/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file brw_fs_copy_propagation.cpp * * Support for global copy propagation in two passes: A local pass that does * intra-block copy (and constant) propagation, and a global pass that uses * dataflow analysis on the copies available at the end of each block to re-do * local copy propagation with more copies available. * * See Muchnick's Advanced Compiler Design and Implementation, section * 12.5 (p356). */ #define ACP_HASH_SIZE 16 #include "util/bitset.h" #include "brw_fs.h" #include "brw_cfg.h" namespace { /* avoid conflict with opt_copy_propagation_elements */ struct acp_entry : public exec_node { fs_reg dst; fs_reg src; uint8_t regs_written; enum opcode opcode; bool saturate; }; struct block_data { /** * Which entries in the fs_copy_prop_dataflow acp table are live at the * start of this block. This is the useful output of the analysis, since * it lets us plug those into the local copy propagation on the second * pass. */ BITSET_WORD *livein; /** * Which entries in the fs_copy_prop_dataflow acp table are live at the end * of this block. This is done in initial setup from the per-block acps * returned by the first local copy prop pass. */ BITSET_WORD *liveout; /** * Which entries in the fs_copy_prop_dataflow acp table are generated by * instructions in this block which reach the end of the block without * being killed. */ BITSET_WORD *copy; /** * Which entries in the fs_copy_prop_dataflow acp table are killed over the * course of this block. */ BITSET_WORD *kill; }; class fs_copy_prop_dataflow { public: fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg, exec_list *out_acp[ACP_HASH_SIZE]); void setup_initial_values(); void run(); void dump_block_data() const; void *mem_ctx; cfg_t *cfg; acp_entry **acp; int num_acp; int bitset_words; struct block_data *bd; }; } /* anonymous namespace */ fs_copy_prop_dataflow::fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg, exec_list *out_acp[ACP_HASH_SIZE]) : mem_ctx(mem_ctx), cfg(cfg) { bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks); num_acp = 0; foreach_block (block, cfg) { for (int i = 0; i < ACP_HASH_SIZE; i++) { num_acp += out_acp[block->num][i].length(); } } acp = rzalloc_array(mem_ctx, struct acp_entry *, num_acp); bitset_words = BITSET_WORDS(num_acp); int next_acp = 0; foreach_block (block, cfg) { bd[block->num].livein = rzalloc_array(bd, BITSET_WORD, bitset_words); bd[block->num].liveout = rzalloc_array(bd, BITSET_WORD, bitset_words); bd[block->num].copy = rzalloc_array(bd, BITSET_WORD, bitset_words); bd[block->num].kill = rzalloc_array(bd, BITSET_WORD, bitset_words); for (int i = 0; i < ACP_HASH_SIZE; i++) { foreach_in_list(acp_entry, entry, &out_acp[block->num][i]) { acp[next_acp] = entry; /* opt_copy_propagate_local populates out_acp with copies created * in a block which are still live at the end of the block. This * is exactly what we want in the COPY set. */ BITSET_SET(bd[block->num].copy, next_acp); next_acp++; } } } assert(next_acp == num_acp); setup_initial_values(); run(); } /** * Set up initial values for each of the data flow sets, prior to running * the fixed-point algorithm. */ void fs_copy_prop_dataflow::setup_initial_values() { /* Initialize the COPY and KILL sets. */ foreach_block (block, cfg) { foreach_inst_in_block(fs_inst, inst, block) { if (inst->dst.file != GRF) continue; /* Mark ACP entries which are killed by this instruction. */ for (int i = 0; i < num_acp; i++) { if (inst->overwrites_reg(acp[i]->dst) || inst->overwrites_reg(acp[i]->src)) { BITSET_SET(bd[block->num].kill, i); } } } } /* Populate the initial values for the livein and liveout sets. For the * block at the start of the program, livein = 0 and liveout = copy. * For the others, set liveout to 0 (the empty set) and livein to ~0 * (the universal set). */ foreach_block (block, cfg) { if (block->parents.is_empty()) { for (int i = 0; i < bitset_words; i++) { bd[block->num].livein[i] = 0u; bd[block->num].liveout[i] = bd[block->num].copy[i]; } } else { for (int i = 0; i < bitset_words; i++) { bd[block->num].liveout[i] = 0u; bd[block->num].livein[i] = ~0u; } } } } /** * Walk the set of instructions in the block, marking which entries in the acp * are killed by the block. */ void fs_copy_prop_dataflow::run() { bool progress; do { progress = false; /* Update liveout for all blocks. */ foreach_block (block, cfg) { if (block->parents.is_empty()) continue; for (int i = 0; i < bitset_words; i++) { const BITSET_WORD old_liveout = bd[block->num].liveout[i]; bd[block->num].liveout[i] = bd[block->num].copy[i] | (bd[block->num].livein[i] & ~bd[block->num].kill[i]); if (old_liveout != bd[block->num].liveout[i]) progress = true; } } /* Update livein for all blocks. If a copy is live out of all parent * blocks, it's live coming in to this block. */ foreach_block (block, cfg) { if (block->parents.is_empty()) continue; for (int i = 0; i < bitset_words; i++) { const BITSET_WORD old_livein = bd[block->num].livein[i]; bd[block->num].livein[i] = ~0u; foreach_list_typed(bblock_link, parent_link, link, &block->parents) { bblock_t *parent = parent_link->block; bd[block->num].livein[i] &= bd[parent->num].liveout[i]; } if (old_livein != bd[block->num].livein[i]) progress = true; } } } while (progress); } void fs_copy_prop_dataflow::dump_block_data() const { foreach_block (block, cfg) { fprintf(stderr, "Block %d [%d, %d] (parents ", block->num, block->start_ip, block->end_ip); foreach_list_typed(bblock_link, link, link, &block->parents) { bblock_t *parent = link->block; fprintf(stderr, "%d ", parent->num); } fprintf(stderr, "):\n"); fprintf(stderr, " livein = 0x"); for (int i = 0; i < bitset_words; i++) fprintf(stderr, "%08x", bd[block->num].livein[i]); fprintf(stderr, ", liveout = 0x"); for (int i = 0; i < bitset_words; i++) fprintf(stderr, "%08x", bd[block->num].liveout[i]); fprintf(stderr, ",\n copy = 0x"); for (int i = 0; i < bitset_words; i++) fprintf(stderr, "%08x", bd[block->num].copy[i]); fprintf(stderr, ", kill = 0x"); for (int i = 0; i < bitset_words; i++) fprintf(stderr, "%08x", bd[block->num].kill[i]); fprintf(stderr, "\n"); } } static bool is_logic_op(enum opcode opcode) { return (opcode == BRW_OPCODE_AND || opcode == BRW_OPCODE_OR || opcode == BRW_OPCODE_XOR || opcode == BRW_OPCODE_NOT); } static bool can_change_source_types(fs_inst *inst) { return !inst->src[0].abs && !inst->src[0].negate && inst->dst.type == inst->src[0].type && (inst->opcode == BRW_OPCODE_MOV || (inst->opcode == BRW_OPCODE_SEL && inst->predicate != BRW_PREDICATE_NONE && !inst->src[1].abs && !inst->src[1].negate)); } bool fs_visitor::try_copy_propagate(fs_inst *inst, int arg, acp_entry *entry) { if (inst->src[arg].file != GRF) return false; if (entry->src.file == IMM) return false; assert(entry->src.file == GRF || entry->src.file == UNIFORM || entry->src.file == ATTR); if (entry->opcode == SHADER_OPCODE_LOAD_PAYLOAD && inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD) return false; assert(entry->dst.file == GRF); if (inst->src[arg].reg != entry->dst.reg) return false; /* Bail if inst is reading a range that isn't contained in the range * that entry is writing. */ if (inst->src[arg].reg_offset < entry->dst.reg_offset || (inst->src[arg].reg_offset * 32 + inst->src[arg].subreg_offset + inst->regs_read(arg) * inst->src[arg].stride * 32) > (entry->dst.reg_offset + entry->regs_written) * 32) return false; /* we can't generally copy-propagate UD negations because we * can end up accessing the resulting values as signed integers * instead. See also resolve_ud_negate() and comment in * fs_generator::generate_code. */ if (entry->src.type == BRW_REGISTER_TYPE_UD && entry->src.negate) return false; bool has_source_modifiers = entry->src.abs || entry->src.negate; if ((has_source_modifiers || entry->src.file == UNIFORM || !entry->src.is_contiguous()) && !inst->can_do_source_mods(devinfo)) return false; if (has_source_modifiers && inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE) return false; /* Bail if the result of composing both strides would exceed the * hardware limit. */ if (entry->src.stride * inst->src[arg].stride > 4) return false; /* Bail if the instruction type is larger than the execution type of the * copy, what implies that each channel is reading multiple channels of the * destination of the copy, and simply replacing the sources would give a * program with different semantics. */ if (type_sz(entry->dst.type) < type_sz(inst->src[arg].type)) return false; /* Bail if the result of composing both strides cannot be expressed * as another stride. This avoids, for example, trying to transform * this: * * MOV (8) rX<1>UD rY<0;1,0>UD * FOO (8) ... rX<8;8,1>UW * * into this: * * FOO (8) ... rY<0;1,0>UW * * Which would have different semantics. */ if (entry->src.stride != 1 && (inst->src[arg].stride * type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0) return false; if (has_source_modifiers && entry->dst.type != inst->src[arg].type && !can_change_source_types(inst)) return false; if (devinfo->gen >= 8 && (entry->src.negate || entry->src.abs) && is_logic_op(inst->opcode)) { return false; } if (entry->saturate) { switch(inst->opcode) { case BRW_OPCODE_SEL: if (inst->src[1].file != IMM || inst->src[1].fixed_hw_reg.dw1.f < 0.0 || inst->src[1].fixed_hw_reg.dw1.f > 1.0) { return false; } break; default: return false; } } inst->src[arg].file = entry->src.file; inst->src[arg].reg = entry->src.reg; inst->src[arg].stride *= entry->src.stride; inst->saturate = inst->saturate || entry->saturate; switch (entry->src.file) { case UNIFORM: case BAD_FILE: case HW_REG: inst->src[arg].reg_offset = entry->src.reg_offset; inst->src[arg].subreg_offset = entry->src.subreg_offset; break; case ATTR: case GRF: { /* In this case, we'll just leave the width alone. The source * register could have different widths depending on how it is * being used. For instance, if only half of the register was * used then we want to preserve that and continue to only use * half. * * Also, we have to deal with mapping parts of vgrfs to other * parts of vgrfs so we have to do some reg_offset magic. */ /* Compute the offset of inst->src[arg] relative to inst->dst */ assert(entry->dst.subreg_offset == 0); int rel_offset = inst->src[arg].reg_offset - entry->dst.reg_offset; int rel_suboffset = inst->src[arg].subreg_offset; /* Compute the final register offset (in bytes) */ int offset = entry->src.reg_offset * 32 + entry->src.subreg_offset; offset += rel_offset * 32 + rel_suboffset; inst->src[arg].reg_offset = offset / 32; inst->src[arg].subreg_offset = offset % 32; } break; default: unreachable("Invalid register file"); break; } if (has_source_modifiers) { if (entry->dst.type != inst->src[arg].type) { /* We are propagating source modifiers from a MOV with a different * type. If we got here, then we can just change the source and * destination types of the instruction and keep going. */ assert(can_change_source_types(inst)); for (int i = 0; i < inst->sources; i++) { inst->src[i].type = entry->dst.type; } inst->dst.type = entry->dst.type; } if (!inst->src[arg].abs) { inst->src[arg].abs = entry->src.abs; inst->src[arg].negate ^= entry->src.negate; } } return true; } bool fs_visitor::try_constant_propagate(fs_inst *inst, acp_entry *entry) { bool progress = false; if (entry->src.file != IMM) return false; if (entry->saturate) return false; for (int i = inst->sources - 1; i >= 0; i--) { if (inst->src[i].file != GRF) continue; assert(entry->dst.file == GRF); if (inst->src[i].reg != entry->dst.reg) continue; /* Bail if inst is reading a range that isn't contained in the range * that entry is writing. */ if (inst->src[i].reg_offset < entry->dst.reg_offset || (inst->src[i].reg_offset * 32 + inst->src[i].subreg_offset + inst->regs_read(i) * inst->src[i].stride * 32) > (entry->dst.reg_offset + entry->regs_written) * 32) continue; fs_reg val = entry->src; val.type = inst->src[i].type; if (inst->src[i].abs) { if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) || !brw_abs_immediate(val.type, &val.fixed_hw_reg)) { continue; } } if (inst->src[i].negate) { if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) || !brw_negate_immediate(val.type, &val.fixed_hw_reg)) { continue; } } switch (inst->opcode) { case BRW_OPCODE_MOV: case SHADER_OPCODE_LOAD_PAYLOAD: inst->src[i] = val; progress = true; break; case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_INT_REMAINDER: /* FINISHME: Promote non-float constants and remove this. */ if (devinfo->gen < 8) break; /* fallthrough */ case SHADER_OPCODE_POW: /* Allow constant propagation into src1 (except on Gen 6), and let * constant combining promote the constant on Gen < 8. * * While Gen 6 MATH can take a scalar source, its source and * destination offsets must be equal and we cannot ensure that. */ if (devinfo->gen == 6) break; /* fallthrough */ case BRW_OPCODE_BFI1: case BRW_OPCODE_ASR: case BRW_OPCODE_SHL: case BRW_OPCODE_SHR: case BRW_OPCODE_SUBB: if (i == 1) { inst->src[i] = val; progress = true; } break; case BRW_OPCODE_MACH: case BRW_OPCODE_MUL: case SHADER_OPCODE_MULH: case BRW_OPCODE_ADD: case BRW_OPCODE_OR: case BRW_OPCODE_AND: case BRW_OPCODE_XOR: case BRW_OPCODE_ADDC: if (i == 1) { inst->src[i] = val; progress = true; } else if (i == 0 && inst->src[1].file != IMM) { /* Fit this constant in by commuting the operands. * Exception: we can't do this for 32-bit integer MUL/MACH * because it's asymmetric. * * The BSpec says for Broadwell that * * "When multiplying DW x DW, the dst cannot be accumulator." * * Integer MUL with a non-accumulator destination will be lowered * by lower_integer_multiplication(), so don't restrict it. */ if (((inst->opcode == BRW_OPCODE_MUL && inst->dst.is_accumulator()) || inst->opcode == BRW_OPCODE_MACH) && (inst->src[1].type == BRW_REGISTER_TYPE_D || inst->src[1].type == BRW_REGISTER_TYPE_UD)) break; inst->src[0] = inst->src[1]; inst->src[1] = val; progress = true; } break; case BRW_OPCODE_CMP: case BRW_OPCODE_IF: if (i == 1) { inst->src[i] = val; progress = true; } else if (i == 0 && inst->src[1].file != IMM) { enum brw_conditional_mod new_cmod; new_cmod = brw_swap_cmod(inst->conditional_mod); if (new_cmod != BRW_CONDITIONAL_NONE) { /* Fit this constant in by swapping the operands and * flipping the test */ inst->src[0] = inst->src[1]; inst->src[1] = val; inst->conditional_mod = new_cmod; progress = true; } } break; case BRW_OPCODE_SEL: if (i == 1) { inst->src[i] = val; progress = true; } else if (i == 0 && inst->src[1].file != IMM) { inst->src[0] = inst->src[1]; inst->src[1] = val; /* If this was predicated, flipping operands means * we also need to flip the predicate. */ if (inst->conditional_mod == BRW_CONDITIONAL_NONE) { inst->predicate_inverse = !inst->predicate_inverse; } progress = true; } break; case SHADER_OPCODE_RCP: /* The hardware doesn't do math on immediate values * (because why are you doing that, seriously?), but * the correct answer is to just constant fold it * anyway. */ assert(i == 0); if (inst->src[0].fixed_hw_reg.dw1.f != 0.0f) { inst->opcode = BRW_OPCODE_MOV; inst->src[0] = val; inst->src[0].fixed_hw_reg.dw1.f = 1.0f / inst->src[0].fixed_hw_reg.dw1.f; progress = true; } break; case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: case SHADER_OPCODE_BROADCAST: inst->src[i] = val; progress = true; break; case BRW_OPCODE_MAD: case BRW_OPCODE_LRP: inst->src[i] = val; progress = true; break; default: break; } } return progress; } static bool can_propagate_from(fs_inst *inst) { return (inst->opcode == BRW_OPCODE_MOV && inst->dst.file == GRF && ((inst->src[0].file == GRF && (inst->src[0].reg != inst->dst.reg || inst->src[0].reg_offset != inst->dst.reg_offset)) || inst->src[0].file == ATTR || inst->src[0].file == UNIFORM || inst->src[0].file == IMM) && inst->src[0].type == inst->dst.type && !inst->is_partial_write()); } /* Walks a basic block and does copy propagation on it using the acp * list. */ bool fs_visitor::opt_copy_propagate_local(void *copy_prop_ctx, bblock_t *block, exec_list *acp) { bool progress = false; foreach_inst_in_block(fs_inst, inst, block) { /* Try propagating into this instruction. */ for (int i = 0; i < inst->sources; i++) { if (inst->src[i].file != GRF) continue; foreach_in_list(acp_entry, entry, &acp[inst->src[i].reg % ACP_HASH_SIZE]) { if (try_constant_propagate(inst, entry)) progress = true; if (try_copy_propagate(inst, i, entry)) progress = true; } } /* kill the destination from the ACP */ if (inst->dst.file == GRF) { foreach_in_list_safe(acp_entry, entry, &acp[inst->dst.reg % ACP_HASH_SIZE]) { if (inst->overwrites_reg(entry->dst)) { entry->remove(); } } /* Oops, we only have the chaining hash based on the destination, not * the source, so walk across the entire table. */ for (int i = 0; i < ACP_HASH_SIZE; i++) { foreach_in_list_safe(acp_entry, entry, &acp[i]) { if (inst->overwrites_reg(entry->src)) entry->remove(); } } } /* If this instruction's source could potentially be folded into the * operand of another instruction, add it to the ACP. */ if (can_propagate_from(inst)) { acp_entry *entry = ralloc(copy_prop_ctx, acp_entry); entry->dst = inst->dst; entry->src = inst->src[0]; entry->regs_written = inst->regs_written; entry->opcode = inst->opcode; entry->saturate = inst->saturate; acp[entry->dst.reg % ACP_HASH_SIZE].push_tail(entry); } else if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD && inst->dst.file == GRF) { int offset = 0; for (int i = 0; i < inst->sources; i++) { int effective_width = i < inst->header_size ? 8 : inst->exec_size; int regs_written = effective_width / 8; if (inst->src[i].file == GRF) { acp_entry *entry = ralloc(copy_prop_ctx, acp_entry); entry->dst = inst->dst; entry->dst.reg_offset = offset; entry->src = inst->src[i]; entry->regs_written = regs_written; entry->opcode = inst->opcode; if (!entry->dst.equals(inst->src[i])) { acp[entry->dst.reg % ACP_HASH_SIZE].push_tail(entry); } else { ralloc_free(entry); } } offset += regs_written; } } } return progress; } bool fs_visitor::opt_copy_propagate() { bool progress = false; void *copy_prop_ctx = ralloc_context(NULL); exec_list *out_acp[cfg->num_blocks]; for (int i = 0; i < cfg->num_blocks; i++) out_acp[i] = new exec_list [ACP_HASH_SIZE]; /* First, walk through each block doing local copy propagation and getting * the set of copies available at the end of the block. */ foreach_block (block, cfg) { progress = opt_copy_propagate_local(copy_prop_ctx, block, out_acp[block->num]) || progress; } /* Do dataflow analysis for those available copies. */ fs_copy_prop_dataflow dataflow(copy_prop_ctx, cfg, out_acp); /* Next, re-run local copy propagation, this time with the set of copies * provided by the dataflow analysis available at the start of a block. */ foreach_block (block, cfg) { exec_list in_acp[ACP_HASH_SIZE]; for (int i = 0; i < dataflow.num_acp; i++) { if (BITSET_TEST(dataflow.bd[block->num].livein, i)) { struct acp_entry *entry = dataflow.acp[i]; in_acp[entry->dst.reg % ACP_HASH_SIZE].push_tail(entry); } } progress = opt_copy_propagate_local(copy_prop_ctx, block, in_acp) || progress; } for (int i = 0; i < cfg->num_blocks; i++) delete [] out_acp[i]; ralloc_free(copy_prop_ctx); if (progress) invalidate_live_intervals(); return progress; }