPCODE_TXS: case SHADER_OPCODE_LOD: case SHADER_OPCODE_TG4: case SHADER_OPCODE_TG4_OFFSET: generate_tex(inst, dst, src[0]); break; case FS_OPCODE_DDX: generate_ddx(inst, dst, src[0]); break; case FS_OPCODE_DDY: /* Make sure fp->UsesDFdy flag got set (otherwise there's no * guarantee that c->key.render_to_fbo is set). */ assert(fp->UsesDFdy); generate_ddy(inst, dst, src[0], c->key.render_to_fbo); break; case FS_OPCODE_SPILL: generate_spill(inst, src[0]); break; case FS_OPCODE_UNSPILL: generate_unspill(inst, dst); break; case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: generate_uniform_pull_constant_load(inst, dst, src[0], src[1]); break; case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7: generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]); break; case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD: generate_varying_pull_constant_load(inst, dst, src[0], src[1]); break; case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7: generate_varying_pull_constant_load_gen7(inst, dst, src[0], src[1]); break; case FS_OPCODE_FB_WRITE: generate_fb_write(inst); break; case FS_OPCODE_MOV_DISPATCH_TO_FLAGS: generate_mov_dispatch_to_flags(inst); break; case FS_OPCODE_DISCARD_JUMP: generate_discard_jump(inst); break; case SHADER_OPCODE_SHADER_TIME_ADD: generate_shader_time_add(inst, src[0], src[1], src[2]); break; case SHADER_OPCODE_UNTYPED_ATOMIC: generate_untyped_atomic(inst, dst, src[0], src[1]); break; case FS_OPCODE_SET_SIMD4X2_OFFSET: generate_set_simd4x2_offset(inst, dst, src[0]); break; case FS_OPCODE_PACK_HALF_2x16_SPLIT: generate_pack_half_2x16_split(inst, dst, src[0], src[1]); break; case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X: case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y: generate_unpack_half_2x16_split(inst, dst, src[0]); break; case FS_OPCODE_PLACEHOLDER_HALT: /* This is the place where the final HALT needs to be inserted if * we've emitted any discards. If not, this will emit no code. */ patch_discard_jumps_to_fb_writes(); break; default: if (inst->opcode < (int) ARRAY_SIZE(opcode_descs)) { _mesa_problem(ctx, "Unsupported opcode `%s' in FS", opcode_descs[inst->opcode].name); } else { _mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode); } abort(); } if (unlikely(INTEL_DEBUG & DEBUG_WM)) { brw_dump_compile(p, stdout, last_native_insn_offset, p->next_insn_offset); foreach_list(node, &cfg->block_list) { bblock_link *link = (bblock_link *)node; bblock_t *block = link->block; if (block->end == inst) { printf(" END B%d", block->block_num); foreach_list(successor_node, &block->children) { bblock_link *successor_link = (bblock_link *)successor_node; bblock_t *successor_block = successor_link->block; printf(" ->B%d", successor_block->block_num); } printf("\n"); } } } last_native_insn_offset = p->next_insn_offset; } if (unlikely(INTEL_DEBUG & DEBUG_WM)) { printf("\n"); } brw_set_uip_jip(p); /* OK, while the INTEL_DEBUG=wm above is very nice for debugging FS * emit issues, it doesn't get the jump distances into the output, * which is often something we want to debug. So this is here in * case you're doing that. */ if (0) { brw_dump_compile(p, stdout, 0, p->next_insn_offset); } } const unsigned * fs_generator::generate_assembly(exec_list *simd8_instructions, exec_list *simd16_instructions, unsigned *assembly_size) { dispatch_width = 8; generate_code(simd8_instructions); if (simd16_instructions) { /* We have to do a compaction pass now, or the one at the end of * execution will squash down where our prog_offset start needs * to be. */ brw_compact_instructions(p); /* align to 64 byte boundary. */ while ((p->nr_insn * sizeof(struct brw_instruction)) % 64) { brw_NOP(p); } /* Save off the start of this 16-wide program */ c->prog_data.prog_offset_16 = p->nr_insn * sizeof(struct brw_instruction); brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); dispatch_width = 16; generate_code(simd16_instructions); } return brw_get_program(p, assembly_size); }