/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file brw_fs.cpp * * This file drives the GLSL IR -> LIR translation, contains the * optimizations on the LIR, and drives the generation of native code * from the LIR. */ extern "C" { #include #include "main/macros.h" #include "main/shaderobj.h" #include "main/uniforms.h" #include "program/prog_parameter.h" #include "program/prog_print.h" #include "program/register_allocate.h" #include "program/sampler.h" #include "program/hash_table.h" #include "brw_context.h" #include "brw_eu.h" #include "brw_wm.h" } #include "brw_shader.h" #include "brw_fs.h" #include "glsl/glsl_types.h" #include "glsl/ir_print_visitor.h" #define MAX_INSTRUCTION (1 << 30) int fs_visitor::type_size(const struct glsl_type *type) { unsigned int size, i; switch (type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: return type->components(); case GLSL_TYPE_ARRAY: return type_size(type->fields.array) * type->length; case GLSL_TYPE_STRUCT: size = 0; for (i = 0; i < type->length; i++) { size += type_size(type->fields.structure[i].type); } return size; case GLSL_TYPE_SAMPLER: /* Samplers take up no register space, since they're baked in at * link time. */ return 0; default: assert(!"not reached"); return 0; } } void fs_visitor::fail(const char *format, ...) { va_list va; char *msg; if (failed) return; failed = true; va_start(va, format); msg = ralloc_vasprintf(mem_ctx, format, va); va_end(va); msg = ralloc_asprintf(mem_ctx, "FS compile failed: %s\n", msg); this->fail_msg = msg; if (INTEL_DEBUG & DEBUG_WM) { fprintf(stderr, "%s", msg); } } void fs_visitor::push_force_uncompressed() { force_uncompressed_stack++; } void fs_visitor::pop_force_uncompressed() { force_uncompressed_stack--; assert(force_uncompressed_stack >= 0); } void fs_visitor::push_force_sechalf() { force_sechalf_stack++; } void fs_visitor::pop_force_sechalf() { force_sechalf_stack--; assert(force_sechalf_stack >= 0); } /** * Returns how many MRFs an FS opcode will write over. * * Note that this is not the 0 or 1 implied writes in an actual gen * instruction -- the FS opcodes often generate MOVs in addition. */ int fs_visitor::implied_mrf_writes(fs_inst *inst) { if (inst->mlen == 0) return 0; switch (inst->opcode) { case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SQRT: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_SIN: case SHADER_OPCODE_COS: return 1 * c->dispatch_width / 8; case SHADER_OPCODE_POW: case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_INT_REMAINDER: return 2 * c->dispatch_width / 8; case FS_OPCODE_TEX: case FS_OPCODE_TXB: case FS_OPCODE_TXD: case FS_OPCODE_TXF: case FS_OPCODE_TXL: case FS_OPCODE_TXS: return 1; case FS_OPCODE_FB_WRITE: return 2; case FS_OPCODE_PULL_CONSTANT_LOAD: case FS_OPCODE_UNSPILL: return 1; case FS_OPCODE_SPILL: return 2; default: assert(!"not reached"); return inst->mlen; } } int fs_visitor::virtual_grf_alloc(int size) { if (virtual_grf_array_size <= virtual_grf_next) { if (virtual_grf_array_size == 0) virtual_grf_array_size = 16; else virtual_grf_array_size *= 2; virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int, virtual_grf_array_size); } virtual_grf_sizes[virtual_grf_next] = size; return virtual_grf_next++; } /** Fixed HW reg constructor. */ fs_reg::fs_reg(enum register_file file, int reg) { init(); this->file = file; this->reg = reg; this->type = BRW_REGISTER_TYPE_F; } /** Fixed HW reg constructor. */ fs_reg::fs_reg(enum register_file file, int reg, uint32_t type) { init(); this->file = file; this->reg = reg; this->type = type; } /** Automatic reg constructor. */ fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type) { init(); this->file = GRF; this->reg = v->virtual_grf_alloc(v->type_size(type)); this->reg_offset = 0; this->type = brw_type_for_base_type(type); } fs_reg * fs_visitor::variable_storage(ir_variable *var) { return (fs_reg *)hash_table_find(this->variable_ht, var); } void import_uniforms_callback(const void *key, void *data, void *closure) { struct hash_table *dst_ht = (struct hash_table *)closure; const fs_reg *reg = (const fs_reg *)data; if (reg->file != UNIFORM) return; hash_table_insert(dst_ht, data, key); } /* For 16-wide, we need to follow from the uniform setup of 8-wide dispatch. * This brings in those uniform definitions */ void fs_visitor::import_uniforms(fs_visitor *v) { hash_table_call_foreach(v->variable_ht, import_uniforms_callback, variable_ht); this->params_remap = v->params_remap; } /* Our support for uniforms is piggy-backed on the struct * gl_fragment_program, because that's where the values actually * get stored, rather than in some global gl_shader_program uniform * store. */ int fs_visitor::setup_uniform_values(int loc, const glsl_type *type) { unsigned int offset = 0; if (type->is_matrix()) { const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT, type->vector_elements, 1); for (unsigned int i = 0; i < type->matrix_columns; i++) { offset += setup_uniform_values(loc + offset, column); } return offset; } switch (type->base_type) { case GLSL_TYPE_FLOAT: case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_BOOL: for (unsigned int i = 0; i < type->vector_elements; i++) { unsigned int param = c->prog_data.nr_params++; assert(param < ARRAY_SIZE(c->prog_data.param)); if (ctx->Const.NativeIntegers) { c->prog_data.param_convert[param] = PARAM_NO_CONVERT; } else { switch (type->base_type) { case GLSL_TYPE_FLOAT: c->prog_data.param_convert[param] = PARAM_NO_CONVERT; break; case GLSL_TYPE_UINT: c->prog_data.param_convert[param] = PARAM_CONVERT_F2U; break; case GLSL_TYPE_INT: c->prog_data.param_convert[param] = PARAM_CONVERT_F2I; break; case GLSL_TYPE_BOOL: c->prog_data.param_convert[param] = PARAM_CONVERT_F2B; break; default: assert(!"not reached"); c->prog_data.param_convert[param] = PARAM_NO_CONVERT; break; } } this->param_index[param] = loc; this->param_offset[param] = i; } return 1; case GLSL_TYPE_STRUCT: for (unsigned int i = 0; i < type->length; i++) { offset += setup_uniform_values(loc + offset, type->fields.structure[i].type); } return offset; case GLSL_TYPE_ARRAY: for (unsigned int i = 0; i < type->length; i++) { offset += setup_uniform_values(loc + offset, type->fields.array); } return offset; case GLSL_TYPE_SAMPLER: /* The sampler takes up a slot, but we don't use any values from it. */ return 1; default: assert(!"not reached"); return 0; } } /* Our support for builtin uniforms is even scarier than non-builtin. * It sits on top of the PROG_STATE_VAR parameters that are * automatically updated from GL context state. */ void fs_visitor::setup_builtin_uniform_values(ir_variable *ir) { const ir_state_slot *const slots = ir->state_slots; assert(ir->state_slots != NULL); for (unsigned int i = 0; i < ir->num_state_slots; i++) { /* This state reference has already been setup by ir_to_mesa, but we'll * get the same index back here. */ int index = _mesa_add_state_reference(this->fp->Base.Parameters, (gl_state_index *)slots[i].tokens); /* Add each of the unique swizzles of the element as a parameter. * This'll end up matching the expected layout of the * array/matrix/structure we're trying to fill in. */ int last_swiz = -1; for (unsigned int j = 0; j < 4; j++) { int swiz = GET_SWZ(slots[i].swizzle, j); if (swiz == last_swiz) break; last_swiz = swiz; c->prog_data.param_convert[c->prog_data.nr_params] = PARAM_NO_CONVERT; this->param_index[c->prog_data.nr_params] = index; this->param_offset[c->prog_data.nr_params] = swiz; c->prog_data.nr_params++; } } } fs_reg * fs_visitor::emit_fragcoord_interpolation(ir_variable *ir) { fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); fs_reg wpos = *reg; bool flip = !ir->origin_upper_left ^ c->key.render_to_fbo; /* gl_FragCoord.x */ if (ir->pixel_center_integer) { emit(BRW_OPCODE_MOV, wpos, this->pixel_x); } else { emit(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f)); } wpos.reg_offset++; /* gl_FragCoord.y */ if (!flip && ir->pixel_center_integer) { emit(BRW_OPCODE_MOV, wpos, this->pixel_y); } else { fs_reg pixel_y = this->pixel_y; float offset = (ir->pixel_center_integer ? 0.0 : 0.5); if (flip) { pixel_y.negate = true; offset += c->key.drawable_height - 1.0; } emit(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset)); } wpos.reg_offset++; /* gl_FragCoord.z */ if (intel->gen >= 6) { emit(BRW_OPCODE_MOV, wpos, fs_reg(brw_vec8_grf(c->source_depth_reg, 0))); } else { emit(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y, interp_reg(FRAG_ATTRIB_WPOS, 2)); } wpos.reg_offset++; /* gl_FragCoord.w: Already set up in emit_interpolation */ emit(BRW_OPCODE_MOV, wpos, this->wpos_w); return reg; } fs_reg * fs_visitor::emit_general_interpolation(ir_variable *ir) { fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); /* Interpolation is always in floating point regs. */ reg->type = BRW_REGISTER_TYPE_F; fs_reg attr = *reg; unsigned int array_elements; const glsl_type *type; if (ir->type->is_array()) { array_elements = ir->type->length; if (array_elements == 0) { fail("dereferenced array '%s' has length 0\n", ir->name); } type = ir->type->fields.array; } else { array_elements = 1; type = ir->type; } int location = ir->location; for (unsigned int i = 0; i < array_elements; i++) { for (unsigned int j = 0; j < type->matrix_columns; j++) { if (urb_setup[location] == -1) { /* If there's no incoming setup data for this slot, don't * emit interpolation for it. */ attr.reg_offset += type->vector_elements; location++; continue; } bool is_gl_Color = location == FRAG_ATTRIB_COL0 || location == FRAG_ATTRIB_COL1; if (c->key.flat_shade && is_gl_Color) { /* Constant interpolation (flat shading) case. The SF has * handed us defined values in only the constant offset * field of the setup reg. */ for (unsigned int k = 0; k < type->vector_elements; k++) { struct brw_reg interp = interp_reg(location, k); interp = suboffset(interp, 3); emit(FS_OPCODE_CINTERP, attr, fs_reg(interp)); attr.reg_offset++; } } else { /* Perspective interpolation case. */ for (unsigned int k = 0; k < type->vector_elements; k++) { /* FINISHME: At some point we probably want to push * this farther by giving similar treatment to the * other potentially constant components of the * attribute, as well as making brw_vs_constval.c * handle varyings other than gl_TexCoord. */ if (location >= FRAG_ATTRIB_TEX0 && location <= FRAG_ATTRIB_TEX7 && k == 3 && !(c->key.proj_attrib_mask & (1 << location))) { emit(BRW_OPCODE_MOV, attr, fs_reg(1.0f)); } else { struct brw_reg interp = interp_reg(location, k); emit(FS_OPCODE_LINTERP, attr, this->delta_x, this->delta_y, fs_reg(interp)); } attr.reg_offset++; } if (intel->gen < 6) { attr.reg_offset -= type->vector_elements; for (unsigned int k = 0; k < type->vector_elements; k++) { emit(BRW_OPCODE_MUL, attr, attr, this->pixel_w); attr.reg_offset++; } } } location++; } } return reg; } fs_reg * fs_visitor::emit_frontfacing_interpolation(ir_variable *ir) { fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); /* The frontfacing comes in as a bit in the thread payload. */ if (intel->gen >= 6) { emit(BRW_OPCODE_ASR, *reg, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)), fs_reg(15)); emit(BRW_OPCODE_NOT, *reg, *reg); emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1)); } else { struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD); /* bit 31 is "primitive is back face", so checking < (1 << 31) gives * us front face */ fs_inst *inst = emit(BRW_OPCODE_CMP, *reg, fs_reg(r1_6ud), fs_reg(1u << 31)); inst->conditional_mod = BRW_CONDITIONAL_L; emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u)); } return reg; } fs_inst * fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src) { switch (opcode) { case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SQRT: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_SIN: case SHADER_OPCODE_COS: break; default: assert(!"not reached: bad math opcode"); return NULL; } /* Can't do hstride == 0 args to gen6 math, so expand it out. We * might be able to do better by doing execsize = 1 math and then * expanding that result out, but we would need to be careful with * masking. * * The hardware ignores source modifiers (negate and abs) on math * instructions, so we also move to a temp to set those up. */ if (intel->gen >= 6 && (src.file == UNIFORM || src.abs || src.negate)) { fs_reg expanded = fs_reg(this, glsl_type::float_type); emit(BRW_OPCODE_MOV, expanded, src); src = expanded; } fs_inst *inst = emit(opcode, dst, src); if (intel->gen < 6) { inst->base_mrf = 2; inst->mlen = c->dispatch_width / 8; } return inst; } fs_inst * fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1) { int base_mrf = 2; fs_inst *inst; switch (opcode) { case SHADER_OPCODE_POW: case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_INT_REMAINDER: break; default: assert(!"not reached: unsupported binary math opcode."); return NULL; } if (intel->gen >= 6) { /* Can't do hstride == 0 args to gen6 math, so expand it out. * * The hardware ignores source modifiers (negate and abs) on math * instructions, so we also move to a temp to set those up. */ if (src0.file == UNIFORM || src0.abs || src0.negate) { fs_reg expanded = fs_reg(this, glsl_type::float_type); expanded.type = src0.type; emit(BRW_OPCODE_MOV, expanded, src0); src0 = expanded; } if (src1.file == UNIFORM || src1.abs || src1.negate) { fs_reg expanded = fs_reg(this, glsl_type::float_type); expanded.type = src1.type; emit(BRW_OPCODE_MOV, expanded, src1); src1 = expanded; } inst = emit(opcode, dst, src0, src1); } else { /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13 * "Message Payload": * * "Operand0[7]. For the INT DIV functions, this operand is the * denominator." * ... * "Operand1[7]. For the INT DIV functions, this operand is the * numerator." */ bool is_int_div = opcode != SHADER_OPCODE_POW; fs_reg &op0 = is_int_div ? src1 : src0; fs_reg &op1 = is_int_div ? src0 : src1; emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1, op1.type), op1); inst = emit(opcode, dst, op0, reg_null_f); inst->base_mrf = base_mrf; inst->mlen = 2 * c->dispatch_width / 8; } return inst; } /** * To be called after the last _mesa_add_state_reference() call, to * set up prog_data.param[] for assign_curb_setup() and * setup_pull_constants(). */ void fs_visitor::setup_paramvalues_refs() { if (c->dispatch_width != 8) return; /* Set up the pointers to ParamValues now that that array is finalized. */ for (unsigned int i = 0; i < c->prog_data.nr_params; i++) { c->prog_data.param[i] = (const float *)fp->Base.Parameters->ParameterValues[this->param_index[i]] + this->param_offset[i]; } } void fs_visitor::assign_curb_setup() { c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8; if (c->dispatch_width == 8) { c->prog_data.first_curbe_grf = c->nr_payload_regs; } else { c->prog_data.first_curbe_grf_16 = c->nr_payload_regs; } /* Map the offsets in the UNIFORM file to fixed HW regs. */ foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == UNIFORM) { int constant_nr = inst->src[i].reg + inst->src[i].reg_offset; struct brw_reg brw_reg = brw_vec1_grf(c->nr_payload_regs + constant_nr / 8, constant_nr % 8); inst->src[i].file = FIXED_HW_REG; inst->src[i].fixed_hw_reg = retype(brw_reg, inst->src[i].type); } } } } void fs_visitor::calculate_urb_setup() { for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) { urb_setup[i] = -1; } int urb_next = 0; /* Figure out where each of the incoming setup attributes lands. */ if (intel->gen >= 6) { for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) { if (fp->Base.InputsRead & BITFIELD64_BIT(i)) { urb_setup[i] = urb_next++; } } } else { /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */ for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) { if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) { int fp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i); if (fp_index >= 0) urb_setup[fp_index] = urb_next++; } } } /* Each attribute is 4 setup channels, each of which is half a reg. */ c->prog_data.urb_read_length = urb_next * 2; } void fs_visitor::assign_urb_setup() { int urb_start = c->nr_payload_regs + c->prog_data.curb_read_length; /* Offset all the urb_setup[] index by the actual position of the * setup regs, now that the location of the constants has been chosen. */ foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; if (inst->opcode == FS_OPCODE_LINTERP) { assert(inst->src[2].file == FIXED_HW_REG); inst->src[2].fixed_hw_reg.nr += urb_start; } if (inst->opcode == FS_OPCODE_CINTERP) { assert(inst->src[0].file == FIXED_HW_REG); inst->src[0].fixed_hw_reg.nr += urb_start; } } this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length; } /** * Split large virtual GRFs into separate components if we can. * * This is mostly duplicated with what brw_fs_vector_splitting does, * but that's really conservative because it's afraid of doing * splitting that doesn't result in real progress after the rest of * the optimization phases, which would cause infinite looping in * optimization. We can do it once here, safely. This also has the * opportunity to split interpolated values, or maybe even uniforms, * which we don't have at the IR level. * * We want to split, because virtual GRFs are what we register * allocate and spill (due to contiguousness requirements for some * instructions), and they're what we naturally generate in the * codegen process, but most virtual GRFs don't actually need to be * contiguous sets of GRFs. If we split, we'll end up with reduced * live intervals and better dead code elimination and coalescing. */ void fs_visitor::split_virtual_grfs() { int num_vars = this->virtual_grf_next; bool split_grf[num_vars]; int new_virtual_grf[num_vars]; /* Try to split anything > 0 sized. */ for (int i = 0; i < num_vars; i++) { if (this->virtual_grf_sizes[i] != 1) split_grf[i] = true; else split_grf[i] = false; } if (brw->has_pln) { /* PLN opcodes rely on the delta_xy being contiguous. */ split_grf[this->delta_x.reg] = false; } foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; /* Texturing produces 4 contiguous registers, so no splitting. */ if (inst->is_tex()) { split_grf[inst->dst.reg] = false; } } /* Allocate new space for split regs. Note that the virtual * numbers will be contiguous. */ for (int i = 0; i < num_vars; i++) { if (split_grf[i]) { new_virtual_grf[i] = virtual_grf_alloc(1); for (int j = 2; j < this->virtual_grf_sizes[i]; j++) { int reg = virtual_grf_alloc(1); assert(reg == new_virtual_grf[i] + j - 1); (void) reg; } this->virtual_grf_sizes[i] = 1; } } foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; if (inst->dst.file == GRF && split_grf[inst->dst.reg] && inst->dst.reg_offset != 0) { inst->dst.reg = (new_virtual_grf[inst->dst.reg] + inst->dst.reg_offset - 1); inst->dst.reg_offset = 0; } for (int i = 0; i < 3; i++) { if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] && inst->src[i].reg_offset != 0) { inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] + inst->src[i].reg_offset - 1); inst->src[i].reg_offset = 0; } } } this->live_intervals_valid = false; } bool fs_visitor::remove_dead_constants() { if (c->dispatch_width == 8) { this->params_remap = ralloc_array(mem_ctx, int, c->prog_data.nr_params); for (unsigned int i = 0; i < c->prog_data.nr_params; i++) this->params_remap[i] = -1; /* Find which params are still in use. */ foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; for (int i = 0; i < 3; i++) { int constant_nr = inst->src[i].reg + inst->src[i].reg_offset; if (inst->src[i].file != UNIFORM) continue; assert(constant_nr < (int)c->prog_data.nr_params); /* For now, set this to non-negative. We'll give it the * actual new number in a moment, in order to keep the * register numbers nicely ordered. */ this->params_remap[constant_nr] = 0; } } /* Figure out what the new numbers for the params will be. At some * point when we're doing uniform array access, we're going to want * to keep the distinction between .reg and .reg_offset, but for * now we don't care. */ unsigned int new_nr_params = 0; for (unsigned int i = 0; i < c->prog_data.nr_params; i++) { if (this->params_remap[i] != -1) { this->params_remap[i] = new_nr_params++; } } /* Update the list of params to be uploaded to match our new numbering. */ for (unsigned int i = 0; i < c->prog_data.nr_params; i++) { int remapped = this->params_remap[i]; if (remapped == -1) continue; /* We've already done setup_paramvalues_refs() so no need to worry * about param_index and param_offset. */ c->prog_data.param[remapped] = c->prog_data.param[i]; c->prog_data.param_convert[remapped] = c->prog_data.param_convert[i]; } c->prog_data.nr_params = new_nr_params; } else { /* This should have been generated in the 8-wide pass already. */ assert(this->params_remap); } /* Now do the renumbering of the shader to remove unused params. */ foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; for (int i = 0; i < 3; i++) { int constant_nr = inst->src[i].reg + inst->src[i].reg_offset; if (inst->src[i].file != UNIFORM) continue; assert(this->params_remap[constant_nr] != -1); inst->src[i].reg = this->params_remap[constant_nr]; inst->src[i].reg_offset = 0; } } return true; } /** * Choose accesses from the UNIFORM file to demote to using the pull * constant buffer. * * We allow a fragment shader to have more than the specified minimum * maximum number of fragment shader uniform components (64). If * there are too many of these, they'd fill up all of register space. * So, this will push some of them out to the pull constant buffer and * update the program to load them. */ void fs_visitor::setup_pull_constants() { /* Only allow 16 registers (128 uniform components) as push constants. */ unsigned int max_uniform_components = 16 * 8; if (c->prog_data.nr_params <= max_uniform_components) return; if (c->dispatch_width == 16) { fail("Pull constants not supported in 16-wide\n"); return; } /* Just demote the end of the list. We could probably do better * here, demoting things that are rarely used in the program first. */ int pull_uniform_base = max_uniform_components; int pull_uniform_count = c->prog_data.nr_params - pull_uniform_base; foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; for (int i = 0; i < 3; i++) { if (inst->src[i].file != UNIFORM) continue; int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset; if (uniform_nr < pull_uniform_base) continue; fs_reg dst = fs_reg(this, glsl_type::float_type); fs_inst *pull = new(mem_ctx) fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD, dst); pull->offset = ((uniform_nr - pull_uniform_base) * 4) & ~15; pull->ir = inst->ir; pull->annotation = inst->annotation; pull->base_mrf = 14; pull->mlen = 1; inst->insert_before(pull); inst->src[i].file = GRF; inst->src[i].reg = dst.reg; inst->src[i].reg_offset = 0; inst->src[i].smear = (uniform_nr - pull_uniform_base) & 3; } } for (int i = 0; i < pull_uniform_count; i++) { c->prog_data.pull_param[i] = c->prog_data.param[pull_uniform_base + i]; c->prog_data.pull_param_convert[i] = c->prog_data.param_convert[pull_uniform_base + i]; } c->prog_data.nr_params -= pull_uniform_count; c->prog_data.nr_pull_params = pull_uniform_count; } void fs_visitor::calculate_live_intervals() { int num_vars = this->virtual_grf_next; int *def = ralloc_array(mem_ctx, int, num_vars); int *use = ralloc_array(mem_ctx, int, num_vars); int loop_depth = 0; int loop_start = 0; if (this->live_intervals_valid) return; for (int i = 0; i < num_vars; i++) { def[i] = MAX_INSTRUCTION; use[i] = -1; } int ip = 0; foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; if (inst->opcode == BRW_OPCODE_DO) { if (loop_depth++ == 0) loop_start = ip; } else if (inst->opcode == BRW_OPCODE_WHILE) { loop_depth--; if (loop_depth == 0) { /* Patches up the use of vars marked for being live across * the whole loop. */ for (int i = 0; i < num_vars; i++) { if (use[i] == loop_start) { use[i] = ip; } } } } else { for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) { int reg = inst->src[i].reg; if (!loop_depth) { use[reg] = ip; } else { def[reg] = MIN2(loop_start, def[reg]); use[reg] = loop_start; /* Nobody else is going to go smash our start to * later in the loop now, because def[reg] now * points before the bb header. */ } } } if (inst->dst.file == GRF) { int reg = inst->dst.reg; if (!loop_depth) { def[reg] = MIN2(def[reg], ip); } else { def[reg] = MIN2(def[reg], loop_start); } } } ip++; } ralloc_free(this->virtual_grf_def); ralloc_free(this->virtual_grf_use); this->virtual_grf_def = def; this->virtual_grf_use = use; this->live_intervals_valid = true; } /** * Attempts to move immediate constants into the immediate * constant slot of following instructions. * * Immediate constants are a bit tricky -- they have to be in the last * operand slot, you can't do abs/negate on them, */ bool fs_visitor::propagate_constants() { bool progress = false; calculate_live_intervals(); foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; if (inst->opcode != BRW_OPCODE_MOV || inst->predicated || inst->dst.file != GRF || inst->src[0].file != IMM || inst->dst.type != inst->src[0].type || (c->dispatch_width == 16 && (inst->force_uncompressed || inst->force_sechalf))) continue; /* Don't bother with cases where we should have had the * operation on the constant folded in GLSL already. */ if (inst->saturate) continue; /* Found a move of a constant to a GRF. Find anything else using the GRF * before it's written, and replace it with the constant if we can. */ for (fs_inst *scan_inst = (fs_inst *)inst->next; !scan_inst->is_tail_sentinel(); scan_inst = (fs_inst *)scan_inst->next) { if (scan_inst->opcode == BRW_OPCODE_DO || scan_inst->opcode == BRW_OPCODE_WHILE || scan_inst->opcode == BRW_OPCODE_ELSE || scan_inst->opcode == BRW_OPCODE_ENDIF) { break; } for (int i = 2; i >= 0; i--) { if (scan_inst->src[i].file != GRF || scan_inst->src[i].reg != inst->dst.reg || scan_inst->src[i].reg_offset != inst->dst.reg_offset) continue; /* Don't bother with cases where we should have had the * operation on the constant folded in GLSL already. */ if (scan_inst->src[i].negate || scan_inst->src[i].abs) continue; switch (scan_inst->opcode) { case BRW_OPCODE_MOV: scan_inst->src[i] = inst->src[0]; progress = true; break; case BRW_OPCODE_MUL: case BRW_OPCODE_ADD: if (i == 1) { scan_inst->src[i] = inst->src[0]; progress = true; } else if (i == 0 && scan_inst->src[1].file != IMM) { /* Fit this constant in by commuting the operands */ scan_inst->src[0] = scan_inst->src[1]; scan_inst->src[1] = inst->src[0]; progress = true; } break; case BRW_OPCODE_CMP: if (i == 1) { scan_inst->src[i] = inst->src[0]; progress = true; } else if (i == 0 && scan_inst->src[1].file != IMM) { uint32_t new_cmod; new_cmod = brw_swap_cmod(scan_inst->conditional_mod); if (new_cmod != ~0u) { /* Fit this constant in by swapping the operands and * flipping the test */ scan_inst->src[0] = scan_inst->src[1]; scan_inst->src[1] = inst->src[0]; scan_inst->conditional_mod = new_cmod; progress = true; } } break; case BRW_OPCODE_SEL: if (i == 1) { scan_inst->src[i] = inst->src[0]; progress = true; } else if (i == 0 && scan_inst->src[1].file != IMM) { scan_inst->src[0] = scan_inst->src[1]; scan_inst->src[1] = inst->src[0]; /* If this was predicated, flipping operands means * we also need to flip the predicate. */ if (scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) { scan_inst->predicate_inverse = !scan_inst->predicate_inverse; } progress = true; } break; case SHADER_OPCODE_RCP: /* The hardware doesn't do math on immediate values * (because why are you doing that, seriously?), but * the correct answer is to just constant fold it * anyway. */ assert(i == 0); if (inst->src[0].imm.f != 0.0f) { scan_inst->opcode = BRW_OPCODE_MOV; scan_inst->src[0] = inst->src[0]; scan_inst->src[0].imm.f = 1.0f / scan_inst->src[0].imm.f; progress = true; } break; default: break; } } if (scan_inst->dst.file == GRF && scan_inst->dst.reg == inst->dst.reg && (scan_inst->dst.reg_offset == inst->dst.reg_offset || scan_inst->is_tex())) { break; } } } if (progress) this->live_intervals_valid = false; return progress; } /** * Attempts to move immediate constants into the immediate * constant slot of following instructions. * * Immediate constants are a bit tricky -- they have to be in the last * operand slot, you can't do abs/negate on them, */ bool fs_visitor::opt_algebraic() { bool progress = false; calculate_live_intervals(); foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; switch (inst->opcode) { case BRW_OPCODE_MUL: if (inst->src[1].file != IMM) continue; /* a * 1.0 = a */ if (inst->src[1].type == BRW_REGISTER_TYPE_F && inst->src[1].imm.f == 1.0) { inst->opcode = BRW_OPCODE_MOV; inst->src[1] = reg_undef; progress = true; break; } break; default: break; } } return progress; } /** * Must be called after calculate_live_intervales() to remove unused * writes to registers -- register allocation will fail otherwise * because something deffed but not used won't be considered to * interfere with other regs. */ bool fs_visitor::dead_code_eliminate() { bool progress = false; int pc = 0; calculate_live_intervals(); foreach_list_safe(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) { inst->remove(); progress = true; } pc++; } if (progress) live_intervals_valid = false; return progress; } bool fs_visitor::register_coalesce() { bool progress = false; int if_depth = 0; int loop_depth = 0; foreach_list_safe(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; /* Make sure that we dominate the instructions we're going to * scan for interfering with our coalescing, or we won't have * scanned enough to see if anything interferes with our * coalescing. We don't dominate the following instructions if * we're in a loop or an if block. */ switch (inst->opcode) { case BRW_OPCODE_DO: loop_depth++; break; case BRW_OPCODE_WHILE: loop_depth--; break; case BRW_OPCODE_IF: if_depth++; break; case BRW_OPCODE_ENDIF: if_depth--; break; default: break; } if (loop_depth || if_depth) continue; if (inst->opcode != BRW_OPCODE_MOV || inst->predicated || inst->saturate || inst->dst.file != GRF || (inst->src[0].file != GRF && inst->src[0].file != UNIFORM)|| inst->dst.type != inst->src[0].type) continue; bool has_source_modifiers = inst->src[0].abs || inst->src[0].negate; /* Found a move of a GRF to a GRF. Let's see if we can coalesce * them: check for no writes to either one until the exit of the * program. */ bool interfered = false; for (fs_inst *scan_inst = (fs_inst *)inst->next; !scan_inst->is_tail_sentinel(); scan_inst = (fs_inst *)scan_inst->next) { if (scan_inst->dst.file == GRF) { if (scan_inst->dst.reg == inst->dst.reg && (scan_inst->dst.reg_offset == inst->dst.reg_offset || scan_inst->is_tex())) { interfered = true; break; } if (inst->src[0].file == GRF && scan_inst->dst.reg == inst->src[0].reg && (scan_inst->dst.reg_offset == inst->src[0].reg_offset || scan_inst->is_tex())) { interfered = true; break; } } /* The gen6 MATH instruction can't handle source modifiers or * unusual register regions, so avoid coalescing those for * now. We should do something more specific. */ if (intel->gen >= 6 && scan_inst->is_math() && (has_source_modifiers || inst->src[0].file == UNIFORM)) { interfered = true; break; } } if (interfered) { continue; } /* Rewrite the later usage to point at the source of the move to * be removed. */ for (fs_inst *scan_inst = inst; !scan_inst->is_tail_sentinel(); scan_inst = (fs_inst *)scan_inst->next) { for (int i = 0; i < 3; i++) { if (scan_inst->src[i].file == GRF && scan_inst->src[i].reg == inst->dst.reg && scan_inst->src[i].reg_offset == inst->dst.reg_offset) { fs_reg new_src = inst->src[0]; new_src.negate ^= scan_inst->src[i].negate; new_src.abs |= scan_inst->src[i].abs; scan_inst->src[i] = new_src; } } } inst->remove(); progress = true; } if (progress) live_intervals_valid = false; return progress; } bool fs_visitor::compute_to_mrf() { bool progress = false; int next_ip = 0; calculate_live_intervals(); foreach_list_safe(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; int ip = next_ip; next_ip++; if (inst->opcode != BRW_OPCODE_MOV || inst->predicated || inst->dst.file != MRF || inst->src[0].file != GRF || inst->dst.type != inst->src[0].type || inst->src[0].abs || inst->src[0].negate || inst->src[0].smear != -1) continue; /* Work out which hardware MRF registers are written by this * instruction. */ int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4; int mrf_high; if (inst->dst.reg & BRW_MRF_COMPR4) { mrf_high = mrf_low + 4; } else if (c->dispatch_width == 16 && (!inst->force_uncompressed && !inst->force_sechalf)) { mrf_high = mrf_low + 1; } else { mrf_high = mrf_low; } /* Can't compute-to-MRF this GRF if someone else was going to * read it later. */ if (this->virtual_grf_use[inst->src[0].reg] > ip) continue; /* Found a move of a GRF to a MRF. Let's see if we can go * rewrite the thing that made this GRF to write into the MRF. */ fs_inst *scan_inst; for (scan_inst = (fs_inst *)inst->prev; scan_inst->prev != NULL; scan_inst = (fs_inst *)scan_inst->prev) { if (scan_inst->dst.file == GRF && scan_inst->dst.reg == inst->src[0].reg) { /* Found the last thing to write our reg we want to turn * into a compute-to-MRF. */ if (scan_inst->is_tex()) { /* texturing writes several continuous regs, so we can't * compute-to-mrf that. */ break; } /* If it's predicated, it (probably) didn't populate all * the channels. We might be able to rewrite everything * that writes that reg, but it would require smarter * tracking to delay the rewriting until complete success. */ if (scan_inst->predicated) break; /* If it's half of register setup and not the same half as * our MOV we're trying to remove, bail for now. */ if (scan_inst->force_uncompressed != inst->force_uncompressed || scan_inst->force_sechalf != inst->force_sechalf) { break; } /* SEND instructions can't have MRF as a destination. */ if (scan_inst->mlen) break; if (intel->gen >= 6) { /* gen6 math instructions must have the destination be * GRF, so no compute-to-MRF for them. */ if (scan_inst->is_math()) { break; } } if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) { /* Found the creator of our MRF's source value. */ scan_inst->dst.file = MRF; scan_inst->dst.reg = inst->dst.reg; scan_inst->saturate |= inst->saturate; inst->remove(); progress = true; } break; } /* We don't handle flow control here. Most computation of * values that end up in MRFs are shortly before the MRF * write anyway. */ if (scan_inst->opcode == BRW_OPCODE_DO || scan_inst->opcode == BRW_OPCODE_WHILE || scan_inst->opcode == BRW_OPCODE_ELSE || scan_inst->opcode == BRW_OPCODE_ENDIF) { break; } /* You can't read from an MRF, so if someone else reads our * MRF's source GRF that we wanted to rewrite, that stops us. */ bool interfered = false; for (int i = 0; i < 3; i++) { if (scan_inst->src[i].file == GRF && scan_inst->src[i].reg == inst->src[0].reg && scan_inst->src[i].reg_offset == inst->src[0].reg_offset) { interfered = true; } } if (interfered) break; if (scan_inst->dst.file == MRF) { /* If somebody else writes our MRF here, we can't * compute-to-MRF before that. */ int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4; int scan_mrf_high; if (scan_inst->dst.reg & BRW_MRF_COMPR4) { scan_mrf_high = scan_mrf_low + 4; } else if (c->dispatch_width == 16 && (!scan_inst->force_uncompressed && !scan_inst->force_sechalf)) { scan_mrf_high = scan_mrf_low + 1; } else { scan_mrf_high = scan_mrf_low; } if (mrf_low == scan_mrf_low || mrf_low == scan_mrf_high || mrf_high == scan_mrf_low || mrf_high == scan_mrf_high) { break; } } if (scan_inst->mlen > 0) { /* Found a SEND instruction, which means that there are * live values in MRFs from base_mrf to base_mrf + * scan_inst->mlen - 1. Don't go pushing our MRF write up * above it. */ if (mrf_low >= scan_inst->base_mrf && mrf_low < scan_inst->base_mrf + scan_inst->mlen) { break; } if (mrf_high >= scan_inst->base_mrf && mrf_high < scan_inst->base_mrf + scan_inst->mlen) { break; } } } } return progress; } /** * Walks through basic blocks, locking for repeated MRF writes and * removing the later ones. */ bool fs_visitor::remove_duplicate_mrf_writes() { fs_inst *last_mrf_move[16]; bool progress = false; /* Need to update the MRF tracking for compressed instructions. */ if (c->dispatch_width == 16) return false; memset(last_mrf_move, 0, sizeof(last_mrf_move)); foreach_list_safe(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; switch (inst->opcode) { case BRW_OPCODE_DO: case BRW_OPCODE_WHILE: case BRW_OPCODE_IF: case BRW_OPCODE_ELSE: case BRW_OPCODE_ENDIF: memset(last_mrf_move, 0, sizeof(last_mrf_move)); continue; default: break; } if (inst->opcode == BRW_OPCODE_MOV && inst->dst.file == MRF) { fs_inst *prev_inst = last_mrf_move[inst->dst.reg]; if (prev_inst && inst->equals(prev_inst)) { inst->remove(); progress = true; continue; } } /* Clear out the last-write records for MRFs that were overwritten. */ if (inst->dst.file == MRF) { last_mrf_move[inst->dst.reg] = NULL; } if (inst->mlen > 0) { /* Found a SEND instruction, which will include two or fewer * implied MRF writes. We could do better here. */ for (int i = 0; i < implied_mrf_writes(inst); i++) { last_mrf_move[inst->base_mrf + i] = NULL; } } /* Clear out any MRF move records whose sources got overwritten. */ if (inst->dst.file == GRF) { for (unsigned int i = 0; i < Elements(last_mrf_move); i++) { if (last_mrf_move[i] && last_mrf_move[i]->src[0].reg == inst->dst.reg) { last_mrf_move[i] = NULL; } } } if (inst->opcode == BRW_OPCODE_MOV && inst->dst.file == MRF && inst->src[0].file == GRF && !inst->predicated) { last_mrf_move[inst->dst.reg] = inst; } } return progress; } bool fs_visitor::virtual_grf_interferes(int a, int b) { int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]); int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]); /* We can't handle dead register writes here, without iterating * over the whole instruction stream to find every single dead * write to that register to compare to the live interval of the * other register. Just assert that dead_code_eliminate() has been * called. */ assert((this->virtual_grf_use[a] != -1 || this->virtual_grf_def[a] == MAX_INSTRUCTION) && (this->virtual_grf_use[b] != -1 || this->virtual_grf_def[b] == MAX_INSTRUCTION)); /* If the register is used to store 16 values of less than float * size (only the case for pixel_[xy]), then we can't allocate * another dword-sized thing to that register that would be used in * the same instruction. This is because when the GPU decodes (for * example): * * (declare (in ) vec4 gl_FragCoord@0x97766a0) * add(16) g6<1>F g6<8,8,1>UW 0.5F { align1 compr }; * * it's actually processed as: * add(8) g6<1>F g6<8,8,1>UW 0.5F { align1 }; * add(8) g7<1>F g6.8<8,8,1>UW 0.5F { align1 sechalf }; * * so our second half values in g6 got overwritten in the first * half. */ if (c->dispatch_width == 16 && (this->pixel_x.reg == a || this->pixel_x.reg == b || this->pixel_y.reg == a || this->pixel_y.reg == b)) { return start <= end; } return start < end; } bool fs_visitor::run() { uint32_t prog_offset_16 = 0; uint32_t orig_nr_params = c->prog_data.nr_params; brw_wm_payload_setup(brw, c); if (c->dispatch_width == 16) { /* align to 64 byte boundary. */ while ((c->func.nr_insn * sizeof(struct brw_instruction)) % 64) { brw_NOP(p); } /* Save off the start of this 16-wide program in case we succeed. */ prog_offset_16 = c->func.nr_insn * sizeof(struct brw_instruction); brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } if (0) { emit_dummy_fs(); } else { calculate_urb_setup(); if (intel->gen < 6) emit_interpolation_setup_gen4(); else emit_interpolation_setup_gen6(); /* Generate FS IR for main(). (the visitor only descends into * functions called "main"). */ foreach_list(node, &*shader->ir) { ir_instruction *ir = (ir_instruction *)node; base_ir = ir; this->result = reg_undef; ir->accept(this); } if (failed) return false; emit_fb_writes(); split_virtual_grfs(); setup_paramvalues_refs(); setup_pull_constants(); bool progress; do { progress = false; progress = remove_duplicate_mrf_writes() || progress; progress = propagate_constants() || progress; progress = opt_algebraic() || progress; progress = register_coalesce() || progress; progress = compute_to_mrf() || progress; progress = dead_code_eliminate() || progress; } while (progress); remove_dead_constants(); schedule_instructions(); assign_curb_setup(); assign_urb_setup(); if (0) { /* Debug of register spilling: Go spill everything. */ int virtual_grf_count = virtual_grf_next; for (int i = 0; i < virtual_grf_count; i++) { spill_reg(i); } } if (0) assign_regs_trivial(); else { while (!assign_regs()) { if (failed) break; } } } assert(force_uncompressed_stack == 0); assert(force_sechalf_stack == 0); if (failed) return false; generate_code(); if (c->dispatch_width == 8) { c->prog_data.reg_blocks = brw_register_blocks(grf_used); } else { c->prog_data.reg_blocks_16 = brw_register_blocks(grf_used); c->prog_data.prog_offset_16 = prog_offset_16; /* Make sure we didn't try to sneak in an extra uniform */ assert(orig_nr_params == c->prog_data.nr_params); } return !failed; } bool brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c, struct gl_shader_program *prog) { struct intel_context *intel = &brw->intel; if (!prog) return false; struct brw_shader *shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; if (!shader) return false; if (unlikely(INTEL_DEBUG & DEBUG_WM)) { printf("GLSL IR for native fragment shader %d:\n", prog->Name); _mesa_print_ir(shader->ir, NULL); printf("\n\n"); } /* Now the main event: Visit the shader IR and generate our FS IR for it. */ c->dispatch_width = 8; fs_visitor v(c, prog, shader); if (!v.run()) { prog->LinkStatus = GL_FALSE; ralloc_strcat(&prog->InfoLog, v.fail_msg); return false; } if (intel->gen >= 5 && c->prog_data.nr_pull_params == 0) { c->dispatch_width = 16; fs_visitor v2(c, prog, shader); v2.import_uniforms(&v); v2.run(); } c->prog_data.dispatch_width = 8; return true; } bool brw_fs_precompile(struct gl_context *ctx, struct gl_shader_program *prog) { struct brw_context *brw = brw_context(ctx); struct brw_wm_prog_key key; struct gl_fragment_program *fp = prog->FragmentProgram; struct brw_fragment_program *bfp = brw_fragment_program(fp); if (!fp) return true; memset(&key, 0, sizeof(key)); if (fp->UsesKill) key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT; if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT; /* Just assume depth testing. */ key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT; key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT; key.vp_outputs_written |= BITFIELD64_BIT(FRAG_ATTRIB_WPOS); for (int i = 0; i < FRAG_ATTRIB_MAX; i++) { if (!(fp->Base.InputsRead & BITFIELD64_BIT(i))) continue; key.proj_attrib_mask |= 1 << i; int vp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i); if (vp_index >= 0) key.vp_outputs_written |= BITFIELD64_BIT(vp_index); } key.clamp_fragment_color = true; for (int i = 0; i < BRW_MAX_TEX_UNIT; i++) { if (fp->Base.ShadowSamplers & (1 << i)) key.compare_funcs[i] = GL_LESS; /* FINISHME: depth compares might use (0,0,0,W) for example */ key.tex_swizzles[i] = SWIZZLE_XYZW; } if (fp->Base.InputsRead & FRAG_BIT_WPOS) { key.drawable_height = ctx->DrawBuffer->Height; key.render_to_fbo = ctx->DrawBuffer->Name != 0; } key.nr_color_regions = 1; key.program_string_id = bfp->id; uint32_t old_prog_offset = brw->wm.prog_offset; struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data; bool success = do_wm_prog(brw, prog, bfp, &key); brw->wm.prog_offset = old_prog_offset; brw->wm.prog_data = old_prog_data; return success; }