/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ extern "C" { #include #include "main/macros.h" #include "main/shaderobj.h" #include "main/uniforms.h" #include "program/prog_parameter.h" #include "program/prog_print.h" #include "program/prog_optimize.h" #include "program/register_allocate.h" #include "program/sampler.h" #include "program/hash_table.h" #include "brw_context.h" #include "brw_eu.h" #include "brw_wm.h" #include "talloc.h" } #include "brw_fs.h" #include "../glsl/glsl_types.h" #include "../glsl/ir_optimization.h" #include "../glsl/ir_print_visitor.h" static struct brw_reg brw_reg_from_fs_reg(class fs_reg *reg); struct gl_shader * brw_new_shader(struct gl_context *ctx, GLuint name, GLuint type) { struct brw_shader *shader; shader = talloc_zero(NULL, struct brw_shader); if (shader) { shader->base.Type = type; shader->base.Name = name; _mesa_init_shader(ctx, &shader->base); } return &shader->base; } struct gl_shader_program * brw_new_shader_program(struct gl_context *ctx, GLuint name) { struct brw_shader_program *prog; prog = talloc_zero(NULL, struct brw_shader_program); if (prog) { prog->base.Name = name; _mesa_init_shader_program(ctx, &prog->base); } return &prog->base; } GLboolean brw_compile_shader(struct gl_context *ctx, struct gl_shader *shader) { if (!_mesa_ir_compile_shader(ctx, shader)) return GL_FALSE; return GL_TRUE; } GLboolean brw_link_shader(struct gl_context *ctx, struct gl_shader_program *prog) { struct brw_shader *shader = (struct brw_shader *)prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; if (shader != NULL) { void *mem_ctx = talloc_new(NULL); bool progress; if (shader->ir) talloc_free(shader->ir); shader->ir = new(shader) exec_list; clone_ir_list(mem_ctx, shader->ir, shader->base.ir); do_mat_op_to_vec(shader->ir); do_mod_to_fract(shader->ir); do_div_to_mul_rcp(shader->ir); do_sub_to_add_neg(shader->ir); do_explog_to_explog2(shader->ir); do_lower_texture_projection(shader->ir); brw_do_cubemap_normalize(shader->ir); do { progress = false; brw_do_channel_expressions(shader->ir); brw_do_vector_splitting(shader->ir); progress = do_lower_jumps(shader->ir, true, true, true, /* main return */ false, /* continue */ false /* loops */ ) || progress; progress = do_common_optimization(shader->ir, true, 32) || progress; progress = lower_noise(shader->ir) || progress; progress = lower_variable_index_to_cond_assign(shader->ir, GL_TRUE, /* input */ GL_TRUE, /* output */ GL_TRUE, /* temp */ GL_TRUE /* uniform */ ) || progress; } while (progress); validate_ir_tree(shader->ir); reparent_ir(shader->ir, shader->ir); talloc_free(mem_ctx); } if (!_mesa_ir_link_shader(ctx, prog)) return GL_FALSE; return GL_TRUE; } static int type_size(const struct glsl_type *type) { unsigned int size, i; switch (type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: return type->components(); case GLSL_TYPE_ARRAY: return type_size(type->fields.array) * type->length; case GLSL_TYPE_STRUCT: size = 0; for (i = 0; i < type->length; i++) { size += type_size(type->fields.structure[i].type); } return size; case GLSL_TYPE_SAMPLER: /* Samplers take up no register space, since they're baked in at * link time. */ return 0; default: assert(!"not reached"); return 0; } } int fs_visitor::virtual_grf_alloc(int size) { if (virtual_grf_array_size <= virtual_grf_next) { if (virtual_grf_array_size == 0) virtual_grf_array_size = 16; else virtual_grf_array_size *= 2; virtual_grf_sizes = talloc_realloc(mem_ctx, virtual_grf_sizes, int, virtual_grf_array_size); /* This slot is always unused. */ virtual_grf_sizes[0] = 0; } virtual_grf_sizes[virtual_grf_next] = size; return virtual_grf_next++; } /** Fixed HW reg constructor. */ fs_reg::fs_reg(enum register_file file, int hw_reg) { init(); this->file = file; this->hw_reg = hw_reg; this->type = BRW_REGISTER_TYPE_F; } /** Fixed HW reg constructor. */ fs_reg::fs_reg(enum register_file file, int hw_reg, uint32_t type) { init(); this->file = file; this->hw_reg = hw_reg; this->type = type; } int brw_type_for_base_type(const struct glsl_type *type) { switch (type->base_type) { case GLSL_TYPE_FLOAT: return BRW_REGISTER_TYPE_F; case GLSL_TYPE_INT: case GLSL_TYPE_BOOL: return BRW_REGISTER_TYPE_D; case GLSL_TYPE_UINT: return BRW_REGISTER_TYPE_UD; case GLSL_TYPE_ARRAY: case GLSL_TYPE_STRUCT: case GLSL_TYPE_SAMPLER: /* These should be overridden with the type of the member when * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely * way to trip up if we don't. */ return BRW_REGISTER_TYPE_UD; default: assert(!"not reached"); return BRW_REGISTER_TYPE_F; } } /** Automatic reg constructor. */ fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type) { init(); this->file = GRF; this->reg = v->virtual_grf_alloc(type_size(type)); this->reg_offset = 0; this->type = brw_type_for_base_type(type); } fs_reg * fs_visitor::variable_storage(ir_variable *var) { return (fs_reg *)hash_table_find(this->variable_ht, var); } /* Our support for uniforms is piggy-backed on the struct * gl_fragment_program, because that's where the values actually * get stored, rather than in some global gl_shader_program uniform * store. */ int fs_visitor::setup_uniform_values(int loc, const glsl_type *type) { unsigned int offset = 0; float *vec_values; if (type->is_matrix()) { const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT, type->vector_elements, 1); for (unsigned int i = 0; i < type->matrix_columns; i++) { offset += setup_uniform_values(loc + offset, column); } return offset; } switch (type->base_type) { case GLSL_TYPE_FLOAT: case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_BOOL: vec_values = fp->Base.Parameters->ParameterValues[loc]; for (unsigned int i = 0; i < type->vector_elements; i++) { unsigned int param = c->prog_data.nr_params++; assert(param < ARRAY_SIZE(c->prog_data.param)); switch (type->base_type) { case GLSL_TYPE_FLOAT: c->prog_data.param_convert[param] = PARAM_NO_CONVERT; break; case GLSL_TYPE_UINT: c->prog_data.param_convert[param] = PARAM_CONVERT_F2U; break; case GLSL_TYPE_INT: c->prog_data.param_convert[param] = PARAM_CONVERT_F2I; break; case GLSL_TYPE_BOOL: c->prog_data.param_convert[param] = PARAM_CONVERT_F2B; break; default: assert(!"not reached"); c->prog_data.param_convert[param] = PARAM_NO_CONVERT; break; } c->prog_data.param[param] = &vec_values[i]; } return 1; case GLSL_TYPE_STRUCT: for (unsigned int i = 0; i < type->length; i++) { offset += setup_uniform_values(loc + offset, type->fields.structure[i].type); } return offset; case GLSL_TYPE_ARRAY: for (unsigned int i = 0; i < type->length; i++) { offset += setup_uniform_values(loc + offset, type->fields.array); } return offset; case GLSL_TYPE_SAMPLER: /* The sampler takes up a slot, but we don't use any values from it. */ return 1; default: assert(!"not reached"); return 0; } } /* Our support for builtin uniforms is even scarier than non-builtin. * It sits on top of the PROG_STATE_VAR parameters that are * automatically updated from GL context state. */ void fs_visitor::setup_builtin_uniform_values(ir_variable *ir) { const struct gl_builtin_uniform_desc *statevar = NULL; for (unsigned int i = 0; _mesa_builtin_uniform_desc[i].name; i++) { statevar = &_mesa_builtin_uniform_desc[i]; if (strcmp(ir->name, _mesa_builtin_uniform_desc[i].name) == 0) break; } if (!statevar->name) { this->fail = true; printf("Failed to find builtin uniform `%s'\n", ir->name); return; } int array_count; if (ir->type->is_array()) { array_count = ir->type->length; } else { array_count = 1; } for (int a = 0; a < array_count; a++) { for (unsigned int i = 0; i < statevar->num_elements; i++) { struct gl_builtin_uniform_element *element = &statevar->elements[i]; int tokens[STATE_LENGTH]; memcpy(tokens, element->tokens, sizeof(element->tokens)); if (ir->type->is_array()) { tokens[1] = a; } /* This state reference has already been setup by ir_to_mesa, * but we'll get the same index back here. */ int index = _mesa_add_state_reference(this->fp->Base.Parameters, (gl_state_index *)tokens); float *vec_values = this->fp->Base.Parameters->ParameterValues[index]; /* Add each of the unique swizzles of the element as a * parameter. This'll end up matching the expected layout of * the array/matrix/structure we're trying to fill in. */ int last_swiz = -1; for (unsigned int i = 0; i < 4; i++) { int swiz = GET_SWZ(element->swizzle, i); if (swiz == last_swiz) break; last_swiz = swiz; c->prog_data.param_convert[c->prog_data.nr_params] = PARAM_NO_CONVERT; c->prog_data.param[c->prog_data.nr_params++] = &vec_values[swiz]; } } } } fs_reg * fs_visitor::emit_fragcoord_interpolation(ir_variable *ir) { fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); fs_reg wpos = *reg; fs_reg neg_y = this->pixel_y; neg_y.negate = true; bool flip = !ir->origin_upper_left ^ c->key.render_to_fbo; /* gl_FragCoord.x */ if (ir->pixel_center_integer) { emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_x)); } else { emit(fs_inst(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f))); } wpos.reg_offset++; /* gl_FragCoord.y */ if (!flip && ir->pixel_center_integer) { emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_y)); } else { fs_reg pixel_y = this->pixel_y; float offset = (ir->pixel_center_integer ? 0.0 : 0.5); if (flip) { pixel_y.negate = true; offset += c->key.drawable_height - 1.0; } emit(fs_inst(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset))); } wpos.reg_offset++; /* gl_FragCoord.z */ emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y, interp_reg(FRAG_ATTRIB_WPOS, 2))); wpos.reg_offset++; /* gl_FragCoord.w: Already set up in emit_interpolation */ emit(fs_inst(BRW_OPCODE_MOV, wpos, this->wpos_w)); return reg; } fs_reg * fs_visitor::emit_general_interpolation(ir_variable *ir) { fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); /* Interpolation is always in floating point regs. */ reg->type = BRW_REGISTER_TYPE_F; fs_reg attr = *reg; unsigned int array_elements; const glsl_type *type; if (ir->type->is_array()) { array_elements = ir->type->length; if (array_elements == 0) { this->fail = true; } type = ir->type->fields.array; } else { array_elements = 1; type = ir->type; } int location = ir->location; for (unsigned int i = 0; i < array_elements; i++) { for (unsigned int j = 0; j < type->matrix_columns; j++) { if (urb_setup[location] == -1) { /* If there's no incoming setup data for this slot, don't * emit interpolation for it. */ attr.reg_offset += type->vector_elements; location++; continue; } for (unsigned int c = 0; c < type->vector_elements; c++) { struct brw_reg interp = interp_reg(location, c); emit(fs_inst(FS_OPCODE_LINTERP, attr, this->delta_x, this->delta_y, fs_reg(interp))); attr.reg_offset++; } if (intel->gen < 6) { attr.reg_offset -= type->vector_elements; for (unsigned int c = 0; c < type->vector_elements; c++) { emit(fs_inst(BRW_OPCODE_MUL, attr, attr, this->pixel_w)); attr.reg_offset++; } } location++; } } return reg; } fs_reg * fs_visitor::emit_frontfacing_interpolation(ir_variable *ir) { fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); /* The frontfacing comes in as a bit in the thread payload. */ if (intel->gen >= 6) { emit(fs_inst(BRW_OPCODE_ASR, *reg, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)), fs_reg(15))); emit(fs_inst(BRW_OPCODE_NOT, *reg, *reg)); emit(fs_inst(BRW_OPCODE_AND, *reg, *reg, fs_reg(1))); } else { struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD); /* bit 31 is "primitive is back face", so checking < (1 << 31) gives * us front face */ fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP, *reg, fs_reg(r1_6ud), fs_reg(1u << 31))); inst->conditional_mod = BRW_CONDITIONAL_L; emit(fs_inst(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u))); } return reg; } fs_inst * fs_visitor::emit_math(fs_opcodes opcode, fs_reg dst, fs_reg src) { switch (opcode) { case FS_OPCODE_RCP: case FS_OPCODE_RSQ: case FS_OPCODE_SQRT: case FS_OPCODE_EXP2: case FS_OPCODE_LOG2: case FS_OPCODE_SIN: case FS_OPCODE_COS: break; default: assert(!"not reached: bad math opcode"); return NULL; } /* Can't do hstride == 0 args to gen6 math, so expand it out. We * might be able to do better by doing execsize = 1 math and then * expanding that result out, but we would need to be careful with * masking. */ if (intel->gen >= 6 && src.file == UNIFORM) { fs_reg expanded = fs_reg(this, glsl_type::float_type); emit(fs_inst(BRW_OPCODE_MOV, expanded, src)); src = expanded; } fs_inst *inst = emit(fs_inst(opcode, dst, src)); if (intel->gen < 6) { inst->base_mrf = 2; inst->mlen = 1; } return inst; } fs_inst * fs_visitor::emit_math(fs_opcodes opcode, fs_reg dst, fs_reg src0, fs_reg src1) { int base_mrf = 2; fs_inst *inst; assert(opcode == FS_OPCODE_POW); if (intel->gen >= 6) { /* Can't do hstride == 0 args to gen6 math, so expand it out. */ if (src0.file == UNIFORM) { fs_reg expanded = fs_reg(this, glsl_type::float_type); emit(fs_inst(BRW_OPCODE_MOV, expanded, src0)); src0 = expanded; } if (src1.file == UNIFORM) { fs_reg expanded = fs_reg(this, glsl_type::float_type); emit(fs_inst(BRW_OPCODE_MOV, expanded, src1)); src1 = expanded; } inst = emit(fs_inst(opcode, dst, src0, src1)); } else { emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1), src1)); inst = emit(fs_inst(opcode, dst, src0, reg_null_f)); inst->base_mrf = base_mrf; inst->mlen = 2; } return inst; } void fs_visitor::visit(ir_variable *ir) { fs_reg *reg = NULL; if (variable_storage(ir)) return; if (strcmp(ir->name, "gl_FragColor") == 0) { this->frag_color = ir; } else if (strcmp(ir->name, "gl_FragData") == 0) { this->frag_data = ir; } else if (strcmp(ir->name, "gl_FragDepth") == 0) { this->frag_depth = ir; } if (ir->mode == ir_var_in) { if (!strcmp(ir->name, "gl_FragCoord")) { reg = emit_fragcoord_interpolation(ir); } else if (!strcmp(ir->name, "gl_FrontFacing")) { reg = emit_frontfacing_interpolation(ir); } else { reg = emit_general_interpolation(ir); } assert(reg); hash_table_insert(this->variable_ht, reg, ir); return; } if (ir->mode == ir_var_uniform) { int param_index = c->prog_data.nr_params; if (!strncmp(ir->name, "gl_", 3)) { setup_builtin_uniform_values(ir); } else { setup_uniform_values(ir->location, ir->type); } reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index); reg->type = brw_type_for_base_type(ir->type); } if (!reg) reg = new(this->mem_ctx) fs_reg(this, ir->type); hash_table_insert(this->variable_ht, reg, ir); } void fs_visitor::visit(ir_dereference_variable *ir) { fs_reg *reg = variable_storage(ir->var); this->result = *reg; } void fs_visitor::visit(ir_dereference_record *ir) { const glsl_type *struct_type = ir->record->type; ir->record->accept(this); unsigned int offset = 0; for (unsigned int i = 0; i < struct_type->length; i++) { if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0) break; offset += type_size(struct_type->fields.structure[i].type); } this->result.reg_offset += offset; this->result.type = brw_type_for_base_type(ir->type); } void fs_visitor::visit(ir_dereference_array *ir) { ir_constant *index; int element_size; ir->array->accept(this); index = ir->array_index->as_constant(); element_size = type_size(ir->type); this->result.type = brw_type_for_base_type(ir->type); if (index) { assert(this->result.file == UNIFORM || (this->result.file == GRF && this->result.reg != 0)); this->result.reg_offset += index->value.i[0] * element_size; } else { assert(!"FINISHME: non-constant array element"); } } void fs_visitor::visit(ir_expression *ir) { unsigned int operand; fs_reg op[2], temp; fs_inst *inst; for (operand = 0; operand < ir->get_num_operands(); operand++) { ir->operands[operand]->accept(this); if (this->result.file == BAD_FILE) { ir_print_visitor v; printf("Failed to get tree for expression operand:\n"); ir->operands[operand]->accept(&v); this->fail = true; } op[operand] = this->result; /* Matrix expression operands should have been broken down to vector * operations already. */ assert(!ir->operands[operand]->type->is_matrix()); /* And then those vector operands should have been broken down to scalar. */ assert(!ir->operands[operand]->type->is_vector()); } /* Storage for our result. If our result goes into an assignment, it will * just get copy-propagated out, so no worries. */ this->result = fs_reg(this, ir->type); switch (ir->operation) { case ir_unop_logic_not: /* Note that BRW_OPCODE_NOT is not appropriate here, since it is * ones complement of the whole register, not just bit 0. */ emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], fs_reg(1))); break; case ir_unop_neg: op[0].negate = !op[0].negate; this->result = op[0]; break; case ir_unop_abs: op[0].abs = true; this->result = op[0]; break; case ir_unop_sign: temp = fs_reg(this, ir->type); emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(0.0f))); inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f))); inst->conditional_mod = BRW_CONDITIONAL_G; inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(1.0f))); inst->predicated = true; inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_f, op[0], fs_reg(0.0f))); inst->conditional_mod = BRW_CONDITIONAL_L; inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f))); inst->predicated = true; break; case ir_unop_rcp: emit_math(FS_OPCODE_RCP, this->result, op[0]); break; case ir_unop_exp2: emit_math(FS_OPCODE_EXP2, this->result, op[0]); break; case ir_unop_log2: emit_math(FS_OPCODE_LOG2, this->result, op[0]); break; case ir_unop_exp: case ir_unop_log: assert(!"not reached: should be handled by ir_explog_to_explog2"); break; case ir_unop_sin: emit_math(FS_OPCODE_SIN, this->result, op[0]); break; case ir_unop_cos: emit_math(FS_OPCODE_COS, this->result, op[0]); break; case ir_unop_dFdx: emit(fs_inst(FS_OPCODE_DDX, this->result, op[0])); break; case ir_unop_dFdy: emit(fs_inst(FS_OPCODE_DDY, this->result, op[0])); break; case ir_binop_add: emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], op[1])); break; case ir_binop_sub: assert(!"not reached: should be handled by ir_sub_to_add_neg"); break; case ir_binop_mul: emit(fs_inst(BRW_OPCODE_MUL, this->result, op[0], op[1])); break; case ir_binop_div: assert(!"not reached: should be handled by ir_div_to_mul_rcp"); break; case ir_binop_mod: assert(!"ir_binop_mod should have been converted to b * fract(a/b)"); break; case ir_binop_less: inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_L; emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1))); break; case ir_binop_greater: inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_G; emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1))); break; case ir_binop_lequal: inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_LE; emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1))); break; case ir_binop_gequal: inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_GE; emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1))); break; case ir_binop_equal: case ir_binop_all_equal: /* same as nequal for scalars */ inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_Z; emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1))); break; case ir_binop_nequal: case ir_binop_any_nequal: /* same as nequal for scalars */ inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_NZ; emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1))); break; case ir_binop_logic_xor: emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1])); break; case ir_binop_logic_or: emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1])); break; case ir_binop_logic_and: emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1])); break; case ir_binop_dot: case ir_unop_any: assert(!"not reached: should be handled by brw_fs_channel_expressions"); break; case ir_unop_noise: assert(!"not reached: should be handled by lower_noise"); break; case ir_unop_sqrt: emit_math(FS_OPCODE_SQRT, this->result, op[0]); break; case ir_unop_rsq: emit_math(FS_OPCODE_RSQ, this->result, op[0]); break; case ir_unop_i2f: case ir_unop_b2f: case ir_unop_b2i: case ir_unop_f2i: emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0])); break; case ir_unop_f2b: case ir_unop_i2b: inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f))); inst->conditional_mod = BRW_CONDITIONAL_NZ; inst = emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(1))); break; case ir_unop_trunc: emit(fs_inst(BRW_OPCODE_RNDZ, this->result, op[0])); break; case ir_unop_ceil: op[0].negate = !op[0].negate; inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0])); this->result.negate = true; break; case ir_unop_floor: inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0])); break; case ir_unop_fract: inst = emit(fs_inst(BRW_OPCODE_FRC, this->result, op[0])); break; case ir_unop_round_even: emit(fs_inst(BRW_OPCODE_RNDE, this->result, op[0])); break; case ir_binop_min: inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_L; inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1])); inst->predicated = true; break; case ir_binop_max: inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_G; inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1])); inst->predicated = true; break; case ir_binop_pow: emit_math(FS_OPCODE_POW, this->result, op[0], op[1]); break; case ir_unop_bit_not: inst = emit(fs_inst(BRW_OPCODE_NOT, this->result, op[0])); break; case ir_binop_bit_and: inst = emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1])); break; case ir_binop_bit_xor: inst = emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1])); break; case ir_binop_bit_or: inst = emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1])); break; case ir_unop_u2f: case ir_binop_lshift: case ir_binop_rshift: assert(!"GLSL 1.30 features unsupported"); break; } } void fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r, const glsl_type *type, bool predicated) { switch (type->base_type) { case GLSL_TYPE_FLOAT: case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_BOOL: for (unsigned int i = 0; i < type->components(); i++) { l.type = brw_type_for_base_type(type); r.type = brw_type_for_base_type(type); fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, l, r)); inst->predicated = predicated; l.reg_offset++; r.reg_offset++; } break; case GLSL_TYPE_ARRAY: for (unsigned int i = 0; i < type->length; i++) { emit_assignment_writes(l, r, type->fields.array, predicated); } break; case GLSL_TYPE_STRUCT: for (unsigned int i = 0; i < type->length; i++) { emit_assignment_writes(l, r, type->fields.structure[i].type, predicated); } break; case GLSL_TYPE_SAMPLER: break; default: assert(!"not reached"); break; } } void fs_visitor::visit(ir_assignment *ir) { struct fs_reg l, r; fs_inst *inst; /* FINISHME: arrays on the lhs */ ir->lhs->accept(this); l = this->result; ir->rhs->accept(this); r = this->result; assert(l.file != BAD_FILE); assert(r.file != BAD_FILE); if (ir->condition) { emit_bool_to_cond_code(ir->condition); } if (ir->lhs->type->is_scalar() || ir->lhs->type->is_vector()) { for (int i = 0; i < ir->lhs->type->vector_elements; i++) { if (ir->write_mask & (1 << i)) { inst = emit(fs_inst(BRW_OPCODE_MOV, l, r)); if (ir->condition) inst->predicated = true; r.reg_offset++; } l.reg_offset++; } } else { emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL); } } fs_inst * fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate) { int mlen; int base_mrf = 1; bool simd16 = false; fs_reg orig_dst; /* g0 header. */ mlen = 1; if (ir->shadow_comparitor) { for (int i = 0; i < ir->coordinate->type->vector_elements; i++) { emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate)); coordinate.reg_offset++; } /* gen4's SIMD8 sampler always has the slots for u,v,r present. */ mlen += 3; if (ir->op == ir_tex) { /* There's no plain shadow compare message, so we use shadow * compare with a bias of 0.0. */ emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), fs_reg(0.0f))); mlen++; } else if (ir->op == ir_txb) { ir->lod_info.bias->accept(this); emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result)); mlen++; } else { assert(ir->op == ir_txl); ir->lod_info.lod->accept(this); emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result)); mlen++; } ir->shadow_comparitor->accept(this); emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result)); mlen++; } else if (ir->op == ir_tex) { for (int i = 0; i < ir->coordinate->type->vector_elements; i++) { emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate)); coordinate.reg_offset++; } /* gen4's SIMD8 sampler always has the slots for u,v,r present. */ mlen += 3; } else { /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod * instructions. We'll need to do SIMD16 here. */ assert(ir->op == ir_txb || ir->op == ir_txl); for (int i = 0; i < ir->coordinate->type->vector_elements; i++) { emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2), coordinate)); coordinate.reg_offset++; } /* lod/bias appears after u/v/r. */ mlen += 6; if (ir->op == ir_txb) { ir->lod_info.bias->accept(this); emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result)); mlen++; } else { ir->lod_info.lod->accept(this); emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result)); mlen++; } /* The unused upper half. */ mlen++; /* Now, since we're doing simd16, the return is 2 interleaved * vec4s where the odd-indexed ones are junk. We'll need to move * this weirdness around to the expected layout. */ simd16 = true; orig_dst = dst; dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2)); dst.type = BRW_REGISTER_TYPE_F; } fs_inst *inst = NULL; switch (ir->op) { case ir_tex: inst = emit(fs_inst(FS_OPCODE_TEX, dst)); break; case ir_txb: inst = emit(fs_inst(FS_OPCODE_TXB, dst)); break; case ir_txl: inst = emit(fs_inst(FS_OPCODE_TXL, dst)); break; case ir_txd: case ir_txf: assert(!"GLSL 1.30 features unsupported"); break; } inst->base_mrf = base_mrf; inst->mlen = mlen; if (simd16) { for (int i = 0; i < 4; i++) { emit(fs_inst(BRW_OPCODE_MOV, orig_dst, dst)); orig_dst.reg_offset++; dst.reg_offset += 2; } } return inst; } fs_inst * fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate) { /* gen5's SIMD8 sampler has slots for u, v, r, array index, then * optional parameters like shadow comparitor or LOD bias. If * optional parameters aren't present, those base slots are * optional and don't need to be included in the message. * * We don't fill in the unnecessary slots regardless, which may * look surprising in the disassembly. */ int mlen = 1; /* g0 header always present. */ int base_mrf = 1; for (int i = 0; i < ir->coordinate->type->vector_elements; i++) { emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i), coordinate)); coordinate.reg_offset++; } mlen += ir->coordinate->type->vector_elements; if (ir->shadow_comparitor) { mlen = MAX2(mlen, 5); ir->shadow_comparitor->accept(this); emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result)); mlen++; } fs_inst *inst = NULL; switch (ir->op) { case ir_tex: inst = emit(fs_inst(FS_OPCODE_TEX, dst)); break; case ir_txb: ir->lod_info.bias->accept(this); mlen = MAX2(mlen, 5); emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result)); mlen++; inst = emit(fs_inst(FS_OPCODE_TXB, dst)); break; case ir_txl: ir->lod_info.lod->accept(this); mlen = MAX2(mlen, 5); emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result)); mlen++; inst = emit(fs_inst(FS_OPCODE_TXL, dst)); break; case ir_txd: case ir_txf: assert(!"GLSL 1.30 features unsupported"); break; } inst->base_mrf = base_mrf; inst->mlen = mlen; return inst; } void fs_visitor::visit(ir_texture *ir) { int sampler; fs_inst *inst = NULL; ir->coordinate->accept(this); fs_reg coordinate = this->result; /* Should be lowered by do_lower_texture_projection */ assert(!ir->projector); sampler = _mesa_get_sampler_uniform_value(ir->sampler, ctx->Shader.CurrentFragmentProgram, &brw->fragment_program->Base); sampler = c->fp->program.Base.SamplerUnits[sampler]; /* The 965 requires the EU to do the normalization of GL rectangle * texture coordinates. We use the program parameter state * tracking to get the scaling factor. */ if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) { struct gl_program_parameter_list *params = c->fp->program.Base.Parameters; int tokens[STATE_LENGTH] = { STATE_INTERNAL, STATE_TEXRECT_SCALE, sampler, 0, 0 }; c->prog_data.param_convert[c->prog_data.nr_params] = PARAM_NO_CONVERT; c->prog_data.param_convert[c->prog_data.nr_params + 1] = PARAM_NO_CONVERT; fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params); fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1); GLuint index = _mesa_add_state_reference(params, (gl_state_index *)tokens); float *vec_values = this->fp->Base.Parameters->ParameterValues[index]; c->prog_data.param[c->prog_data.nr_params++] = &vec_values[0]; c->prog_data.param[c->prog_data.nr_params++] = &vec_values[1]; fs_reg dst = fs_reg(this, ir->coordinate->type); fs_reg src = coordinate; coordinate = dst; emit(fs_inst(BRW_OPCODE_MUL, dst, src, scale_x)); dst.reg_offset++; src.reg_offset++; emit(fs_inst(BRW_OPCODE_MUL, dst, src, scale_y)); } /* Writemasking doesn't eliminate channels on SIMD8 texture * samples, so don't worry about them. */ fs_reg dst = fs_reg(this, glsl_type::vec4_type); if (intel->gen < 5) { inst = emit_texture_gen4(ir, dst, coordinate); } else { inst = emit_texture_gen5(ir, dst, coordinate); } inst->sampler = sampler; this->result = dst; if (ir->shadow_comparitor) inst->shadow_compare = true; if (c->key.tex_swizzles[inst->sampler] != SWIZZLE_NOOP) { fs_reg swizzle_dst = fs_reg(this, glsl_type::vec4_type); for (int i = 0; i < 4; i++) { int swiz = GET_SWZ(c->key.tex_swizzles[inst->sampler], i); fs_reg l = swizzle_dst; l.reg_offset += i; if (swiz == SWIZZLE_ZERO) { emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(0.0f))); } else if (swiz == SWIZZLE_ONE) { emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(1.0f))); } else { fs_reg r = dst; r.reg_offset += GET_SWZ(c->key.tex_swizzles[inst->sampler], i); emit(fs_inst(BRW_OPCODE_MOV, l, r)); } } this->result = swizzle_dst; } } void fs_visitor::visit(ir_swizzle *ir) { ir->val->accept(this); fs_reg val = this->result; if (ir->type->vector_elements == 1) { this->result.reg_offset += ir->mask.x; return; } fs_reg result = fs_reg(this, ir->type); this->result = result; for (unsigned int i = 0; i < ir->type->vector_elements; i++) { fs_reg channel = val; int swiz = 0; switch (i) { case 0: swiz = ir->mask.x; break; case 1: swiz = ir->mask.y; break; case 2: swiz = ir->mask.z; break; case 3: swiz = ir->mask.w; break; } channel.reg_offset += swiz; emit(fs_inst(BRW_OPCODE_MOV, result, channel)); result.reg_offset++; } } void fs_visitor::visit(ir_discard *ir) { fs_reg temp = fs_reg(this, glsl_type::uint_type); assert(ir->condition == NULL); /* FINISHME */ emit(fs_inst(FS_OPCODE_DISCARD_NOT, temp, reg_null_d)); emit(fs_inst(FS_OPCODE_DISCARD_AND, reg_null_d, temp)); kill_emitted = true; } void fs_visitor::visit(ir_constant *ir) { fs_reg reg(this, ir->type); this->result = reg; for (unsigned int i = 0; i < ir->type->vector_elements; i++) { switch (ir->type->base_type) { case GLSL_TYPE_FLOAT: emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.f[i]))); break; case GLSL_TYPE_UINT: emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.u[i]))); break; case GLSL_TYPE_INT: emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.i[i]))); break; case GLSL_TYPE_BOOL: emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg((int)ir->value.b[i]))); break; default: assert(!"Non-float/uint/int/bool constant"); } reg.reg_offset++; } } void fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir) { ir_expression *expr = ir->as_expression(); if (expr) { fs_reg op[2]; fs_inst *inst; for (unsigned int i = 0; i < expr->get_num_operands(); i++) { assert(expr->operands[i]->type->is_scalar()); expr->operands[i]->accept(this); op[i] = this->result; } switch (expr->operation) { case ir_unop_logic_not: inst = emit(fs_inst(BRW_OPCODE_AND, reg_null_d, op[0], fs_reg(1))); inst->conditional_mod = BRW_CONDITIONAL_Z; break; case ir_binop_logic_xor: inst = emit(fs_inst(BRW_OPCODE_XOR, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_NZ; break; case ir_binop_logic_or: inst = emit(fs_inst(BRW_OPCODE_OR, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_NZ; break; case ir_binop_logic_and: inst = emit(fs_inst(BRW_OPCODE_AND, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_NZ; break; case ir_unop_f2b: if (intel->gen >= 6) { inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0.0f))); } else { inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null_d, op[0])); } inst->conditional_mod = BRW_CONDITIONAL_NZ; break; case ir_unop_i2b: if (intel->gen >= 6) { inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d, op[0], fs_reg(0))); } else { inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null_d, op[0])); } inst->conditional_mod = BRW_CONDITIONAL_NZ; break; case ir_binop_greater: inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_G; break; case ir_binop_gequal: inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_GE; break; case ir_binop_less: inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_L; break; case ir_binop_lequal: inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_LE; break; case ir_binop_equal: case ir_binop_all_equal: inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_Z; break; case ir_binop_nequal: case ir_binop_any_nequal: inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_NZ; break; default: assert(!"not reached"); this->fail = true; break; } return; } ir->accept(this); if (intel->gen >= 6) { fs_inst *inst = emit(fs_inst(BRW_OPCODE_AND, reg_null_d, this->result, fs_reg(1))); inst->conditional_mod = BRW_CONDITIONAL_NZ; } else { fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null_d, this->result)); inst->conditional_mod = BRW_CONDITIONAL_NZ; } } /** * Emit a gen6 IF statement with the comparison folded into the IF * instruction. */ void fs_visitor::emit_if_gen6(ir_if *ir) { ir_expression *expr = ir->condition->as_expression(); if (expr) { fs_reg op[2]; fs_inst *inst; fs_reg temp; for (unsigned int i = 0; i < expr->get_num_operands(); i++) { assert(expr->operands[i]->type->is_scalar()); expr->operands[i]->accept(this); op[i] = this->result; } switch (expr->operation) { case ir_unop_logic_not: inst = emit(fs_inst(BRW_OPCODE_IF, temp, op[0], fs_reg(1))); inst->conditional_mod = BRW_CONDITIONAL_Z; return; case ir_binop_logic_xor: inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_NZ; return; case ir_binop_logic_or: temp = fs_reg(this, glsl_type::bool_type); emit(fs_inst(BRW_OPCODE_OR, temp, op[0], op[1])); inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0))); inst->conditional_mod = BRW_CONDITIONAL_NZ; return; case ir_binop_logic_and: temp = fs_reg(this, glsl_type::bool_type); emit(fs_inst(BRW_OPCODE_AND, temp, op[0], op[1])); inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, temp, fs_reg(0))); inst->conditional_mod = BRW_CONDITIONAL_NZ; return; case ir_unop_f2b: inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_f, op[0], fs_reg(0))); inst->conditional_mod = BRW_CONDITIONAL_NZ; return; case ir_unop_i2b: inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0))); inst->conditional_mod = BRW_CONDITIONAL_NZ; return; case ir_binop_greater: inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_G; return; case ir_binop_gequal: inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_GE; return; case ir_binop_less: inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_L; return; case ir_binop_lequal: inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_LE; return; case ir_binop_equal: case ir_binop_all_equal: inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_Z; return; case ir_binop_nequal: case ir_binop_any_nequal: inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], op[1])); inst->conditional_mod = BRW_CONDITIONAL_NZ; return; default: assert(!"not reached"); inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, op[0], fs_reg(0))); inst->conditional_mod = BRW_CONDITIONAL_NZ; this->fail = true; return; } return; } ir->condition->accept(this); fs_inst *inst = emit(fs_inst(BRW_OPCODE_IF, reg_null_d, this->result, fs_reg(0))); inst->conditional_mod = BRW_CONDITIONAL_NZ; } void fs_visitor::visit(ir_if *ir) { fs_inst *inst; /* Don't point the annotation at the if statement, because then it plus * the then and else blocks get printed. */ this->base_ir = ir->condition; if (intel->gen >= 6) { emit_if_gen6(ir); } else { emit_bool_to_cond_code(ir->condition); inst = emit(fs_inst(BRW_OPCODE_IF)); inst->predicated = true; } foreach_iter(exec_list_iterator, iter, ir->then_instructions) { ir_instruction *ir = (ir_instruction *)iter.get(); this->base_ir = ir; ir->accept(this); } if (!ir->else_instructions.is_empty()) { emit(fs_inst(BRW_OPCODE_ELSE)); foreach_iter(exec_list_iterator, iter, ir->else_instructions) { ir_instruction *ir = (ir_instruction *)iter.get(); this->base_ir = ir; ir->accept(this); } } emit(fs_inst(BRW_OPCODE_ENDIF)); } void fs_visitor::visit(ir_loop *ir) { fs_reg counter = reg_undef; if (ir->counter) { this->base_ir = ir->counter; ir->counter->accept(this); counter = *(variable_storage(ir->counter)); if (ir->from) { this->base_ir = ir->from; ir->from->accept(this); emit(fs_inst(BRW_OPCODE_MOV, counter, this->result)); } } emit(fs_inst(BRW_OPCODE_DO)); if (ir->to) { this->base_ir = ir->to; ir->to->accept(this); fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null_d, counter, this->result)); switch (ir->cmp) { case ir_binop_equal: inst->conditional_mod = BRW_CONDITIONAL_Z; break; case ir_binop_nequal: inst->conditional_mod = BRW_CONDITIONAL_NZ; break; case ir_binop_gequal: inst->conditional_mod = BRW_CONDITIONAL_GE; break; case ir_binop_lequal: inst->conditional_mod = BRW_CONDITIONAL_LE; break; case ir_binop_greater: inst->conditional_mod = BRW_CONDITIONAL_G; break; case ir_binop_less: inst->conditional_mod = BRW_CONDITIONAL_L; break; default: assert(!"not reached: unknown loop condition"); this->fail = true; break; } inst = emit(fs_inst(BRW_OPCODE_BREAK)); inst->predicated = true; } foreach_iter(exec_list_iterator, iter, ir->body_instructions) { ir_instruction *ir = (ir_instruction *)iter.get(); this->base_ir = ir; ir->accept(this); } if (ir->increment) { this->base_ir = ir->increment; ir->increment->accept(this); emit(fs_inst(BRW_OPCODE_ADD, counter, counter, this->result)); } emit(fs_inst(BRW_OPCODE_WHILE)); } void fs_visitor::visit(ir_loop_jump *ir) { switch (ir->mode) { case ir_loop_jump::jump_break: emit(fs_inst(BRW_OPCODE_BREAK)); break; case ir_loop_jump::jump_continue: emit(fs_inst(BRW_OPCODE_CONTINUE)); break; } } void fs_visitor::visit(ir_call *ir) { assert(!"FINISHME"); } void fs_visitor::visit(ir_return *ir) { assert(!"FINISHME"); } void fs_visitor::visit(ir_function *ir) { /* Ignore function bodies other than main() -- we shouldn't see calls to * them since they should all be inlined before we get to ir_to_mesa. */ if (strcmp(ir->name, "main") == 0) { const ir_function_signature *sig; exec_list empty; sig = ir->matching_signature(&empty); assert(sig); foreach_iter(exec_list_iterator, iter, sig->body) { ir_instruction *ir = (ir_instruction *)iter.get(); this->base_ir = ir; ir->accept(this); } } } void fs_visitor::visit(ir_function_signature *ir) { assert(!"not reached"); (void)ir; } fs_inst * fs_visitor::emit(fs_inst inst) { fs_inst *list_inst = new(mem_ctx) fs_inst; *list_inst = inst; list_inst->annotation = this->current_annotation; list_inst->ir = this->base_ir; this->instructions.push_tail(list_inst); return list_inst; } /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */ void fs_visitor::emit_dummy_fs() { /* Everyone's favorite color. */ emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, 2), fs_reg(1.0f))); emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, 3), fs_reg(0.0f))); emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, 4), fs_reg(1.0f))); emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, 5), fs_reg(0.0f))); fs_inst *write; write = emit(fs_inst(FS_OPCODE_FB_WRITE, fs_reg(0), fs_reg(0))); write->base_mrf = 0; } /* The register location here is relative to the start of the URB * data. It will get adjusted to be a real location before * generate_code() time. */ struct brw_reg fs_visitor::interp_reg(int location, int channel) { int regnr = urb_setup[location] * 2 + channel / 2; int stride = (channel & 1) * 4; assert(urb_setup[location] != -1); return brw_vec1_grf(regnr, stride); } /** Emits the interpolation for the varying inputs. */ void fs_visitor::emit_interpolation_setup_gen4() { struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW); this->current_annotation = "compute pixel centers"; this->pixel_x = fs_reg(this, glsl_type::uint_type); this->pixel_y = fs_reg(this, glsl_type::uint_type); this->pixel_x.type = BRW_REGISTER_TYPE_UW; this->pixel_y.type = BRW_REGISTER_TYPE_UW; emit(fs_inst(BRW_OPCODE_ADD, this->pixel_x, fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)), fs_reg(brw_imm_v(0x10101010)))); emit(fs_inst(BRW_OPCODE_ADD, this->pixel_y, fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)), fs_reg(brw_imm_v(0x11001100)))); this->current_annotation = "compute pixel deltas from v0"; if (brw->has_pln) { this->delta_x = fs_reg(this, glsl_type::vec2_type); this->delta_y = this->delta_x; this->delta_y.reg_offset++; } else { this->delta_x = fs_reg(this, glsl_type::float_type); this->delta_y = fs_reg(this, glsl_type::float_type); } emit(fs_inst(BRW_OPCODE_ADD, this->delta_x, this->pixel_x, fs_reg(negate(brw_vec1_grf(1, 0))))); emit(fs_inst(BRW_OPCODE_ADD, this->delta_y, this->pixel_y, fs_reg(negate(brw_vec1_grf(1, 1))))); this->current_annotation = "compute pos.w and 1/pos.w"; /* Compute wpos.w. It's always in our setup, since it's needed to * interpolate the other attributes. */ this->wpos_w = fs_reg(this, glsl_type::float_type); emit(fs_inst(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y, interp_reg(FRAG_ATTRIB_WPOS, 3))); /* Compute the pixel 1/W value from wpos.w. */ this->pixel_w = fs_reg(this, glsl_type::float_type); emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w); this->current_annotation = NULL; } /** Emits the interpolation for the varying inputs. */ void fs_visitor::emit_interpolation_setup_gen6() { struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW); /* If the pixel centers end up used, the setup is the same as for gen4. */ this->current_annotation = "compute pixel centers"; fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type); fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type); int_pixel_x.type = BRW_REGISTER_TYPE_UW; int_pixel_y.type = BRW_REGISTER_TYPE_UW; emit(fs_inst(BRW_OPCODE_ADD, int_pixel_x, fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)), fs_reg(brw_imm_v(0x10101010)))); emit(fs_inst(BRW_OPCODE_ADD, int_pixel_y, fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)), fs_reg(brw_imm_v(0x11001100)))); /* As of gen6, we can no longer mix float and int sources. We have * to turn the integer pixel centers into floats for their actual * use. */ this->pixel_x = fs_reg(this, glsl_type::float_type); this->pixel_y = fs_reg(this, glsl_type::float_type); emit(fs_inst(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x)); emit(fs_inst(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y)); this->current_annotation = "compute 1/pos.w"; this->wpos_w = fs_reg(brw_vec8_grf(c->key.source_w_reg, 0)); this->pixel_w = fs_reg(this, glsl_type::float_type); emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w); this->delta_x = fs_reg(brw_vec8_grf(2, 0)); this->delta_y = fs_reg(brw_vec8_grf(3, 0)); this->current_annotation = NULL; } void fs_visitor::emit_fb_writes() { this->current_annotation = "FB write header"; GLboolean header_present = GL_TRUE; int nr = 0; if (intel->gen >= 6 && !this->kill_emitted && c->key.nr_color_regions == 1) { header_present = false; } if (header_present) { /* m0, m1 header */ nr += 2; } if (c->key.aa_dest_stencil_reg) { emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++), fs_reg(brw_vec8_grf(c->key.aa_dest_stencil_reg, 0)))); } /* Reserve space for color. It'll be filled in per MRT below. */ int color_mrf = nr; nr += 4; if (c->key.source_depth_to_render_target) { if (c->key.computes_depth) { /* Hand over gl_FragDepth. */ assert(this->frag_depth); fs_reg depth = *(variable_storage(this->frag_depth)); emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++), depth)); } else { /* Pass through the payload depth. */ emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++), fs_reg(brw_vec8_grf(c->key.source_depth_reg, 0)))); } } if (c->key.dest_depth_reg) { emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++), fs_reg(brw_vec8_grf(c->key.dest_depth_reg, 0)))); } fs_reg color = reg_undef; if (this->frag_color) color = *(variable_storage(this->frag_color)); else if (this->frag_data) color = *(variable_storage(this->frag_data)); for (int target = 0; target < c->key.nr_color_regions; target++) { this->current_annotation = talloc_asprintf(this->mem_ctx, "FB write target %d", target); if (this->frag_color || this->frag_data) { for (int i = 0; i < 4; i++) { emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, color_mrf + i), color)); color.reg_offset++; } } if (this->frag_color) color.reg_offset -= 4; fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE, reg_undef, reg_undef)); inst->target = target; inst->base_mrf = 0; inst->mlen = nr; if (target == c->key.nr_color_regions - 1) inst->eot = true; inst->header_present = header_present; } if (c->key.nr_color_regions == 0) { fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE, reg_undef, reg_undef)); inst->base_mrf = 0; inst->mlen = nr; inst->eot = true; inst->header_present = header_present; } this->current_annotation = NULL; } void fs_visitor::generate_fb_write(fs_inst *inst) { GLboolean eot = inst->eot; struct brw_reg implied_header; /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied * move, here's g1. */ brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_set_compression_control(p, BRW_COMPRESSION_NONE); if (inst->header_present) { if (intel->gen >= 6) { brw_MOV(p, brw_message_reg(inst->base_mrf), brw_vec8_grf(0, 0)); if (inst->target > 0) { /* Set the render target index for choosing BLEND_STATE. */ brw_MOV(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 0, 2), BRW_REGISTER_TYPE_UD), brw_imm_ud(inst->target)); } /* Clear viewport index, render target array index. */ brw_AND(p, retype(brw_vec1_reg(BRW_MESSAGE_REGISTER_FILE, 0, 0), BRW_REGISTER_TYPE_UD), retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD), brw_imm_ud(0xf7ff)); implied_header = brw_null_reg(); } else { implied_header = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW); } brw_MOV(p, brw_message_reg(inst->base_mrf + 1), brw_vec8_grf(1, 0)); } else { implied_header = brw_null_reg(); } brw_pop_insn_state(p); brw_fb_WRITE(p, 8, /* dispatch_width */ retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW), inst->base_mrf, implied_header, inst->target, inst->mlen, 0, eot); } void fs_visitor::generate_linterp(fs_inst *inst, struct brw_reg dst, struct brw_reg *src) { struct brw_reg delta_x = src[0]; struct brw_reg delta_y = src[1]; struct brw_reg interp = src[2]; if (brw->has_pln && delta_y.nr == delta_x.nr + 1 && (intel->gen >= 6 || (delta_x.nr & 1) == 0)) { brw_PLN(p, dst, interp, delta_x); } else { brw_LINE(p, brw_null_reg(), interp, delta_x); brw_MAC(p, dst, suboffset(interp, 1), delta_y); } } void fs_visitor::generate_math(fs_inst *inst, struct brw_reg dst, struct brw_reg *src) { int op; switch (inst->opcode) { case FS_OPCODE_RCP: op = BRW_MATH_FUNCTION_INV; break; case FS_OPCODE_RSQ: op = BRW_MATH_FUNCTION_RSQ; break; case FS_OPCODE_SQRT: op = BRW_MATH_FUNCTION_SQRT; break; case FS_OPCODE_EXP2: op = BRW_MATH_FUNCTION_EXP; break; case FS_OPCODE_LOG2: op = BRW_MATH_FUNCTION_LOG; break; case FS_OPCODE_POW: op = BRW_MATH_FUNCTION_POW; break; case FS_OPCODE_SIN: op = BRW_MATH_FUNCTION_SIN; break; case FS_OPCODE_COS: op = BRW_MATH_FUNCTION_COS; break; default: assert(!"not reached: unknown math function"); op = 0; break; } if (intel->gen >= 6) { assert(inst->mlen == 0); if (inst->opcode == FS_OPCODE_POW) { brw_math2(p, dst, op, src[0], src[1]); } else { brw_math(p, dst, op, inst->saturate ? BRW_MATH_SATURATE_SATURATE : BRW_MATH_SATURATE_NONE, 0, src[0], BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); } } else { assert(inst->mlen >= 1); brw_math(p, dst, op, inst->saturate ? BRW_MATH_SATURATE_SATURATE : BRW_MATH_SATURATE_NONE, inst->base_mrf, src[0], BRW_MATH_DATA_VECTOR, BRW_MATH_PRECISION_FULL); } } void fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst) { int msg_type = -1; int rlen = 4; uint32_t simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8; if (intel->gen >= 5) { switch (inst->opcode) { case FS_OPCODE_TEX: if (inst->shadow_compare) { msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5; } else { msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5; } break; case FS_OPCODE_TXB: if (inst->shadow_compare) { msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE_GEN5; } else { msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5; } break; } } else { switch (inst->opcode) { case FS_OPCODE_TEX: /* Note that G45 and older determines shadow compare and dispatch width * from message length for most messages. */ msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE; if (inst->shadow_compare) { assert(inst->mlen == 6); } else { assert(inst->mlen <= 4); } break; case FS_OPCODE_TXB: if (inst->shadow_compare) { assert(inst->mlen == 6); msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE; } else { assert(inst->mlen == 9); msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; } break; } } assert(msg_type != -1); if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) { rlen = 8; dst = vec16(dst); } brw_SAMPLE(p, retype(dst, BRW_REGISTER_TYPE_UW), inst->base_mrf, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW), SURF_INDEX_TEXTURE(inst->sampler), inst->sampler, WRITEMASK_XYZW, msg_type, rlen, inst->mlen, 0, 1, simd_mode); } /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input * looking like: * * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br * * and we're trying to produce: * * DDX DDY * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl) * (ss0.tr - ss0.tl) (ss0.tr - ss0.br) * (ss0.br - ss0.bl) (ss0.tl - ss0.bl) * (ss0.br - ss0.bl) (ss0.tr - ss0.br) * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl) * (ss1.tr - ss1.tl) (ss1.tr - ss1.br) * (ss1.br - ss1.bl) (ss1.tl - ss1.bl) * (ss1.br - ss1.bl) (ss1.tr - ss1.br) * * and add another set of two more subspans if in 16-pixel dispatch mode. * * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result * for each pair, and vertstride = 2 jumps us 2 elements after processing a * pair. But for DDY, it's harder, as we want to produce the pairs swizzled * between each other. We could probably do it like ddx and swizzle the right * order later, but bail for now and just produce * ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4) */ void fs_visitor::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src) { struct brw_reg src0 = brw_reg(src.file, src.nr, 1, BRW_REGISTER_TYPE_F, BRW_VERTICAL_STRIDE_2, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_0, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); struct brw_reg src1 = brw_reg(src.file, src.nr, 0, BRW_REGISTER_TYPE_F, BRW_VERTICAL_STRIDE_2, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_0, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); brw_ADD(p, dst, src0, negate(src1)); } void fs_visitor::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src) { struct brw_reg src0 = brw_reg(src.file, src.nr, 0, BRW_REGISTER_TYPE_F, BRW_VERTICAL_STRIDE_4, BRW_WIDTH_4, BRW_HORIZONTAL_STRIDE_0, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); struct brw_reg src1 = brw_reg(src.file, src.nr, 2, BRW_REGISTER_TYPE_F, BRW_VERTICAL_STRIDE_4, BRW_WIDTH_4, BRW_HORIZONTAL_STRIDE_0, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); brw_ADD(p, dst, src0, negate(src1)); } void fs_visitor::generate_discard_not(fs_inst *inst, struct brw_reg mask) { if (intel->gen >= 6) { /* Gen6 no longer has the mask reg for us to just read the * active channels from. However, cmp updates just the channels * of the flag reg that are enabled, so we can get at the * channel enables that way. In this step, make a reg of ones * we'll compare to. */ brw_MOV(p, mask, brw_imm_ud(1)); } else { brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_NOT(p, mask, brw_mask_reg(1)); /* IMASK */ brw_pop_insn_state(p); } } void fs_visitor::generate_discard_and(fs_inst *inst, struct brw_reg mask) { if (intel->gen >= 6) { struct brw_reg f0 = brw_flag_reg(); struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW); brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, f0, brw_imm_uw(0xffff)); /* inactive channels undiscarded */ brw_pop_insn_state(p); brw_CMP(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD), BRW_CONDITIONAL_Z, mask, brw_imm_ud(0)); /* active channels fail test */ /* Undo CMP's whacking of predication*/ brw_set_predicate_control(p, BRW_PREDICATE_NONE); brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_AND(p, g1, f0, g1); brw_pop_insn_state(p); } else { struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW); mask = brw_uw1_reg(mask.file, mask.nr, 0); brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_AND(p, g0, mask, g0); brw_pop_insn_state(p); } } void fs_visitor::generate_spill(fs_inst *inst, struct brw_reg src) { assert(inst->mlen != 0); brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), BRW_REGISTER_TYPE_UD), retype(src, BRW_REGISTER_TYPE_UD)); brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf), 1, inst->offset); } void fs_visitor::generate_unspill(fs_inst *inst, struct brw_reg dst) { assert(inst->mlen != 0); /* Clear any post destination dependencies that would be ignored by * the block read. See the B-Spec for pre-gen5 send instruction. * * This could use a better solution, since texture sampling and * math reads could potentially run into it as well -- anywhere * that we have a SEND with a destination that is a register that * was written but not read within the last N instructions (what's * N? unsure). This is rare because of dead code elimination, but * not impossible. */ if (intel->gen == 4 && !intel->is_g4x) brw_MOV(p, brw_null_reg(), dst); brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf), 1, inst->offset); if (intel->gen == 4 && !intel->is_g4x) { /* gen4 errata: destination from a send can't be used as a * destination until it's been read. Just read it so we don't * have to worry. */ brw_MOV(p, brw_null_reg(), dst); } } void fs_visitor::generate_pull_constant_load(fs_inst *inst, struct brw_reg dst) { assert(inst->mlen != 0); /* Clear any post destination dependencies that would be ignored by * the block read. See the B-Spec for pre-gen5 send instruction. * * This could use a better solution, since texture sampling and * math reads could potentially run into it as well -- anywhere * that we have a SEND with a destination that is a register that * was written but not read within the last N instructions (what's * N? unsure). This is rare because of dead code elimination, but * not impossible. */ if (intel->gen == 4 && !intel->is_g4x) brw_MOV(p, brw_null_reg(), dst); brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf), inst->offset, SURF_INDEX_FRAG_CONST_BUFFER); if (intel->gen == 4 && !intel->is_g4x) { /* gen4 errata: destination from a send can't be used as a * destination until it's been read. Just read it so we don't * have to worry. */ brw_MOV(p, brw_null_reg(), dst); } } void fs_visitor::assign_curb_setup() { c->prog_data.first_curbe_grf = c->key.nr_payload_regs; c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8; /* Map the offsets in the UNIFORM file to fixed HW regs. */ foreach_iter(exec_list_iterator, iter, this->instructions) { fs_inst *inst = (fs_inst *)iter.get(); for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == UNIFORM) { int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset; struct brw_reg brw_reg = brw_vec1_grf(c->prog_data.first_curbe_grf + constant_nr / 8, constant_nr % 8); inst->src[i].file = FIXED_HW_REG; inst->src[i].fixed_hw_reg = retype(brw_reg, inst->src[i].type); } } } } void fs_visitor::calculate_urb_setup() { for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) { urb_setup[i] = -1; } int urb_next = 0; /* Figure out where each of the incoming setup attributes lands. */ if (intel->gen >= 6) { for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) { if (brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(i)) { urb_setup[i] = urb_next++; } } } else { /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */ for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) { if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) { int fp_index; if (i >= VERT_RESULT_VAR0) fp_index = i - (VERT_RESULT_VAR0 - FRAG_ATTRIB_VAR0); else if (i <= VERT_RESULT_TEX7) fp_index = i; else fp_index = -1; if (fp_index >= 0) urb_setup[fp_index] = urb_next++; } } } /* Each attribute is 4 setup channels, each of which is half a reg. */ c->prog_data.urb_read_length = urb_next * 2; } void fs_visitor::assign_urb_setup() { int urb_start = c->prog_data.first_curbe_grf + c->prog_data.curb_read_length; /* Offset all the urb_setup[] index by the actual position of the * setup regs, now that the location of the constants has been chosen. */ foreach_iter(exec_list_iterator, iter, this->instructions) { fs_inst *inst = (fs_inst *)iter.get(); if (inst->opcode != FS_OPCODE_LINTERP) continue; assert(inst->src[2].file == FIXED_HW_REG); inst->src[2].fixed_hw_reg.nr += urb_start; } this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length; } /** * Split large virtual GRFs into separate components if we can. * * This is mostly duplicated with what brw_fs_vector_splitting does, * but that's really conservative because it's afraid of doing * splitting that doesn't result in real progress after the rest of * the optimization phases, which would cause infinite looping in * optimization. We can do it once here, safely. This also has the * opportunity to split interpolated values, or maybe even uniforms, * which we don't have at the IR level. * * We want to split, because virtual GRFs are what we register * allocate and spill (due to contiguousness requirements for some * instructions), and they're what we naturally generate in the * codegen process, but most virtual GRFs don't actually need to be * contiguous sets of GRFs. If we split, we'll end up with reduced * live intervals and better dead code elimination and coalescing. */ void fs_visitor::split_virtual_grfs() { int num_vars = this->virtual_grf_next; bool split_grf[num_vars]; int new_virtual_grf[num_vars]; /* Try to split anything > 0 sized. */ for (int i = 0; i < num_vars; i++) { if (this->virtual_grf_sizes[i] != 1) split_grf[i] = true; else split_grf[i] = false; } if (brw->has_pln) { /* PLN opcodes rely on the delta_xy being contiguous. */ split_grf[this->delta_x.reg] = false; } foreach_iter(exec_list_iterator, iter, this->instructions) { fs_inst *inst = (fs_inst *)iter.get(); /* Texturing produces 4 contiguous registers, so no splitting. */ if ((inst->opcode == FS_OPCODE_TEX || inst->opcode == FS_OPCODE_TXB || inst->opcode == FS_OPCODE_TXL) && inst->dst.file == GRF) { split_grf[inst->dst.reg] = false; } } /* Allocate new space for split regs. Note that the virtual * numbers will be contiguous. */ for (int i = 0; i < num_vars; i++) { if (split_grf[i]) { new_virtual_grf[i] = virtual_grf_alloc(1); for (int j = 2; j < this->virtual_grf_sizes[i]; j++) { int reg = virtual_grf_alloc(1); assert(reg == new_virtual_grf[i] + j - 1); (void) reg; } this->virtual_grf_sizes[i] = 1; } } foreach_iter(exec_list_iterator, iter, this->instructions) { fs_inst *inst = (fs_inst *)iter.get(); if (inst->dst.file == GRF && split_grf[inst->dst.reg] && inst->dst.reg_offset != 0) { inst->dst.reg = (new_virtual_grf[inst->dst.reg] + inst->dst.reg_offset - 1); inst->dst.reg_offset = 0; } for (int i = 0; i < 3; i++) { if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] && inst->src[i].reg_offset != 0) { inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] + inst->src[i].reg_offset - 1); inst->src[i].reg_offset = 0; } } } } /** * Choose accesses from the UNIFORM file to demote to using the pull * constant buffer. * * We allow a fragment shader to have more than the specified minimum * maximum number of fragment shader uniform components (64). If * there are too many of these, they'd fill up all of register space. * So, this will push some of them out to the pull constant buffer and * update the program to load them. */ void fs_visitor::setup_pull_constants() { /* Only allow 16 registers (128 uniform components) as push constants. */ unsigned int max_uniform_components = 16 * 8; if (c->prog_data.nr_params <= max_uniform_components) return; /* Just demote the end of the list. We could probably do better * here, demoting things that are rarely used in the program first. */ int pull_uniform_base = max_uniform_components; int pull_uniform_count = c->prog_data.nr_params - pull_uniform_base; foreach_iter(exec_list_iterator, iter, this->instructions) { fs_inst *inst = (fs_inst *)iter.get(); for (int i = 0; i < 3; i++) { if (inst->src[i].file != UNIFORM) continue; int uniform_nr = inst->src[i].hw_reg + inst->src[i].reg_offset; if (uniform_nr < pull_uniform_base) continue; fs_reg dst = fs_reg(this, glsl_type::float_type); fs_inst *pull = new(mem_ctx) fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD, dst); pull->offset = ((uniform_nr - pull_uniform_base) * 4) & ~15; pull->ir = inst->ir; pull->annotation = inst->annotation; pull->base_mrf = 14; pull->mlen = 1; inst->insert_before(pull); inst->src[i].file = GRF; inst->src[i].reg = dst.reg; inst->src[i].reg_offset = 0; inst->src[i].smear = (uniform_nr - pull_uniform_base) & 3; } } for (int i = 0; i < pull_uniform_count; i++) { c->prog_data.pull_param[i] = c->prog_data.param[pull_uniform_base + i]; c->prog_data.pull_param_convert[i] = c->prog_data.param_convert[pull_uniform_base + i]; } c->prog_data.nr_params -= pull_uniform_count; c->prog_data.nr_pull_params = pull_uniform_count; } void fs_visitor::calculate_live_intervals() { int num_vars = this->virtual_grf_next; int *def = talloc_array(mem_ctx, int, num_vars); int *use = talloc_array(mem_ctx, int, num_vars); int loop_depth = 0; int loop_start = 0; int bb_header_ip = 0; for (int i = 0; i < num_vars; i++) { def[i] = 1 << 30; use[i] = -1; } int ip = 0; foreach_iter(exec_list_iterator, iter, this->instructions) { fs_inst *inst = (fs_inst *)iter.get(); if (inst->opcode == BRW_OPCODE_DO) { if (loop_depth++ == 0) loop_start = ip; } else if (inst->opcode == BRW_OPCODE_WHILE) { loop_depth--; if (loop_depth == 0) { /* Patches up the use of vars marked for being live across * the whole loop. */ for (int i = 0; i < num_vars; i++) { if (use[i] == loop_start) { use[i] = ip; } } } } else { for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == GRF && inst->src[i].reg != 0) { int reg = inst->src[i].reg; if (!loop_depth || (this->virtual_grf_sizes[reg] == 1 && def[reg] >= bb_header_ip)) { use[reg] = ip; } else { def[reg] = MIN2(loop_start, def[reg]); use[reg] = loop_start; /* Nobody else is going to go smash our start to * later in the loop now, because def[reg] now * points before the bb header. */ } } } if (inst->dst.file == GRF && inst->dst.reg != 0) { int reg = inst->dst.reg; if (!loop_depth || (this->virtual_grf_sizes[reg] == 1 && !inst->predicated)) { def[reg] = MIN2(def[reg], ip); } else { def[reg] = MIN2(def[reg], loop_start); } } } ip++; /* Set the basic block header IP. This is used for determining * if a complete def of single-register virtual GRF in a loop * dominates a use in the same basic block. It's a quick way to * reduce the live interval range of most register used in a * loop. */ if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_ELSE || inst->opcode == BRW_OPCODE_ENDIF || inst->opcode == BRW_OPCODE_DO || inst->opcode == BRW_OPCODE_WHILE || inst->opcode == BRW_OPCODE_BREAK || inst->opcode == BRW_OPCODE_CONTINUE) { bb_header_ip = ip; } } talloc_free(this->virtual_grf_def); talloc_free(this->virtual_grf_use); this->virtual_grf_def = def; this->virtual_grf_use = use; } /** * Attempts to move immediate constants into the immediate * constant slot of following instructions. * * Immediate constants are a bit tricky -- they have to be in the last * operand slot, you can't do abs/negate on them, */ bool fs_visitor::propagate_constants() { bool progress = false; foreach_iter(exec_list_iterator, iter, this->instructions) { fs_inst *inst = (fs_inst *)iter.get(); if (inst->opcode != BRW_OPCODE_MOV || inst->predicated || inst->dst.file != GRF || inst->src[0].file != IMM || inst->dst.type != inst->src[0].type) continue; /* Don't bother with cases where we should have had the * operation on the constant folded in GLSL already. */ if (inst->saturate) continue; /* Found a move of a constant to a GRF. Find anything else using the GRF * before it's written, and replace it with the constant if we can. */ exec_list_iterator scan_iter = iter; scan_iter.next(); for (; scan_iter.has_next(); scan_iter.next()) { fs_inst *scan_inst = (fs_inst *)scan_iter.get(); if (scan_inst->opcode == BRW_OPCODE_DO || scan_inst->opcode == BRW_OPCODE_WHILE || scan_inst->opcode == BRW_OPCODE_ELSE || scan_inst->opcode == BRW_OPCODE_ENDIF) { break; } for (int i = 2; i >= 0; i--) { if (scan_inst->src[i].file != GRF || scan_inst->src[i].reg != inst->dst.reg || scan_inst->src[i].reg_offset != inst->dst.reg_offset) continue; /* Don't bother with cases where we should have had the * operation on the constant folded in GLSL already. */ if (scan_inst->src[i].negate || scan_inst->src[i].abs) continue; switch (scan_inst->opcode) { case BRW_OPCODE_MOV: scan_inst->src[i] = inst->src[0]; progress = true; break; case BRW_OPCODE_MUL: case BRW_OPCODE_ADD: if (i == 1) { scan_inst->src[i] = inst->src[0]; progress = true; } else if (i == 0 && scan_inst->src[1].file != IMM) { /* Fit this constant in by commuting the operands */ scan_inst->src[0] = scan_inst->src[1]; scan_inst->src[1] = inst->src[0]; } break; case BRW_OPCODE_CMP: if (i == 1) { scan_inst->src[i] = inst->src[0]; progress = true; } } } if (scan_inst->dst.file == GRF && scan_inst->dst.reg == inst->dst.reg && (scan_inst->dst.reg_offset == inst->dst.reg_offset || scan_inst->opcode == FS_OPCODE_TEX)) { break; } } } return progress; } /** * Must be called after calculate_live_intervales() to remove unused * writes to registers -- register allocation will fail otherwise * because something deffed but not used won't be considered to * interfere with other regs. */ bool fs_visitor::dead_code_eliminate() { bool progress = false; int num_vars = this->virtual_grf_next; bool dead[num_vars]; for (int i = 0; i < num_vars; i++) { dead[i] = this->virtual_grf_def[i] >= this->virtual_grf_use[i]; if (dead[i]) { /* Mark off its interval so it won't interfere with anything. */ this->virtual_grf_def[i] = -1; this->virtual_grf_use[i] = -1; } } foreach_iter(exec_list_iterator, iter, this->instructions) { fs_inst *inst = (fs_inst *)iter.get(); if (inst->dst.file == GRF && dead[inst->dst.reg]) { inst->remove(); progress = true; } } return progress; } bool fs_visitor::register_coalesce() { bool progress = false; foreach_iter(exec_list_iterator, iter, this->instructions) { fs_inst *inst = (fs_inst *)iter.get(); if (inst->opcode != BRW_OPCODE_MOV || inst->predicated || inst->saturate || inst->dst.file != GRF || inst->src[0].file != GRF || inst->dst.type != inst->src[0].type) continue; /* Found a move of a GRF to a GRF. Let's see if we can coalesce * them: check for no writes to either one until the exit of the * program. */ bool interfered = false; exec_list_iterator scan_iter = iter; scan_iter.next(); for (; scan_iter.has_next(); scan_iter.next()) { fs_inst *scan_inst = (fs_inst *)scan_iter.get(); if (scan_inst->opcode == BRW_OPCODE_DO || scan_inst->opcode == BRW_OPCODE_WHILE || scan_inst->opcode == BRW_OPCODE_ENDIF) { interfered = true; iter = scan_iter; break; } if (scan_inst->dst.file == GRF) { if (scan_inst->dst.reg == inst->dst.reg && (scan_inst->dst.reg_offset == inst->dst.reg_offset || scan_inst->opcode == FS_OPCODE_TEX)) { interfered = true; break; } if (scan_inst->dst.reg == inst->src[0].reg && (scan_inst->dst.reg_offset == inst->src[0].reg_offset || scan_inst->opcode == FS_OPCODE_TEX)) { interfered = true; break; } } } if (interfered) { continue; } /* Update live interval so we don't have to recalculate. */ this->virtual_grf_use[inst->src[0].reg] = MAX2(virtual_grf_use[inst->src[0].reg], virtual_grf_use[inst->dst.reg]); /* Rewrite the later usage to point at the source of the move to * be removed. */ for (exec_list_iterator scan_iter = iter; scan_iter.has_next(); scan_iter.next()) { fs_inst *scan_inst = (fs_inst *)scan_iter.get(); for (int i = 0; i < 3; i++) { if (scan_inst->src[i].file == GRF && scan_inst->src[i].reg == inst->dst.reg && scan_inst->src[i].reg_offset == inst->dst.reg_offset) { scan_inst->src[i].reg = inst->src[0].reg; scan_inst->src[i].reg_offset = inst->src[0].reg_offset; scan_inst->src[i].abs |= inst->src[0].abs; scan_inst->src[i].negate ^= inst->src[0].negate; scan_inst->src[i].smear = inst->src[0].smear; } } } inst->remove(); progress = true; } return progress; } bool fs_visitor::compute_to_mrf() { bool progress = false; int next_ip = 0; foreach_iter(exec_list_iterator, iter, this->instructions) { fs_inst *inst = (fs_inst *)iter.get(); int ip = next_ip; next_ip++; if (inst->opcode != BRW_OPCODE_MOV || inst->predicated || inst->dst.file != MRF || inst->src[0].file != GRF || inst->dst.type != inst->src[0].type || inst->src[0].abs || inst->src[0].negate || inst->src[0].smear != -1) continue; /* Can't compute-to-MRF this GRF if someone else was going to * read it later. */ if (this->virtual_grf_use[inst->src[0].reg] > ip) continue; /* Found a move of a GRF to a MRF. Let's see if we can go * rewrite the thing that made this GRF to write into the MRF. */ bool found = false; fs_inst *scan_inst; for (scan_inst = (fs_inst *)inst->prev; scan_inst->prev != NULL; scan_inst = (fs_inst *)scan_inst->prev) { /* We don't handle flow control here. Most computation of * values that end up in MRFs are shortly before the MRF * write anyway. */ if (scan_inst->opcode == BRW_OPCODE_DO || scan_inst->opcode == BRW_OPCODE_WHILE || scan_inst->opcode == BRW_OPCODE_ENDIF) { break; } /* You can't read from an MRF, so if someone else reads our * MRF's source GRF that we wanted to rewrite, that stops us. */ bool interfered = false; for (int i = 0; i < 3; i++) { if (scan_inst->src[i].file == GRF && scan_inst->src[i].reg == inst->src[0].reg && scan_inst->src[i].reg_offset == inst->src[0].reg_offset) { interfered = true; } } if (interfered) break; if (scan_inst->dst.file == MRF && scan_inst->dst.hw_reg == inst->dst.hw_reg) { /* Somebody else wrote our MRF here, so we can't can't * compute-to-MRF before that. */ break; } if (scan_inst->mlen > 0) { /* Found a SEND instruction, which will do some amount of * implied write that may overwrite our MRF that we were * hoping to compute-to-MRF somewhere above it. Nothing * we have implied-writes more than 2 MRFs from base_mrf, * though. */ int implied_write_len = MIN2(scan_inst->mlen, 2); if (inst->dst.hw_reg >= scan_inst->base_mrf && inst->dst.hw_reg < scan_inst->base_mrf + implied_write_len) { break; } } if (scan_inst->dst.file == GRF && scan_inst->dst.reg == inst->src[0].reg) { /* Found the last thing to write our reg we want to turn * into a compute-to-MRF. */ if (scan_inst->opcode == FS_OPCODE_TEX) { /* texturing writes several continuous regs, so we can't * compute-to-mrf that. */ break; } /* If it's predicated, it (probably) didn't populate all * the channels. */ if (scan_inst->predicated) break; /* SEND instructions can't have MRF as a destination. */ if (scan_inst->mlen) break; if (intel->gen >= 6) { /* gen6 math instructions must have the destination be * GRF, so no compute-to-MRF for them. */ if (scan_inst->opcode == FS_OPCODE_RCP || scan_inst->opcode == FS_OPCODE_RSQ || scan_inst->opcode == FS_OPCODE_SQRT || scan_inst->opcode == FS_OPCODE_EXP2 || scan_inst->opcode == FS_OPCODE_LOG2 || scan_inst->opcode == FS_OPCODE_SIN || scan_inst->opcode == FS_OPCODE_COS || scan_inst->opcode == FS_OPCODE_POW) { break; } } if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) { /* Found the creator of our MRF's source value. */ found = true; break; } } } if (found) { scan_inst->dst.file = MRF; scan_inst->dst.hw_reg = inst->dst.hw_reg; scan_inst->saturate |= inst->saturate; inst->remove(); progress = true; } } return progress; } bool fs_visitor::virtual_grf_interferes(int a, int b) { int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]); int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]); /* For dead code, just check if the def interferes with the other range. */ if (this->virtual_grf_use[a] == -1) { return (this->virtual_grf_def[a] >= this->virtual_grf_def[b] && this->virtual_grf_def[a] < this->virtual_grf_use[b]); } if (this->virtual_grf_use[b] == -1) { return (this->virtual_grf_def[b] >= this->virtual_grf_def[a] && this->virtual_grf_def[b] < this->virtual_grf_use[a]); } return start < end; } static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg) { struct brw_reg brw_reg; switch (reg->file) { case GRF: case ARF: case MRF: if (reg->smear == -1) { brw_reg = brw_vec8_reg(reg->file, reg->hw_reg, 0); } else { brw_reg = brw_vec1_reg(reg->file, reg->hw_reg, reg->smear); } brw_reg = retype(brw_reg, reg->type); break; case IMM: switch (reg->type) { case BRW_REGISTER_TYPE_F: brw_reg = brw_imm_f(reg->imm.f); break; case BRW_REGISTER_TYPE_D: brw_reg = brw_imm_d(reg->imm.i); break; case BRW_REGISTER_TYPE_UD: brw_reg = brw_imm_ud(reg->imm.u); break; default: assert(!"not reached"); break; } break; case FIXED_HW_REG: brw_reg = reg->fixed_hw_reg; break; case BAD_FILE: /* Probably unused. */ brw_reg = brw_null_reg(); break; case UNIFORM: assert(!"not reached"); brw_reg = brw_null_reg(); break; } if (reg->abs) brw_reg = brw_abs(brw_reg); if (reg->negate) brw_reg = negate(brw_reg); return brw_reg; } void fs_visitor::generate_code() { int last_native_inst = 0; struct brw_instruction *if_stack[16], *loop_stack[16]; int if_stack_depth = 0, loop_stack_depth = 0; int if_depth_in_loop[16]; const char *last_annotation_string = NULL; ir_instruction *last_annotation_ir = NULL; if (unlikely(INTEL_DEBUG & DEBUG_WM)) { printf("Native code for fragment shader %d:\n", ctx->Shader.CurrentFragmentProgram->Name); } if_depth_in_loop[loop_stack_depth] = 0; memset(&if_stack, 0, sizeof(if_stack)); foreach_iter(exec_list_iterator, iter, this->instructions) { fs_inst *inst = (fs_inst *)iter.get(); struct brw_reg src[3], dst; if (unlikely(INTEL_DEBUG & DEBUG_WM)) { if (last_annotation_ir != inst->ir) { last_annotation_ir = inst->ir; if (last_annotation_ir) { printf(" "); last_annotation_ir->print(); printf("\n"); } } if (last_annotation_string != inst->annotation) { last_annotation_string = inst->annotation; if (last_annotation_string) printf(" %s\n", last_annotation_string); } } for (unsigned int i = 0; i < 3; i++) { src[i] = brw_reg_from_fs_reg(&inst->src[i]); } dst = brw_reg_from_fs_reg(&inst->dst); brw_set_conditionalmod(p, inst->conditional_mod); brw_set_predicate_control(p, inst->predicated); switch (inst->opcode) { case BRW_OPCODE_MOV: brw_MOV(p, dst, src[0]); break; case BRW_OPCODE_ADD: brw_ADD(p, dst, src[0], src[1]); break; case BRW_OPCODE_MUL: brw_MUL(p, dst, src[0], src[1]); break; case BRW_OPCODE_FRC: brw_FRC(p, dst, src[0]); break; case BRW_OPCODE_RNDD: brw_RNDD(p, dst, src[0]); break; case BRW_OPCODE_RNDE: brw_RNDE(p, dst, src[0]); break; case BRW_OPCODE_RNDZ: brw_RNDZ(p, dst, src[0]); break; case BRW_OPCODE_AND: brw_AND(p, dst, src[0], src[1]); break; case BRW_OPCODE_OR: brw_OR(p, dst, src[0], src[1]); break; case BRW_OPCODE_XOR: brw_XOR(p, dst, src[0], src[1]); break; case BRW_OPCODE_NOT: brw_NOT(p, dst, src[0]); break; case BRW_OPCODE_ASR: brw_ASR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHR: brw_SHR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHL: brw_SHL(p, dst, src[0], src[1]); break; case BRW_OPCODE_CMP: brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]); break; case BRW_OPCODE_SEL: brw_SEL(p, dst, src[0], src[1]); break; case BRW_OPCODE_IF: assert(if_stack_depth < 16); if (inst->src[0].file != BAD_FILE) { assert(intel->gen >= 6); if_stack[if_stack_depth] = brw_IF_gen6(p, inst->conditional_mod, src[0], src[1]); } else { if_stack[if_stack_depth] = brw_IF(p, BRW_EXECUTE_8); } if_depth_in_loop[loop_stack_depth]++; if_stack_depth++; break; case BRW_OPCODE_ELSE: if_stack[if_stack_depth - 1] = brw_ELSE(p, if_stack[if_stack_depth - 1]); break; case BRW_OPCODE_ENDIF: if_stack_depth--; brw_ENDIF(p , if_stack[if_stack_depth]); if_depth_in_loop[loop_stack_depth]--; break; case BRW_OPCODE_DO: /* FINISHME: We need to write the loop instruction support still. */ if (intel->gen >= 6) this->fail = true; loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8); if_depth_in_loop[loop_stack_depth] = 0; break; case BRW_OPCODE_BREAK: brw_BREAK(p, if_depth_in_loop[loop_stack_depth]); brw_set_predicate_control(p, BRW_PREDICATE_NONE); break; case BRW_OPCODE_CONTINUE: brw_CONT(p, if_depth_in_loop[loop_stack_depth]); brw_set_predicate_control(p, BRW_PREDICATE_NONE); break; case BRW_OPCODE_WHILE: { struct brw_instruction *inst0, *inst1; GLuint br = 1; if (intel->gen >= 5) br = 2; assert(loop_stack_depth > 0); loop_stack_depth--; inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]); /* patch all the BREAK/CONT instructions from last BGNLOOP */ while (inst0 > loop_stack[loop_stack_depth]) { inst0--; if (inst0->header.opcode == BRW_OPCODE_BREAK && inst0->bits3.if_else.jump_count == 0) { inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1); } else if (inst0->header.opcode == BRW_OPCODE_CONTINUE && inst0->bits3.if_else.jump_count == 0) { inst0->bits3.if_else.jump_count = br * (inst1 - inst0); } } } break; case FS_OPCODE_RCP: case FS_OPCODE_RSQ: case FS_OPCODE_SQRT: case FS_OPCODE_EXP2: case FS_OPCODE_LOG2: case FS_OPCODE_POW: case FS_OPCODE_SIN: case FS_OPCODE_COS: generate_math(inst, dst, src); break; case FS_OPCODE_LINTERP: generate_linterp(inst, dst, src); break; case FS_OPCODE_TEX: case FS_OPCODE_TXB: case FS_OPCODE_TXL: generate_tex(inst, dst); break; case FS_OPCODE_DISCARD_NOT: generate_discard_not(inst, dst); break; case FS_OPCODE_DISCARD_AND: generate_discard_and(inst, src[0]); break; case FS_OPCODE_DDX: generate_ddx(inst, dst, src[0]); break; case FS_OPCODE_DDY: generate_ddy(inst, dst, src[0]); break; case FS_OPCODE_SPILL: generate_spill(inst, src[0]); break; case FS_OPCODE_UNSPILL: generate_unspill(inst, dst); break; case FS_OPCODE_PULL_CONSTANT_LOAD: generate_pull_constant_load(inst, dst); break; case FS_OPCODE_FB_WRITE: generate_fb_write(inst); break; default: if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) { _mesa_problem(ctx, "Unsupported opcode `%s' in FS", brw_opcodes[inst->opcode].name); } else { _mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode); } this->fail = true; } if (unlikely(INTEL_DEBUG & DEBUG_WM)) { for (unsigned int i = last_native_inst; i < p->nr_insn; i++) { if (0) { printf("0x%08x 0x%08x 0x%08x 0x%08x ", ((uint32_t *)&p->store[i])[3], ((uint32_t *)&p->store[i])[2], ((uint32_t *)&p->store[i])[1], ((uint32_t *)&p->store[i])[0]); } brw_disasm(stdout, &p->store[i], intel->gen); printf("\n"); } } last_native_inst = p->nr_insn; } } GLboolean brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c) { struct intel_context *intel = &brw->intel; struct gl_context *ctx = &intel->ctx; struct gl_shader_program *prog = ctx->Shader.CurrentFragmentProgram; if (!prog) return GL_FALSE; struct brw_shader *shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; if (!shader) return GL_FALSE; /* We always use 8-wide mode, at least for now. For one, flow * control only works in 8-wide. Also, when we're fragment shader * bound, we're almost always under register pressure as well, so * 8-wide would save us from the performance cliff of spilling * regs. */ c->dispatch_width = 8; if (unlikely(INTEL_DEBUG & DEBUG_WM)) { printf("GLSL IR for native fragment shader %d:\n", prog->Name); _mesa_print_ir(shader->ir, NULL); printf("\n"); } /* Now the main event: Visit the shader IR and generate our FS IR for it. */ fs_visitor v(c, shader); if (0) { v.emit_dummy_fs(); } else { v.calculate_urb_setup(); if (intel->gen < 6) v.emit_interpolation_setup_gen4(); else v.emit_interpolation_setup_gen6(); /* Generate FS IR for main(). (the visitor only descends into * functions called "main"). */ foreach_iter(exec_list_iterator, iter, *shader->ir) { ir_instruction *ir = (ir_instruction *)iter.get(); v.base_ir = ir; ir->accept(&v); } v.emit_fb_writes(); v.split_virtual_grfs(); v.setup_pull_constants(); v.assign_curb_setup(); v.assign_urb_setup(); bool progress; do { progress = false; v.calculate_live_intervals(); progress = v.propagate_constants() || progress; progress = v.register_coalesce() || progress; progress = v.compute_to_mrf() || progress; progress = v.dead_code_eliminate() || progress; } while (progress); if (0) { /* Debug of register spilling: Go spill everything. */ int virtual_grf_count = v.virtual_grf_next; for (int i = 1; i < virtual_grf_count; i++) { v.spill_reg(i); } v.calculate_live_intervals(); } if (0) v.assign_regs_trivial(); else { while (!v.assign_regs()) { if (v.fail) break; v.calculate_live_intervals(); } } } if (!v.fail) v.generate_code(); assert(!v.fail); /* FINISHME: Cleanly fail, tested at link time, etc. */ if (v.fail) return GL_FALSE; c->prog_data.total_grf = v.grf_used; return GL_TRUE; }