/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file brw_fs_emit.cpp * * This file supports emitting code from the FS LIR to the actual * native instructions. */ extern "C" { #include "main/macros.h" #include "brw_context.h" #include "brw_eu.h" } /* extern "C" */ #include "brw_fs.h" #include "glsl/ir_print_visitor.h" void fs_visitor::generate_fb_write(fs_inst *inst) { GLboolean eot = inst->eot; struct brw_reg implied_header; /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied * move, here's g1. */ brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_set_compression_control(p, BRW_COMPRESSION_NONE); if (inst->header_present) { if (intel->gen >= 6) { brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); brw_MOV(p, retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD), retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); brw_set_compression_control(p, BRW_COMPRESSION_NONE); if (inst->target > 0) { /* Set the render target index for choosing BLEND_STATE. */ brw_MOV(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, inst->base_mrf, 2), BRW_REGISTER_TYPE_UD), brw_imm_ud(inst->target)); } implied_header = brw_null_reg(); } else { implied_header = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW); brw_MOV(p, brw_message_reg(inst->base_mrf + 1), brw_vec8_grf(1, 0)); } } else { implied_header = brw_null_reg(); } brw_pop_insn_state(p); brw_fb_WRITE(p, c->dispatch_width, inst->base_mrf, implied_header, inst->target, inst->mlen, 0, eot, inst->header_present); } /* Computes the integer pixel x,y values from the origin. * * This is the basis of gl_FragCoord computation, but is also used * pre-gen6 for computing the deltas from v0 for computing * interpolation. */ void fs_visitor::generate_pixel_xy(struct brw_reg dst, bool is_x) { struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW); struct brw_reg src; struct brw_reg deltas; if (is_x) { src = stride(suboffset(g1_uw, 4), 2, 4, 0); deltas = brw_imm_v(0x10101010); } else { src = stride(suboffset(g1_uw, 5), 2, 4, 0); deltas = brw_imm_v(0x11001100); } if (c->dispatch_width == 16) { dst = vec16(dst); } /* We do this 8 or 16-wide, but since the destination is UW we * don't do compression in the 16-wide case. */ brw_push_insn_state(p); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_ADD(p, dst, src, deltas); brw_pop_insn_state(p); } void fs_visitor::generate_linterp(fs_inst *inst, struct brw_reg dst, struct brw_reg *src) { struct brw_reg delta_x = src[0]; struct brw_reg delta_y = src[1]; struct brw_reg interp = src[2]; if (brw->has_pln && delta_y.nr == delta_x.nr + 1 && (intel->gen >= 6 || (delta_x.nr & 1) == 0)) { brw_PLN(p, dst, interp, delta_x); } else { brw_LINE(p, brw_null_reg(), interp, delta_x); brw_MAC(p, dst, suboffset(interp, 1), delta_y); } } void fs_visitor::generate_math1_gen6(fs_inst *inst, struct brw_reg dst, struct brw_reg src0) { int op = brw_math_function(inst->opcode); assert(inst->mlen == 0); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_math(p, dst, op, inst->saturate ? BRW_MATH_SATURATE_SATURATE : BRW_MATH_SATURATE_NONE, 0, src0, BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); if (c->dispatch_width == 16) { brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); brw_math(p, sechalf(dst), op, inst->saturate ? BRW_MATH_SATURATE_SATURATE : BRW_MATH_SATURATE_NONE, 0, sechalf(src0), BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } } void fs_visitor::generate_math2_gen6(fs_inst *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { int op = brw_math_function(inst->opcode); assert(inst->mlen == 0); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_math2(p, dst, op, src0, src1); if (c->dispatch_width == 16) { brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); brw_math2(p, sechalf(dst), op, sechalf(src0), sechalf(src1)); brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } } void fs_visitor::generate_math_gen4(fs_inst *inst, struct brw_reg dst, struct brw_reg src) { int op = brw_math_function(inst->opcode); assert(inst->mlen >= 1); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_math(p, dst, op, inst->saturate ? BRW_MATH_SATURATE_SATURATE : BRW_MATH_SATURATE_NONE, inst->base_mrf, src, BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); if (c->dispatch_width == 16) { brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); brw_math(p, sechalf(dst), op, inst->saturate ? BRW_MATH_SATURATE_SATURATE : BRW_MATH_SATURATE_NONE, inst->base_mrf + 1, sechalf(src), BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } } void fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src) { int msg_type = -1; int rlen = 4; uint32_t simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8; if (c->dispatch_width == 16) simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; if (intel->gen >= 5) { switch (inst->opcode) { case FS_OPCODE_TEX: if (inst->shadow_compare) { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE; } break; case FS_OPCODE_TXB: if (inst->shadow_compare) { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS; } break; case FS_OPCODE_TXL: if (inst->shadow_compare) { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD; } break; case FS_OPCODE_TXS: msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO; break; case FS_OPCODE_TXD: /* There is no sample_d_c message; comparisons are done manually */ msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS; break; case FS_OPCODE_TXF: msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD; break; default: assert(!"not reached"); break; } } else { switch (inst->opcode) { case FS_OPCODE_TEX: /* Note that G45 and older determines shadow compare and dispatch width * from message length for most messages. */ assert(c->dispatch_width == 8); msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE; if (inst->shadow_compare) { assert(inst->mlen == 6); } else { assert(inst->mlen <= 4); } break; case FS_OPCODE_TXB: if (inst->shadow_compare) { assert(inst->mlen == 6); msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE; } else { assert(inst->mlen == 9); msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; } break; case FS_OPCODE_TXL: if (inst->shadow_compare) { assert(inst->mlen == 6); msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE; } else { assert(inst->mlen == 9); msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; } break; case FS_OPCODE_TXD: /* There is no sample_d_c message; comparisons are done manually */ assert(inst->mlen == 7 || inst->mlen == 10); msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS; break; case FS_OPCODE_TXF: assert(inst->mlen == 9); msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; break; case FS_OPCODE_TXS: assert(inst->mlen == 3); msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; break; default: assert(!"not reached"); break; } } assert(msg_type != -1); if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) { rlen = 8; dst = vec16(dst); } brw_SAMPLE(p, retype(dst, BRW_REGISTER_TYPE_UW), inst->base_mrf, src, SURF_INDEX_TEXTURE(inst->sampler), inst->sampler, WRITEMASK_XYZW, msg_type, rlen, inst->mlen, 0, inst->header_present, simd_mode); } /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input * looking like: * * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br * * and we're trying to produce: * * DDX DDY * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl) * (ss0.tr - ss0.tl) (ss0.tr - ss0.br) * (ss0.br - ss0.bl) (ss0.tl - ss0.bl) * (ss0.br - ss0.bl) (ss0.tr - ss0.br) * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl) * (ss1.tr - ss1.tl) (ss1.tr - ss1.br) * (ss1.br - ss1.bl) (ss1.tl - ss1.bl) * (ss1.br - ss1.bl) (ss1.tr - ss1.br) * * and add another set of two more subspans if in 16-pixel dispatch mode. * * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result * for each pair, and vertstride = 2 jumps us 2 elements after processing a * pair. But for DDY, it's harder, as we want to produce the pairs swizzled * between each other. We could probably do it like ddx and swizzle the right * order later, but bail for now and just produce * ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4) */ void fs_visitor::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src) { struct brw_reg src0 = brw_reg(src.file, src.nr, 1, BRW_REGISTER_TYPE_F, BRW_VERTICAL_STRIDE_2, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_0, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); struct brw_reg src1 = brw_reg(src.file, src.nr, 0, BRW_REGISTER_TYPE_F, BRW_VERTICAL_STRIDE_2, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_0, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); brw_ADD(p, dst, src0, negate(src1)); } void fs_visitor::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src) { struct brw_reg src0 = brw_reg(src.file, src.nr, 0, BRW_REGISTER_TYPE_F, BRW_VERTICAL_STRIDE_4, BRW_WIDTH_4, BRW_HORIZONTAL_STRIDE_0, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); struct brw_reg src1 = brw_reg(src.file, src.nr, 2, BRW_REGISTER_TYPE_F, BRW_VERTICAL_STRIDE_4, BRW_WIDTH_4, BRW_HORIZONTAL_STRIDE_0, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); brw_ADD(p, dst, src0, negate(src1)); } void fs_visitor::generate_discard(fs_inst *inst) { struct brw_reg f0 = brw_flag_reg(); if (intel->gen >= 6) { struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW); struct brw_reg some_register; /* As of gen6, we no longer have the mask register to look at, * so life gets a bit more complicated. */ /* Load the flag register with all ones. */ brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, f0, brw_imm_uw(0xffff)); brw_pop_insn_state(p); /* Do a comparison that should always fail, to produce 0s in the flag * reg where we have active channels. */ some_register = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW); brw_CMP(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD), BRW_CONDITIONAL_NZ, some_register, some_register); /* Undo CMP's whacking of predication*/ brw_set_predicate_control(p, BRW_PREDICATE_NONE); brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_AND(p, g1, f0, g1); brw_pop_insn_state(p); } else { struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW); brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_set_compression_control(p, BRW_COMPRESSION_NONE); /* Unlike the 965, we have the mask reg, so we just need * somewhere to invert that (containing channels to be disabled) * so it can be ANDed with the mask of pixels still to be * written. Use the flag reg for consistency with gen6+. */ brw_NOT(p, f0, brw_mask_reg(1)); /* IMASK */ brw_AND(p, g0, f0, g0); brw_pop_insn_state(p); } } void fs_visitor::generate_spill(fs_inst *inst, struct brw_reg src) { assert(inst->mlen != 0); brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), BRW_REGISTER_TYPE_UD), retype(src, BRW_REGISTER_TYPE_UD)); brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf), 1, inst->offset); } void fs_visitor::generate_unspill(fs_inst *inst, struct brw_reg dst) { assert(inst->mlen != 0); /* Clear any post destination dependencies that would be ignored by * the block read. See the B-Spec for pre-gen5 send instruction. * * This could use a better solution, since texture sampling and * math reads could potentially run into it as well -- anywhere * that we have a SEND with a destination that is a register that * was written but not read within the last N instructions (what's * N? unsure). This is rare because of dead code elimination, but * not impossible. */ if (intel->gen == 4 && !intel->is_g4x) brw_MOV(p, brw_null_reg(), dst); brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf), 1, inst->offset); if (intel->gen == 4 && !intel->is_g4x) { /* gen4 errata: destination from a send can't be used as a * destination until it's been read. Just read it so we don't * have to worry. */ brw_MOV(p, brw_null_reg(), dst); } } void fs_visitor::generate_pull_constant_load(fs_inst *inst, struct brw_reg dst) { assert(inst->mlen != 0); /* Clear any post destination dependencies that would be ignored by * the block read. See the B-Spec for pre-gen5 send instruction. * * This could use a better solution, since texture sampling and * math reads could potentially run into it as well -- anywhere * that we have a SEND with a destination that is a register that * was written but not read within the last N instructions (what's * N? unsure). This is rare because of dead code elimination, but * not impossible. */ if (intel->gen == 4 && !intel->is_g4x) brw_MOV(p, brw_null_reg(), dst); brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf), inst->offset, SURF_INDEX_FRAG_CONST_BUFFER); if (intel->gen == 4 && !intel->is_g4x) { /* gen4 errata: destination from a send can't be used as a * destination until it's been read. Just read it so we don't * have to worry. */ brw_MOV(p, brw_null_reg(), dst); } } static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg) { struct brw_reg brw_reg; switch (reg->file) { case GRF: case ARF: case MRF: if (reg->smear == -1) { brw_reg = brw_vec8_reg(reg->file, reg->reg, 0); } else { brw_reg = brw_vec1_reg(reg->file, reg->reg, reg->smear); } brw_reg = retype(brw_reg, reg->type); if (reg->sechalf) brw_reg = sechalf(brw_reg); break; case IMM: switch (reg->type) { case BRW_REGISTER_TYPE_F: brw_reg = brw_imm_f(reg->imm.f); break; case BRW_REGISTER_TYPE_D: brw_reg = brw_imm_d(reg->imm.i); break; case BRW_REGISTER_TYPE_UD: brw_reg = brw_imm_ud(reg->imm.u); break; default: assert(!"not reached"); brw_reg = brw_null_reg(); break; } break; case FIXED_HW_REG: brw_reg = reg->fixed_hw_reg; break; case BAD_FILE: /* Probably unused. */ brw_reg = brw_null_reg(); break; case UNIFORM: assert(!"not reached"); brw_reg = brw_null_reg(); break; default: assert(!"not reached"); brw_reg = brw_null_reg(); break; } if (reg->abs) brw_reg = brw_abs(brw_reg); if (reg->negate) brw_reg = negate(brw_reg); return brw_reg; } void fs_visitor::generate_code() { int last_native_inst = p->nr_insn; const char *last_annotation_string = NULL; ir_instruction *last_annotation_ir = NULL; int loop_stack_array_size = 16; int loop_stack_depth = 0; brw_instruction **loop_stack = rzalloc_array(this->mem_ctx, brw_instruction *, loop_stack_array_size); int *if_depth_in_loop = rzalloc_array(this->mem_ctx, int, loop_stack_array_size); if (unlikely(INTEL_DEBUG & DEBUG_WM)) { printf("Native code for fragment shader %d (%d-wide dispatch):\n", prog->Name, c->dispatch_width); } foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; struct brw_reg src[3], dst; if (unlikely(INTEL_DEBUG & DEBUG_WM)) { if (last_annotation_ir != inst->ir) { last_annotation_ir = inst->ir; if (last_annotation_ir) { printf(" "); last_annotation_ir->print(); printf("\n"); } } if (last_annotation_string != inst->annotation) { last_annotation_string = inst->annotation; if (last_annotation_string) printf(" %s\n", last_annotation_string); } } for (unsigned int i = 0; i < 3; i++) { src[i] = brw_reg_from_fs_reg(&inst->src[i]); } dst = brw_reg_from_fs_reg(&inst->dst); brw_set_conditionalmod(p, inst->conditional_mod); brw_set_predicate_control(p, inst->predicated); brw_set_predicate_inverse(p, inst->predicate_inverse); brw_set_saturate(p, inst->saturate); if (inst->force_uncompressed || c->dispatch_width == 8) { brw_set_compression_control(p, BRW_COMPRESSION_NONE); } else if (inst->force_sechalf) { brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); } else { brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } switch (inst->opcode) { case BRW_OPCODE_MOV: brw_MOV(p, dst, src[0]); break; case BRW_OPCODE_ADD: brw_ADD(p, dst, src[0], src[1]); break; case BRW_OPCODE_MUL: brw_MUL(p, dst, src[0], src[1]); break; case BRW_OPCODE_MACH: brw_set_acc_write_control(p, 1); brw_MACH(p, dst, src[0], src[1]); brw_set_acc_write_control(p, 0); break; case BRW_OPCODE_FRC: brw_FRC(p, dst, src[0]); break; case BRW_OPCODE_RNDD: brw_RNDD(p, dst, src[0]); break; case BRW_OPCODE_RNDE: brw_RNDE(p, dst, src[0]); break; case BRW_OPCODE_RNDZ: brw_RNDZ(p, dst, src[0]); break; case BRW_OPCODE_AND: brw_AND(p, dst, src[0], src[1]); break; case BRW_OPCODE_OR: brw_OR(p, dst, src[0], src[1]); break; case BRW_OPCODE_XOR: brw_XOR(p, dst, src[0], src[1]); break; case BRW_OPCODE_NOT: brw_NOT(p, dst, src[0]); break; case BRW_OPCODE_ASR: brw_ASR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHR: brw_SHR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHL: brw_SHL(p, dst, src[0], src[1]); break; case BRW_OPCODE_CMP: brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]); break; case BRW_OPCODE_SEL: brw_SEL(p, dst, src[0], src[1]); break; case BRW_OPCODE_IF: if (inst->src[0].file != BAD_FILE) { /* The instruction has an embedded compare (only allowed on gen6) */ assert(intel->gen == 6); gen6_IF(p, inst->conditional_mod, src[0], src[1]); } else { brw_IF(p, c->dispatch_width == 16 ? BRW_EXECUTE_16 : BRW_EXECUTE_8); } if_depth_in_loop[loop_stack_depth]++; break; case BRW_OPCODE_ELSE: brw_ELSE(p); break; case BRW_OPCODE_ENDIF: brw_ENDIF(p); if_depth_in_loop[loop_stack_depth]--; break; case BRW_OPCODE_DO: loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8); if (loop_stack_array_size <= loop_stack_depth) { loop_stack_array_size *= 2; loop_stack = reralloc(this->mem_ctx, loop_stack, brw_instruction *, loop_stack_array_size); if_depth_in_loop = reralloc(this->mem_ctx, if_depth_in_loop, int, loop_stack_array_size); } if_depth_in_loop[loop_stack_depth] = 0; break; case BRW_OPCODE_BREAK: brw_BREAK(p, if_depth_in_loop[loop_stack_depth]); brw_set_predicate_control(p, BRW_PREDICATE_NONE); break; case BRW_OPCODE_CONTINUE: /* FINISHME: We need to write the loop instruction support still. */ if (intel->gen >= 6) gen6_CONT(p, loop_stack[loop_stack_depth - 1]); else brw_CONT(p, if_depth_in_loop[loop_stack_depth]); brw_set_predicate_control(p, BRW_PREDICATE_NONE); break; case BRW_OPCODE_WHILE: { struct brw_instruction *inst0, *inst1; GLuint br = 1; if (intel->gen >= 5) br = 2; assert(loop_stack_depth > 0); loop_stack_depth--; inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]); if (intel->gen < 6) { /* patch all the BREAK/CONT instructions from last BGNLOOP */ while (inst0 > loop_stack[loop_stack_depth]) { inst0--; if (inst0->header.opcode == BRW_OPCODE_BREAK && inst0->bits3.if_else.jump_count == 0) { inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1); } else if (inst0->header.opcode == BRW_OPCODE_CONTINUE && inst0->bits3.if_else.jump_count == 0) { inst0->bits3.if_else.jump_count = br * (inst1 - inst0); } } } } break; case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SQRT: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_SIN: case SHADER_OPCODE_COS: if (intel->gen >= 6) { generate_math1_gen6(inst, dst, src[0]); } else { generate_math_gen4(inst, dst, src[0]); } break; case SHADER_OPCODE_POW: if (intel->gen >= 6) { generate_math2_gen6(inst, dst, src[0], src[1]); } else { generate_math_gen4(inst, dst, src[0]); } break; case FS_OPCODE_PIXEL_X: generate_pixel_xy(dst, true); break; case FS_OPCODE_PIXEL_Y: generate_pixel_xy(dst, false); break; case FS_OPCODE_CINTERP: brw_MOV(p, dst, src[0]); break; case FS_OPCODE_LINTERP: generate_linterp(inst, dst, src); break; case FS_OPCODE_TEX: case FS_OPCODE_TXB: case FS_OPCODE_TXD: case FS_OPCODE_TXF: case FS_OPCODE_TXL: case FS_OPCODE_TXS: generate_tex(inst, dst, src[0]); break; case FS_OPCODE_DISCARD: generate_discard(inst); break; case FS_OPCODE_DDX: generate_ddx(inst, dst, src[0]); break; case FS_OPCODE_DDY: generate_ddy(inst, dst, src[0]); break; case FS_OPCODE_SPILL: generate_spill(inst, src[0]); break; case FS_OPCODE_UNSPILL: generate_unspill(inst, dst); break; case FS_OPCODE_PULL_CONSTANT_LOAD: generate_pull_constant_load(inst, dst); break; case FS_OPCODE_FB_WRITE: generate_fb_write(inst); break; default: if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) { _mesa_problem(ctx, "Unsupported opcode `%s' in FS", brw_opcodes[inst->opcode].name); } else { _mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode); } fail("unsupported opcode in FS\n"); } if (unlikely(INTEL_DEBUG & DEBUG_WM)) { for (unsigned int i = last_native_inst; i < p->nr_insn; i++) { if (0) { printf("0x%08x 0x%08x 0x%08x 0x%08x ", ((uint32_t *)&p->store[i])[3], ((uint32_t *)&p->store[i])[2], ((uint32_t *)&p->store[i])[1], ((uint32_t *)&p->store[i])[0]); } brw_disasm(stdout, &p->store[i], intel->gen); } } last_native_inst = p->nr_insn; } if (unlikely(INTEL_DEBUG & DEBUG_WM)) { printf("\n"); } ralloc_free(loop_stack); ralloc_free(if_depth_in_loop); brw_set_uip_jip(p); /* OK, while the INTEL_DEBUG=wm above is very nice for debugging FS * emit issues, it doesn't get the jump distances into the output, * which is often something we want to debug. So this is here in * case you're doing that. */ if (0) { if (unlikely(INTEL_DEBUG & DEBUG_WM)) { for (unsigned int i = 0; i < p->nr_insn; i++) { printf("0x%08x 0x%08x 0x%08x 0x%08x ", ((uint32_t *)&p->store[i])[3], ((uint32_t *)&p->store[i])[2], ((uint32_t *)&p->store[i])[1], ((uint32_t *)&p->store[i])[0]); brw_disasm(stdout, &p->store[i], intel->gen); } } } }