/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ extern "C" { #include #include "main/macros.h" #include "main/shaderobj.h" #include "main/uniforms.h" #include "program/prog_parameter.h" #include "program/prog_print.h" #include "program/prog_optimize.h" #include "program/register_allocate.h" #include "program/sampler.h" #include "program/hash_table.h" #include "brw_context.h" #include "brw_eu.h" #include "brw_wm.h" } #include "../glsl/glsl_types.h" #include "../glsl/ir.h" enum register_file { ARF = BRW_ARCHITECTURE_REGISTER_FILE, GRF = BRW_GENERAL_REGISTER_FILE, MRF = BRW_MESSAGE_REGISTER_FILE, IMM = BRW_IMMEDIATE_VALUE, FIXED_HW_REG, /* a struct brw_reg */ UNIFORM, /* prog_data->params[hw_reg] */ BAD_FILE }; enum fs_opcodes { FS_OPCODE_FB_WRITE = 256, FS_OPCODE_RCP, FS_OPCODE_RSQ, FS_OPCODE_SQRT, FS_OPCODE_EXP2, FS_OPCODE_LOG2, FS_OPCODE_POW, FS_OPCODE_SIN, FS_OPCODE_COS, FS_OPCODE_DDX, FS_OPCODE_DDY, FS_OPCODE_PIXEL_X, FS_OPCODE_PIXEL_Y, FS_OPCODE_CINTERP, FS_OPCODE_LINTERP, FS_OPCODE_TEX, FS_OPCODE_TXB, FS_OPCODE_TXD, FS_OPCODE_TXL, FS_OPCODE_DISCARD_NOT, FS_OPCODE_DISCARD_AND, FS_OPCODE_SPILL, FS_OPCODE_UNSPILL, FS_OPCODE_PULL_CONSTANT_LOAD, }; class fs_reg { public: /* Callers of this ralloc-based new need not call delete. It's * easier to just ralloc_free 'ctx' (or any of its ancestors). */ static void* operator new(size_t size, void *ctx) { void *node; node = ralloc_size(ctx, size); assert(node != NULL); return node; } void init() { memset(this, 0, sizeof(*this)); this->hw_reg = -1; this->smear = -1; } /** Generic unset register constructor. */ fs_reg() { init(); this->file = BAD_FILE; } /** Immediate value constructor. */ fs_reg(float f) { init(); this->file = IMM; this->type = BRW_REGISTER_TYPE_F; this->imm.f = f; } /** Immediate value constructor. */ fs_reg(int32_t i) { init(); this->file = IMM; this->type = BRW_REGISTER_TYPE_D; this->imm.i = i; } /** Immediate value constructor. */ fs_reg(uint32_t u) { init(); this->file = IMM; this->type = BRW_REGISTER_TYPE_UD; this->imm.u = u; } /** Fixed brw_reg Immediate value constructor. */ fs_reg(struct brw_reg fixed_hw_reg) { init(); this->file = FIXED_HW_REG; this->fixed_hw_reg = fixed_hw_reg; this->type = fixed_hw_reg.type; } fs_reg(enum register_file file, int hw_reg); fs_reg(enum register_file file, int hw_reg, uint32_t type); fs_reg(class fs_visitor *v, const struct glsl_type *type); bool equals(fs_reg *r) { return (file == r->file && reg == r->reg && reg_offset == r->reg_offset && hw_reg == r->hw_reg && type == r->type && negate == r->negate && abs == r->abs && memcmp(&fixed_hw_reg, &r->fixed_hw_reg, sizeof(fixed_hw_reg)) == 0 && smear == r->smear && imm.u == r->imm.u); } /** Register file: ARF, GRF, MRF, IMM. */ enum register_file file; /** virtual register number. 0 = fixed hw reg */ int reg; /** Offset within the virtual register. */ int reg_offset; /** HW register number. Generally unset until register allocation. */ int hw_reg; /** Register type. BRW_REGISTER_TYPE_* */ int type; bool negate; bool abs; struct brw_reg fixed_hw_reg; int smear; /* -1, or a channel of the reg to smear to all channels. */ /** Value for file == BRW_IMMMEDIATE_FILE */ union { int32_t i; uint32_t u; float f; } imm; }; static const fs_reg reg_undef; static const fs_reg reg_null_f(ARF, BRW_ARF_NULL, BRW_REGISTER_TYPE_F); static const fs_reg reg_null_d(ARF, BRW_ARF_NULL, BRW_REGISTER_TYPE_D); class fs_inst : public exec_node { public: /* Callers of this ralloc-based new need not call delete. It's * easier to just ralloc_free 'ctx' (or any of its ancestors). */ static void* operator new(size_t size, void *ctx) { void *node; node = rzalloc_size(ctx, size); assert(node != NULL); return node; } void init() { memset(this, 0, sizeof(*this)); this->opcode = BRW_OPCODE_NOP; this->conditional_mod = BRW_CONDITIONAL_NONE; this->dst = reg_undef; this->src[0] = reg_undef; this->src[1] = reg_undef; this->src[2] = reg_undef; } fs_inst() { init(); } fs_inst(int opcode) { init(); this->opcode = opcode; } fs_inst(int opcode, fs_reg dst) { init(); this->opcode = opcode; this->dst = dst; if (dst.file == GRF) assert(dst.reg_offset >= 0); } fs_inst(int opcode, fs_reg dst, fs_reg src0) { init(); this->opcode = opcode; this->dst = dst; this->src[0] = src0; if (dst.file == GRF) assert(dst.reg_offset >= 0); if (src[0].file == GRF) assert(src[0].reg_offset >= 0); } fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1) { init(); this->opcode = opcode; this->dst = dst; this->src[0] = src0; this->src[1] = src1; if (dst.file == GRF) assert(dst.reg_offset >= 0); if (src[0].file == GRF) assert(src[0].reg_offset >= 0); if (src[1].file == GRF) assert(src[1].reg_offset >= 0); } fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1, fs_reg src2) { init(); this->opcode = opcode; this->dst = dst; this->src[0] = src0; this->src[1] = src1; this->src[2] = src2; if (dst.file == GRF) assert(dst.reg_offset >= 0); if (src[0].file == GRF) assert(src[0].reg_offset >= 0); if (src[1].file == GRF) assert(src[1].reg_offset >= 0); if (src[2].file == GRF) assert(src[2].reg_offset >= 0); } bool equals(fs_inst *inst) { return (opcode == inst->opcode && dst.equals(&inst->dst) && src[0].equals(&inst->src[0]) && src[1].equals(&inst->src[1]) && src[2].equals(&inst->src[2]) && saturate == inst->saturate && predicated == inst->predicated && conditional_mod == inst->conditional_mod && mlen == inst->mlen && base_mrf == inst->base_mrf && sampler == inst->sampler && target == inst->target && eot == inst->eot && header_present == inst->header_present && shadow_compare == inst->shadow_compare && offset == inst->offset); } bool is_tex() { return (opcode == FS_OPCODE_TEX || opcode == FS_OPCODE_TXB || opcode == FS_OPCODE_TXD || opcode == FS_OPCODE_TXL); } bool is_math() { return (opcode == FS_OPCODE_RCP || opcode == FS_OPCODE_RSQ || opcode == FS_OPCODE_SQRT || opcode == FS_OPCODE_EXP2 || opcode == FS_OPCODE_LOG2 || opcode == FS_OPCODE_SIN || opcode == FS_OPCODE_COS || opcode == FS_OPCODE_POW); } int opcode; /* BRW_OPCODE_* or FS_OPCODE_* */ fs_reg dst; fs_reg src[3]; bool saturate; bool predicated; bool predicate_inverse; int conditional_mod; /**< BRW_CONDITIONAL_* */ int mlen; /**< SEND message length */ int base_mrf; /**< First MRF in the SEND message, if mlen is nonzero. */ int sampler; int target; /**< MRT target. */ bool eot; bool header_present; bool shadow_compare; uint32_t offset; /* spill/unspill offset */ /** @{ * Annotation for the generated IR. One of the two can be set. */ ir_instruction *ir; const char *annotation; /** @} */ }; class fs_visitor : public ir_visitor { public: fs_visitor(struct brw_wm_compile *c, struct brw_shader *shader) { this->c = c; this->p = &c->func; this->brw = p->brw; this->fp = brw->fragment_program; this->intel = &brw->intel; this->ctx = &intel->ctx; this->mem_ctx = ralloc_context(NULL); this->shader = shader; this->failed = false; this->variable_ht = hash_table_ctor(0, hash_table_pointer_hash, hash_table_pointer_compare); /* There's a question that appears to be left open in the spec: * How do implicit dst conversions interact with the CMP * instruction or conditional mods? On gen6, the instruction: * * CMP null src0 src1 * * will do src1 - src0 and compare that result as if it was an * integer. On gen4, it will do src1 - src0 as float, convert * the result to int, and compare as int. In between, it * appears that it does src1 - src0 and does the compare in the * execution type so dst type doesn't matter. */ if (this->intel->gen > 4) this->reg_null_cmp = reg_null_d; else this->reg_null_cmp = reg_null_f; this->frag_color = NULL; this->frag_data = NULL; this->frag_depth = NULL; this->first_non_payload_grf = 0; this->current_annotation = NULL; this->base_ir = NULL; this->virtual_grf_sizes = NULL; this->virtual_grf_next = 1; this->virtual_grf_array_size = 0; this->virtual_grf_def = NULL; this->virtual_grf_use = NULL; this->live_intervals_valid = false; this->kill_emitted = false; } ~fs_visitor() { ralloc_free(this->mem_ctx); hash_table_dtor(this->variable_ht); } fs_reg *variable_storage(ir_variable *var); int virtual_grf_alloc(int size); void visit(ir_variable *ir); void visit(ir_assignment *ir); void visit(ir_dereference_variable *ir); void visit(ir_dereference_record *ir); void visit(ir_dereference_array *ir); void visit(ir_expression *ir); void visit(ir_texture *ir); void visit(ir_if *ir); void visit(ir_constant *ir); void visit(ir_swizzle *ir); void visit(ir_return *ir); void visit(ir_loop *ir); void visit(ir_loop_jump *ir); void visit(ir_discard *ir); void visit(ir_call *ir); void visit(ir_function *ir); void visit(ir_function_signature *ir); fs_inst *emit(fs_inst inst); fs_inst *emit(int opcode) { return emit(fs_inst(opcode)); } fs_inst *emit(int opcode, fs_reg dst) { return emit(fs_inst(opcode, dst)); } fs_inst *emit(int opcode, fs_reg dst, fs_reg src0) { return emit(fs_inst(opcode, dst, src0)); } fs_inst *emit(int opcode, fs_reg dst, fs_reg src0, fs_reg src1) { return emit(fs_inst(opcode, dst, src0, src1)); } fs_inst *emit(int opcode, fs_reg dst, fs_reg src0, fs_reg src1, fs_reg src2) { return emit(fs_inst(opcode, dst, src0, src1, src2)); } void setup_paramvalues_refs(); void assign_curb_setup(); void calculate_urb_setup(); void assign_urb_setup(); bool assign_regs(); void assign_regs_trivial(); int choose_spill_reg(struct ra_graph *g); void spill_reg(int spill_reg); void split_virtual_grfs(); void setup_pull_constants(); void calculate_live_intervals(); bool propagate_constants(); bool register_coalesce(); bool compute_to_mrf(); bool dead_code_eliminate(); bool remove_duplicate_mrf_writes(); bool virtual_grf_interferes(int a, int b); void schedule_instructions(); void fail(const char *msg, ...); void generate_code(); void generate_fb_write(fs_inst *inst); void generate_pixel_xy(struct brw_reg dst, bool is_x); void generate_linterp(fs_inst *inst, struct brw_reg dst, struct brw_reg *src); void generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src); void generate_math(fs_inst *inst, struct brw_reg dst, struct brw_reg *src); void generate_discard_not(fs_inst *inst, struct brw_reg temp); void generate_discard_and(fs_inst *inst, struct brw_reg temp); void generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src); void generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src); void generate_spill(fs_inst *inst, struct brw_reg src); void generate_unspill(fs_inst *inst, struct brw_reg dst); void generate_pull_constant_load(fs_inst *inst, struct brw_reg dst); void emit_dummy_fs(); fs_reg *emit_fragcoord_interpolation(ir_variable *ir); fs_reg *emit_frontfacing_interpolation(ir_variable *ir); fs_reg *emit_general_interpolation(ir_variable *ir); void emit_interpolation_setup_gen4(); void emit_interpolation_setup_gen6(); fs_inst *emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate); fs_inst *emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate); fs_inst *emit_math(fs_opcodes op, fs_reg dst, fs_reg src0); fs_inst *emit_math(fs_opcodes op, fs_reg dst, fs_reg src0, fs_reg src1); bool try_emit_saturate(ir_expression *ir); void emit_bool_to_cond_code(ir_rvalue *condition); void emit_if_gen6(ir_if *ir); void emit_unspill(fs_inst *inst, fs_reg reg, uint32_t spill_offset); void emit_fb_writes(); void emit_assignment_writes(fs_reg &l, fs_reg &r, const glsl_type *type, bool predicated); struct brw_reg interp_reg(int location, int channel); int setup_uniform_values(int loc, const glsl_type *type); void setup_builtin_uniform_values(ir_variable *ir); int implied_mrf_writes(fs_inst *inst); struct brw_context *brw; const struct gl_fragment_program *fp; struct intel_context *intel; struct gl_context *ctx; struct brw_wm_compile *c; struct brw_compile *p; struct brw_shader *shader; void *mem_ctx; exec_list instructions; /* Delayed setup of c->prog_data.params[] due to realloc of * ParamValues[] during compile. */ int param_index[MAX_UNIFORMS * 4]; int param_offset[MAX_UNIFORMS * 4]; int *virtual_grf_sizes; int virtual_grf_next; int virtual_grf_array_size; int *virtual_grf_def; int *virtual_grf_use; bool live_intervals_valid; struct hash_table *variable_ht; ir_variable *frag_color, *frag_data, *frag_depth; int first_non_payload_grf; int urb_setup[FRAG_ATTRIB_MAX]; bool kill_emitted; /** @{ debug annotation info */ const char *current_annotation; ir_instruction *base_ir; /** @} */ bool failed; /* Result of last visit() method. */ fs_reg result; fs_reg pixel_x; fs_reg pixel_y; fs_reg wpos_w; fs_reg pixel_w; fs_reg delta_x; fs_reg delta_y; fs_reg reg_null_cmp; int grf_used; }; GLboolean brw_do_channel_expressions(struct exec_list *instructions); GLboolean brw_do_vector_splitting(struct exec_list *instructions);