/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file brw_fs.cpp * * This file drives the GLSL IR -> LIR translation, contains the * optimizations on the LIR, and drives the generation of native code * from the LIR. */ extern "C" { #include #include "main/hash_table.h" #include "main/macros.h" #include "main/shaderobj.h" #include "main/fbobject.h" #include "program/prog_parameter.h" #include "program/prog_print.h" #include "program/register_allocate.h" #include "program/sampler.h" #include "program/hash_table.h" #include "brw_context.h" #include "brw_eu.h" #include "brw_wm.h" } #include "brw_fs.h" #include "brw_dead_control_flow.h" #include "main/uniforms.h" #include "brw_fs_live_variables.h" #include "glsl/glsl_types.h" void fs_inst::init() { memset(this, 0, sizeof(*this)); this->conditional_mod = BRW_CONDITIONAL_NONE; this->dst = reg_undef; this->src[0] = reg_undef; this->src[1] = reg_undef; this->src[2] = reg_undef; /* This will be the case for almost all instructions. */ this->regs_written = 1; this->writes_accumulator = false; } fs_inst::fs_inst() { init(); this->opcode = BRW_OPCODE_NOP; } fs_inst::fs_inst(enum opcode opcode) { init(); this->opcode = opcode; } fs_inst::fs_inst(enum opcode opcode, fs_reg dst) { init(); this->opcode = opcode; this->dst = dst; if (dst.file == GRF) assert(dst.reg_offset >= 0); } fs_inst::fs_inst(enum opcode opcode, fs_reg dst, fs_reg src0) { init(); this->opcode = opcode; this->dst = dst; this->src[0] = src0; if (dst.file == GRF) assert(dst.reg_offset >= 0); if (src[0].file == GRF) assert(src[0].reg_offset >= 0); } fs_inst::fs_inst(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1) { init(); this->opcode = opcode; this->dst = dst; this->src[0] = src0; this->src[1] = src1; if (dst.file == GRF) assert(dst.reg_offset >= 0); if (src[0].file == GRF) assert(src[0].reg_offset >= 0); if (src[1].file == GRF) assert(src[1].reg_offset >= 0); } fs_inst::fs_inst(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1, fs_reg src2) { init(); this->opcode = opcode; this->dst = dst; this->src[0] = src0; this->src[1] = src1; this->src[2] = src2; if (dst.file == GRF) assert(dst.reg_offset >= 0); if (src[0].file == GRF) assert(src[0].reg_offset >= 0); if (src[1].file == GRF) assert(src[1].reg_offset >= 0); if (src[2].file == GRF) assert(src[2].reg_offset >= 0); } #define ALU1(op) \ fs_inst * \ fs_visitor::op(fs_reg dst, fs_reg src0) \ { \ return new(mem_ctx) fs_inst(BRW_OPCODE_##op, dst, src0); \ } #define ALU2(op) \ fs_inst * \ fs_visitor::op(fs_reg dst, fs_reg src0, fs_reg src1) \ { \ return new(mem_ctx) fs_inst(BRW_OPCODE_##op, dst, src0, src1); \ } #define ALU2_ACC(op) \ fs_inst * \ fs_visitor::op(fs_reg dst, fs_reg src0, fs_reg src1) \ { \ fs_inst *inst = new(mem_ctx) fs_inst(BRW_OPCODE_##op, dst, src0, src1);\ inst->writes_accumulator = true; \ return inst; \ } #define ALU3(op) \ fs_inst * \ fs_visitor::op(fs_reg dst, fs_reg src0, fs_reg src1, fs_reg src2) \ { \ return new(mem_ctx) fs_inst(BRW_OPCODE_##op, dst, src0, src1, src2);\ } ALU1(NOT) ALU1(MOV) ALU1(FRC) ALU1(RNDD) ALU1(RNDE) ALU1(RNDZ) ALU2(ADD) ALU2(MUL) ALU2_ACC(MACH) ALU2(AND) ALU2(OR) ALU2(XOR) ALU2(SHL) ALU2(SHR) ALU2(ASR) ALU3(LRP) ALU1(BFREV) ALU3(BFE) ALU2(BFI1) ALU3(BFI2) ALU1(FBH) ALU1(FBL) ALU1(CBIT) ALU3(MAD) ALU2_ACC(ADDC) ALU2_ACC(SUBB) ALU2(SEL) /** Gen4 predicated IF. */ fs_inst * fs_visitor::IF(uint32_t predicate) { fs_inst *inst = new(mem_ctx) fs_inst(BRW_OPCODE_IF); inst->predicate = predicate; return inst; } /** Gen6 IF with embedded comparison. */ fs_inst * fs_visitor::IF(fs_reg src0, fs_reg src1, uint32_t condition) { assert(brw->gen == 6); fs_inst *inst = new(mem_ctx) fs_inst(BRW_OPCODE_IF, reg_null_d, src0, src1); inst->conditional_mod = condition; return inst; } /** * CMP: Sets the low bit of the destination channels with the result * of the comparison, while the upper bits are undefined, and updates * the flag register with the packed 16 bits of the result. */ fs_inst * fs_visitor::CMP(fs_reg dst, fs_reg src0, fs_reg src1, uint32_t condition) { fs_inst *inst; /* Take the instruction: * * CMP null src0 src1 * * Original gen4 does type conversion to the destination type before * comparison, producing garbage results for floating point comparisons. * gen5 does the comparison on the execution type (resolved source types), * so dst type doesn't matter. gen6 does comparison and then uses the * result as if it was the dst type with no conversion, which happens to * mostly work out for float-interpreted-as-int since our comparisons are * for >0, =0, <0. */ if (brw->gen == 4) { dst.type = src0.type; if (dst.file == HW_REG) dst.fixed_hw_reg.type = dst.type; } resolve_ud_negate(&src0); resolve_ud_negate(&src1); inst = new(mem_ctx) fs_inst(BRW_OPCODE_CMP, dst, src0, src1); inst->conditional_mod = condition; return inst; } exec_list fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_reg &dst, const fs_reg &surf_index, const fs_reg &varying_offset, uint32_t const_offset) { exec_list instructions; fs_inst *inst; /* We have our constant surface use a pitch of 4 bytes, so our index can * be any component of a vector, and then we load 4 contiguous * components starting from that. * * We break down the const_offset to a portion added to the variable * offset and a portion done using reg_offset, which means that if you * have GLSL using something like "uniform vec4 a[20]; gl_FragColor = * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and * CSE can later notice that those loads are all the same and eliminate * the redundant ones. */ fs_reg vec4_offset = fs_reg(this, glsl_type::int_type); instructions.push_tail(ADD(vec4_offset, varying_offset, const_offset & ~3)); int scale = 1; if (brw->gen == 4 && dispatch_width == 8) { /* Pre-gen5, we can either use a SIMD8 message that requires (header, * u, v, r) as parameters, or we can just use the SIMD16 message * consisting of (header, u). We choose the second, at the cost of a * longer return length. */ scale = 2; } enum opcode op; if (brw->gen >= 7) op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7; else op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD; fs_reg vec4_result = fs_reg(GRF, virtual_grf_alloc(4 * scale), dst.type); inst = new(mem_ctx) fs_inst(op, vec4_result, surf_index, vec4_offset); inst->regs_written = 4 * scale; instructions.push_tail(inst); if (brw->gen < 7) { inst->base_mrf = 13; inst->header_present = true; if (brw->gen == 4) inst->mlen = 3; else inst->mlen = 1 + dispatch_width / 8; } vec4_result.reg_offset += (const_offset & 3) * scale; instructions.push_tail(MOV(dst, vec4_result)); return instructions; } /** * A helper for MOV generation for fixing up broken hardware SEND dependency * handling. */ fs_inst * fs_visitor::DEP_RESOLVE_MOV(int grf) { fs_inst *inst = MOV(brw_null_reg(), fs_reg(GRF, grf, BRW_REGISTER_TYPE_F)); inst->ir = NULL; inst->annotation = "send dependency resolve"; /* The caller always wants uncompressed to emit the minimal extra * dependencies, and to avoid having to deal with aligning its regs to 2. */ inst->force_uncompressed = true; return inst; } bool fs_inst::equals(fs_inst *inst) const { return (opcode == inst->opcode && dst.equals(inst->dst) && src[0].equals(inst->src[0]) && src[1].equals(inst->src[1]) && src[2].equals(inst->src[2]) && saturate == inst->saturate && predicate == inst->predicate && conditional_mod == inst->conditional_mod && mlen == inst->mlen && base_mrf == inst->base_mrf && sampler == inst->sampler && target == inst->target && eot == inst->eot && header_present == inst->header_present && shadow_compare == inst->shadow_compare && offset == inst->offset); } bool fs_inst::overwrites_reg(const fs_reg ®) const { return (reg.file == dst.file && reg.reg == dst.reg && reg.reg_offset >= dst.reg_offset && reg.reg_offset < dst.reg_offset + regs_written); } bool fs_inst::is_send_from_grf() const { return (opcode == FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7 || opcode == SHADER_OPCODE_SHADER_TIME_ADD || (opcode == FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD && src[1].file == GRF) || (is_tex() && src[0].file == GRF)); } bool fs_visitor::can_do_source_mods(fs_inst *inst) { if (brw->gen == 6 && inst->is_math()) return false; if (inst->is_send_from_grf()) return false; if (!inst->can_do_source_mods()) return false; return true; } void fs_reg::init() { memset(this, 0, sizeof(*this)); stride = 1; } /** Generic unset register constructor. */ fs_reg::fs_reg() { init(); this->file = BAD_FILE; } /** Immediate value constructor. */ fs_reg::fs_reg(float f) { init(); this->file = IMM; this->type = BRW_REGISTER_TYPE_F; this->imm.f = f; } /** Immediate value constructor. */ fs_reg::fs_reg(int32_t i) { init(); this->file = IMM; this->type = BRW_REGISTER_TYPE_D; this->imm.i = i; } /** Immediate value constructor. */ fs_reg::fs_reg(uint32_t u) { init(); this->file = IMM; this->type = BRW_REGISTER_TYPE_UD; this->imm.u = u; } /** Fixed brw_reg. */ fs_reg::fs_reg(struct brw_reg fixed_hw_reg) { init(); this->file = HW_REG; this->fixed_hw_reg = fixed_hw_reg; this->type = fixed_hw_reg.type; } bool fs_reg::equals(const fs_reg &r) const { return (file == r.file && reg == r.reg && reg_offset == r.reg_offset && subreg_offset == r.subreg_offset && type == r.type && negate == r.negate && abs == r.abs && !reladdr && !r.reladdr && memcmp(&fixed_hw_reg, &r.fixed_hw_reg, sizeof(fixed_hw_reg)) == 0 && stride == r.stride && imm.u == r.imm.u); } fs_reg & fs_reg::apply_stride(unsigned stride) { assert((this->stride * stride) <= 4 && (is_power_of_two(stride) || stride == 0) && file != HW_REG && file != IMM); this->stride *= stride; return *this; } fs_reg & fs_reg::set_smear(unsigned subreg) { assert(file != HW_REG && file != IMM); subreg_offset = subreg * type_sz(type); stride = 0; return *this; } bool fs_reg::is_contiguous() const { return stride == 1; } bool fs_reg::is_zero() const { if (file != IMM) return false; return type == BRW_REGISTER_TYPE_F ? imm.f == 0.0 : imm.i == 0; } bool fs_reg::is_one() const { if (file != IMM) return false; return type == BRW_REGISTER_TYPE_F ? imm.f == 1.0 : imm.i == 1; } bool fs_reg::is_null() const { return file == HW_REG && fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE && fixed_hw_reg.nr == BRW_ARF_NULL; } bool fs_reg::is_valid_3src() const { return file == GRF || file == UNIFORM; } bool fs_reg::is_accumulator() const { return file == HW_REG && fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE && fixed_hw_reg.nr == BRW_ARF_ACCUMULATOR; } int fs_visitor::type_size(const struct glsl_type *type) { unsigned int size, i; switch (type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: return type->components(); case GLSL_TYPE_ARRAY: return type_size(type->fields.array) * type->length; case GLSL_TYPE_STRUCT: size = 0; for (i = 0; i < type->length; i++) { size += type_size(type->fields.structure[i].type); } return size; case GLSL_TYPE_SAMPLER: /* Samplers take up no register space, since they're baked in at * link time. */ return 0; case GLSL_TYPE_ATOMIC_UINT: return 0; case GLSL_TYPE_IMAGE: case GLSL_TYPE_VOID: case GLSL_TYPE_ERROR: case GLSL_TYPE_INTERFACE: assert(!"not reached"); break; } return 0; } fs_reg fs_visitor::get_timestamp() { assert(brw->gen >= 7); fs_reg ts = fs_reg(retype(brw_vec1_reg(BRW_ARCHITECTURE_REGISTER_FILE, BRW_ARF_TIMESTAMP, 0), BRW_REGISTER_TYPE_UD)); fs_reg dst = fs_reg(this, glsl_type::uint_type); fs_inst *mov = emit(MOV(dst, ts)); /* We want to read the 3 fields we care about (mostly field 0, but also 2) * even if it's not enabled in the dispatch. */ mov->force_writemask_all = true; mov->force_uncompressed = true; /* The caller wants the low 32 bits of the timestamp. Since it's running * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds, * which is plenty of time for our purposes. It is identical across the * EUs, but since it's tracking GPU core speed it will increment at a * varying rate as render P-states change. * * The caller could also check if render P-states have changed (or anything * else that might disrupt timing) by setting smear to 2 and checking if * that field is != 0. */ dst.set_smear(0); return dst; } void fs_visitor::emit_shader_time_begin() { current_annotation = "shader time start"; shader_start_time = get_timestamp(); } void fs_visitor::emit_shader_time_end() { current_annotation = "shader time end"; enum shader_time_shader_type type, written_type, reset_type; if (dispatch_width == 8) { type = ST_FS8; written_type = ST_FS8_WRITTEN; reset_type = ST_FS8_RESET; } else { assert(dispatch_width == 16); type = ST_FS16; written_type = ST_FS16_WRITTEN; reset_type = ST_FS16_RESET; } fs_reg shader_end_time = get_timestamp(); /* Check that there weren't any timestamp reset events (assuming these * were the only two timestamp reads that happened). */ fs_reg reset = shader_end_time; reset.set_smear(2); fs_inst *test = emit(AND(reg_null_d, reset, fs_reg(1u))); test->conditional_mod = BRW_CONDITIONAL_Z; emit(IF(BRW_PREDICATE_NORMAL)); push_force_uncompressed(); fs_reg start = shader_start_time; start.negate = true; fs_reg diff = fs_reg(this, glsl_type::uint_type); emit(ADD(diff, start, shader_end_time)); /* If there were no instructions between the two timestamp gets, the diff * is 2 cycles. Remove that overhead, so I can forget about that when * trying to determine the time taken for single instructions. */ emit(ADD(diff, diff, fs_reg(-2u))); emit_shader_time_write(type, diff); emit_shader_time_write(written_type, fs_reg(1u)); emit(BRW_OPCODE_ELSE); emit_shader_time_write(reset_type, fs_reg(1u)); emit(BRW_OPCODE_ENDIF); pop_force_uncompressed(); } void fs_visitor::emit_shader_time_write(enum shader_time_shader_type type, fs_reg value) { int shader_time_index = brw_get_shader_time_index(brw, shader_prog, &fp->Base, type); fs_reg offset = fs_reg(shader_time_index * SHADER_TIME_STRIDE); fs_reg payload; if (dispatch_width == 8) payload = fs_reg(this, glsl_type::uvec2_type); else payload = fs_reg(this, glsl_type::uint_type); emit(new(mem_ctx) fs_inst(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value)); } void fs_visitor::vfail(const char *format, va_list va) { char *msg; if (failed) return; failed = true; msg = ralloc_vasprintf(mem_ctx, format, va); msg = ralloc_asprintf(mem_ctx, "FS compile failed: %s\n", msg); this->fail_msg = msg; if (INTEL_DEBUG & DEBUG_WM) { fprintf(stderr, "%s", msg); } } void fs_visitor::fail(const char *format, ...) { va_list va; va_start(va, format); vfail(format, va); va_end(va); } /** * Mark this program as impossible to compile in SIMD16 mode. * * During the SIMD8 compile (which happens first), we can detect and flag * things that are unsupported in SIMD16 mode, so the compiler can skip * the SIMD16 compile altogether. * * During a SIMD16 compile (if one happens anyway), this just calls fail(). */ void fs_visitor::no16(const char *format, ...) { va_list va; va_start(va, format); if (dispatch_width == 16) { vfail(format, va); } else { simd16_unsupported = true; if (brw->perf_debug) { if (no16_msg) ralloc_vasprintf_append(&no16_msg, format, va); else no16_msg = ralloc_vasprintf(mem_ctx, format, va); } } va_end(va); } fs_inst * fs_visitor::emit(enum opcode opcode) { return emit(new(mem_ctx) fs_inst(opcode)); } fs_inst * fs_visitor::emit(enum opcode opcode, fs_reg dst) { return emit(new(mem_ctx) fs_inst(opcode, dst)); } fs_inst * fs_visitor::emit(enum opcode opcode, fs_reg dst, fs_reg src0) { return emit(new(mem_ctx) fs_inst(opcode, dst, src0)); } fs_inst * fs_visitor::emit(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1) { return emit(new(mem_ctx) fs_inst(opcode, dst, src0, src1)); } fs_inst * fs_visitor::emit(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1, fs_reg src2) { return emit(new(mem_ctx) fs_inst(opcode, dst, src0, src1, src2)); } void fs_visitor::push_force_uncompressed() { force_uncompressed_stack++; } void fs_visitor::pop_force_uncompressed() { force_uncompressed_stack--; assert(force_uncompressed_stack >= 0); } /** * Returns true if the instruction has a flag that means it won't * update an entire destination register. * * For example, dead code elimination and live variable analysis want to know * when a write to a variable screens off any preceding values that were in * it. */ bool fs_inst::is_partial_write() const { return ((this->predicate && this->opcode != BRW_OPCODE_SEL) || this->force_uncompressed || this->force_sechalf || !this->dst.is_contiguous()); } int fs_inst::regs_read(fs_visitor *v, int arg) const { if (is_tex() && arg == 0 && src[0].file == GRF) { if (v->dispatch_width == 16) return (mlen + 1) / 2; else return mlen; } return 1; } bool fs_inst::reads_flag() const { return predicate; } bool fs_inst::writes_flag() const { return (conditional_mod && opcode != BRW_OPCODE_SEL) || opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS; } /** * Returns how many MRFs an FS opcode will write over. * * Note that this is not the 0 or 1 implied writes in an actual gen * instruction -- the FS opcodes often generate MOVs in addition. */ int fs_visitor::implied_mrf_writes(fs_inst *inst) { if (inst->mlen == 0) return 0; if (inst->base_mrf == -1) return 0; switch (inst->opcode) { case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SQRT: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_SIN: case SHADER_OPCODE_COS: return 1 * dispatch_width / 8; case SHADER_OPCODE_POW: case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_INT_REMAINDER: return 2 * dispatch_width / 8; case SHADER_OPCODE_TEX: case FS_OPCODE_TXB: case SHADER_OPCODE_TXD: case SHADER_OPCODE_TXF: case SHADER_OPCODE_TXF_CMS: case SHADER_OPCODE_TXF_MCS: case SHADER_OPCODE_TG4: case SHADER_OPCODE_TG4_OFFSET: case SHADER_OPCODE_TXL: case SHADER_OPCODE_TXS: case SHADER_OPCODE_LOD: return 1; case FS_OPCODE_FB_WRITE: return 2; case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: case SHADER_OPCODE_GEN4_SCRATCH_READ: return 1; case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD: return inst->mlen; case SHADER_OPCODE_GEN4_SCRATCH_WRITE: return 2; case SHADER_OPCODE_UNTYPED_ATOMIC: case SHADER_OPCODE_UNTYPED_SURFACE_READ: return 0; default: assert(!"not reached"); return inst->mlen; } } int fs_visitor::virtual_grf_alloc(int size) { if (virtual_grf_array_size <= virtual_grf_count) { if (virtual_grf_array_size == 0) virtual_grf_array_size = 16; else virtual_grf_array_size *= 2; virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int, virtual_grf_array_size); } virtual_grf_sizes[virtual_grf_count] = size; return virtual_grf_count++; } /** Fixed HW reg constructor. */ fs_reg::fs_reg(enum register_file file, int reg) { init(); this->file = file; this->reg = reg; this->type = BRW_REGISTER_TYPE_F; } /** Fixed HW reg constructor. */ fs_reg::fs_reg(enum register_file file, int reg, uint32_t type) { init(); this->file = file; this->reg = reg; this->type = type; } /** Automatic reg constructor. */ fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type) { init(); this->file = GRF; this->reg = v->virtual_grf_alloc(v->type_size(type)); this->reg_offset = 0; this->type = brw_type_for_base_type(type); } fs_reg * fs_visitor::variable_storage(ir_variable *var) { return (fs_reg *)hash_table_find(this->variable_ht, var); } void import_uniforms_callback(const void *key, void *data, void *closure) { struct hash_table *dst_ht = (struct hash_table *)closure; const fs_reg *reg = (const fs_reg *)data; if (reg->file != UNIFORM) return; hash_table_insert(dst_ht, data, key); } /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch. * This brings in those uniform definitions */ void fs_visitor::import_uniforms(fs_visitor *v) { hash_table_call_foreach(v->variable_ht, import_uniforms_callback, variable_ht); this->push_constant_loc = v->push_constant_loc; this->pull_constant_loc = v->pull_constant_loc; this->uniforms = v->uniforms; this->param_size = v->param_size; } /* Our support for uniforms is piggy-backed on the struct * gl_fragment_program, because that's where the values actually * get stored, rather than in some global gl_shader_program uniform * store. */ void fs_visitor::setup_uniform_values(ir_variable *ir) { int namelen = strlen(ir->name); /* The data for our (non-builtin) uniforms is stored in a series of * gl_uniform_driver_storage structs for each subcomponent that * glGetUniformLocation() could name. We know it's been set up in the same * order we'd walk the type, so walk the list of storage and find anything * with our name, or the prefix of a component that starts with our name. */ unsigned params_before = uniforms; for (unsigned u = 0; u < shader_prog->NumUserUniformStorage; u++) { struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u]; if (strncmp(ir->name, storage->name, namelen) != 0 || (storage->name[namelen] != 0 && storage->name[namelen] != '.' && storage->name[namelen] != '[')) { continue; } unsigned slots = storage->type->component_slots(); if (storage->array_elements) slots *= storage->array_elements; for (unsigned i = 0; i < slots; i++) { stage_prog_data->param[uniforms++] = &storage->storage[i].f; } } /* Make sure we actually initialized the right amount of stuff here. */ assert(params_before + ir->type->component_slots() == uniforms); (void)params_before; } /* Our support for builtin uniforms is even scarier than non-builtin. * It sits on top of the PROG_STATE_VAR parameters that are * automatically updated from GL context state. */ void fs_visitor::setup_builtin_uniform_values(ir_variable *ir) { const ir_state_slot *const slots = ir->state_slots; assert(ir->state_slots != NULL); for (unsigned int i = 0; i < ir->num_state_slots; i++) { /* This state reference has already been setup by ir_to_mesa, but we'll * get the same index back here. */ int index = _mesa_add_state_reference(this->fp->Base.Parameters, (gl_state_index *)slots[i].tokens); /* Add each of the unique swizzles of the element as a parameter. * This'll end up matching the expected layout of the * array/matrix/structure we're trying to fill in. */ int last_swiz = -1; for (unsigned int j = 0; j < 4; j++) { int swiz = GET_SWZ(slots[i].swizzle, j); if (swiz == last_swiz) break; last_swiz = swiz; stage_prog_data->param[uniforms++] = &fp->Base.Parameters->ParameterValues[index][swiz].f; } } } fs_reg * fs_visitor::emit_fragcoord_interpolation(ir_variable *ir) { fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); fs_reg wpos = *reg; bool flip = !ir->data.origin_upper_left ^ c->key.render_to_fbo; /* gl_FragCoord.x */ if (ir->data.pixel_center_integer) { emit(MOV(wpos, this->pixel_x)); } else { emit(ADD(wpos, this->pixel_x, fs_reg(0.5f))); } wpos.reg_offset++; /* gl_FragCoord.y */ if (!flip && ir->data.pixel_center_integer) { emit(MOV(wpos, this->pixel_y)); } else { fs_reg pixel_y = this->pixel_y; float offset = (ir->data.pixel_center_integer ? 0.0 : 0.5); if (flip) { pixel_y.negate = true; offset += c->key.drawable_height - 1.0; } emit(ADD(wpos, pixel_y, fs_reg(offset))); } wpos.reg_offset++; /* gl_FragCoord.z */ if (brw->gen >= 6) { emit(MOV(wpos, fs_reg(brw_vec8_grf(c->source_depth_reg, 0)))); } else { emit(FS_OPCODE_LINTERP, wpos, this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC], this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC], interp_reg(VARYING_SLOT_POS, 2)); } wpos.reg_offset++; /* gl_FragCoord.w: Already set up in emit_interpolation */ emit(BRW_OPCODE_MOV, wpos, this->wpos_w); return reg; } fs_inst * fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp, glsl_interp_qualifier interpolation_mode, bool is_centroid, bool is_sample) { brw_wm_barycentric_interp_mode barycoord_mode; if (brw->gen >= 6) { if (is_centroid) { if (interpolation_mode == INTERP_QUALIFIER_SMOOTH) barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC; else barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC; } else if (is_sample) { if (interpolation_mode == INTERP_QUALIFIER_SMOOTH) barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC; else barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC; } else { if (interpolation_mode == INTERP_QUALIFIER_SMOOTH) barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC; else barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC; } } else { /* On Ironlake and below, there is only one interpolation mode. * Centroid interpolation doesn't mean anything on this hardware -- * there is no multisampling. */ barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC; } return emit(FS_OPCODE_LINTERP, attr, this->delta_x[barycoord_mode], this->delta_y[barycoord_mode], interp); } fs_reg * fs_visitor::emit_general_interpolation(ir_variable *ir) { fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); reg->type = brw_type_for_base_type(ir->type->get_scalar_type()); fs_reg attr = *reg; unsigned int array_elements; const glsl_type *type; if (ir->type->is_array()) { array_elements = ir->type->length; if (array_elements == 0) { fail("dereferenced array '%s' has length 0\n", ir->name); } type = ir->type->fields.array; } else { array_elements = 1; type = ir->type; } glsl_interp_qualifier interpolation_mode = ir->determine_interpolation_mode(c->key.flat_shade); int location = ir->data.location; for (unsigned int i = 0; i < array_elements; i++) { for (unsigned int j = 0; j < type->matrix_columns; j++) { if (c->prog_data.urb_setup[location] == -1) { /* If there's no incoming setup data for this slot, don't * emit interpolation for it. */ attr.reg_offset += type->vector_elements; location++; continue; } if (interpolation_mode == INTERP_QUALIFIER_FLAT) { /* Constant interpolation (flat shading) case. The SF has * handed us defined values in only the constant offset * field of the setup reg. */ for (unsigned int k = 0; k < type->vector_elements; k++) { struct brw_reg interp = interp_reg(location, k); interp = suboffset(interp, 3); interp.type = reg->type; emit(FS_OPCODE_CINTERP, attr, fs_reg(interp)); attr.reg_offset++; } } else { /* Smooth/noperspective interpolation case. */ for (unsigned int k = 0; k < type->vector_elements; k++) { struct brw_reg interp = interp_reg(location, k); emit_linterp(attr, fs_reg(interp), interpolation_mode, ir->data.centroid && !c->key.persample_shading, ir->data.sample || c->key.persample_shading); if (brw->needs_unlit_centroid_workaround && ir->data.centroid) { /* Get the pixel/sample mask into f0 so that we know * which pixels are lit. Then, for each channel that is * unlit, replace the centroid data with non-centroid * data. */ emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS); fs_inst *inst = emit_linterp(attr, fs_reg(interp), interpolation_mode, false, false); inst->predicate = BRW_PREDICATE_NORMAL; inst->predicate_inverse = true; } if (brw->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) { emit(BRW_OPCODE_MUL, attr, attr, this->pixel_w); } attr.reg_offset++; } } location++; } } return reg; } fs_reg * fs_visitor::emit_frontfacing_interpolation(ir_variable *ir) { fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); /* The frontfacing comes in as a bit in the thread payload. */ if (brw->gen >= 6) { emit(BRW_OPCODE_ASR, *reg, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)), fs_reg(15)); emit(BRW_OPCODE_NOT, *reg, *reg); emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1)); } else { struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD); /* bit 31 is "primitive is back face", so checking < (1 << 31) gives * us front face */ emit(CMP(*reg, fs_reg(r1_6ud), fs_reg(1u << 31), BRW_CONDITIONAL_L)); emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u)); } return reg; } void fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos) { assert(dst.type == BRW_REGISTER_TYPE_F); if (c->key.compute_pos_offset) { /* Convert int_sample_pos to floating point */ emit(MOV(dst, int_sample_pos)); /* Scale to the range [0, 1] */ emit(MUL(dst, dst, fs_reg(1 / 16.0f))); } else { /* From ARB_sample_shading specification: * "When rendering to a non-multisample buffer, or if multisample * rasterization is disabled, gl_SamplePosition will always be * (0.5, 0.5). */ emit(MOV(dst, fs_reg(0.5f))); } } fs_reg * fs_visitor::emit_samplepos_setup(ir_variable *ir) { assert(brw->gen >= 6); assert(ir->type == glsl_type::vec2_type); this->current_annotation = "compute sample position"; fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); fs_reg pos = *reg; fs_reg int_sample_x = fs_reg(this, glsl_type::int_type); fs_reg int_sample_y = fs_reg(this, glsl_type::int_type); /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16 * mode will be enabled. * * From the Ivy Bridge PRM, volume 2 part 1, page 344: * R31.1:0 Position Offset X/Y for Slot[3:0] * R31.3:2 Position Offset X/Y for Slot[7:4] * ..... * * The X, Y sample positions come in as bytes in thread payload. So, read * the positions using vstride=16, width=8, hstride=2. */ struct brw_reg sample_pos_reg = stride(retype(brw_vec1_grf(c->sample_pos_reg, 0), BRW_REGISTER_TYPE_B), 16, 8, 2); emit(MOV(int_sample_x, fs_reg(sample_pos_reg))); if (dispatch_width == 16) { fs_inst *inst = emit(MOV(half(int_sample_x, 1), fs_reg(suboffset(sample_pos_reg, 16)))); inst->force_sechalf = true; } /* Compute gl_SamplePosition.x */ compute_sample_position(pos, int_sample_x); pos.reg_offset++; emit(MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)))); if (dispatch_width == 16) { fs_inst *inst = emit(MOV(half(int_sample_y, 1), fs_reg(suboffset(sample_pos_reg, 17)))); inst->force_sechalf = true; } /* Compute gl_SamplePosition.y */ compute_sample_position(pos, int_sample_y); return reg; } fs_reg * fs_visitor::emit_sampleid_setup(ir_variable *ir) { assert(brw->gen >= 6); this->current_annotation = "compute sample id"; fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); if (c->key.compute_sample_id) { fs_reg t1 = fs_reg(this, glsl_type::int_type); fs_reg t2 = fs_reg(this, glsl_type::int_type); t2.type = BRW_REGISTER_TYPE_UW; /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with * 8x multisampling, subspan 0 will represent sample N (where N * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or * 7. We can find the value of N by looking at R0.0 bits 7:6 * ("Starting Sample Pair Index (SSPI)") and multiplying by two * (since samples are always delivered in pairs). That is, we * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by * populating a temporary variable with the sequence (0, 1, 2, 3), * and then reading from it using vstride=1, width=4, hstride=0. * These computations hold good for 4x multisampling as well. */ emit(BRW_OPCODE_AND, t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)), fs_reg(brw_imm_d(0xc0))); emit(BRW_OPCODE_SHR, t1, t1, fs_reg(5)); /* This works for both SIMD8 and SIMD16 */ emit(MOV(t2, brw_imm_v(0x3210))); /* This special instruction takes care of setting vstride=1, * width=4, hstride=0 of t2 during an ADD instruction. */ emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2); } else { /* As per GL_ARB_sample_shading specification: * "When rendering to a non-multisample buffer, or if multisample * rasterization is disabled, gl_SampleID will always be zero." */ emit(BRW_OPCODE_MOV, *reg, fs_reg(0)); } return reg; } fs_reg * fs_visitor::emit_samplemaskin_setup(ir_variable *ir) { assert(brw->gen >= 7); this->current_annotation = "compute gl_SampleMaskIn"; fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type); emit(MOV(*reg, fs_reg(retype(brw_vec8_grf(c->sample_mask_reg, 0), BRW_REGISTER_TYPE_D)))); return reg; } fs_reg fs_visitor::fix_math_operand(fs_reg src) { /* Can't do hstride == 0 args on gen6 math, so expand it out. We * might be able to do better by doing execsize = 1 math and then * expanding that result out, but we would need to be careful with * masking. * * The hardware ignores source modifiers (negate and abs) on math * instructions, so we also move to a temp to set those up. */ if (brw->gen == 6 && src.file != UNIFORM && src.file != IMM && !src.abs && !src.negate) return src; /* Gen7 relaxes most of the above restrictions, but still can't use IMM * operands to math */ if (brw->gen >= 7 && src.file != IMM) return src; fs_reg expanded = fs_reg(this, glsl_type::float_type); expanded.type = src.type; emit(BRW_OPCODE_MOV, expanded, src); return expanded; } fs_inst * fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src) { switch (opcode) { case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SQRT: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_SIN: case SHADER_OPCODE_COS: break; default: assert(!"not reached: bad math opcode"); return NULL; } /* Can't do hstride == 0 args to gen6 math, so expand it out. We * might be able to do better by doing execsize = 1 math and then * expanding that result out, but we would need to be careful with * masking. * * Gen 6 hardware ignores source modifiers (negate and abs) on math * instructions, so we also move to a temp to set those up. */ if (brw->gen >= 6) src = fix_math_operand(src); fs_inst *inst = emit(opcode, dst, src); if (brw->gen < 6) { inst->base_mrf = 2; inst->mlen = dispatch_width / 8; } return inst; } fs_inst * fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1) { int base_mrf = 2; fs_inst *inst; switch (opcode) { case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_INT_REMAINDER: if (brw->gen >= 7) no16("SIMD16 INTDIV unsupported\n"); break; case SHADER_OPCODE_POW: break; default: assert(!"not reached: unsupported binary math opcode."); return NULL; } if (brw->gen >= 6) { src0 = fix_math_operand(src0); src1 = fix_math_operand(src1); inst = emit(opcode, dst, src0, src1); } else { /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13 * "Message Payload": * * "Operand0[7]. For the INT DIV functions, this operand is the * denominator." * ... * "Operand1[7]. For the INT DIV functions, this operand is the * numerator." */ bool is_int_div = opcode != SHADER_OPCODE_POW; fs_reg &op0 = is_int_div ? src1 : src0; fs_reg &op1 = is_int_div ? src0 : src1; emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1, op1.type), op1); inst = emit(opcode, dst, op0, reg_null_f); inst->base_mrf = base_mrf; inst->mlen = 2 * dispatch_width / 8; } return inst; } void fs_visitor::assign_curb_setup() { if (dispatch_width == 8) { c->prog_data.first_curbe_grf = c->nr_payload_regs; } else { c->prog_data.first_curbe_grf_16 = c->nr_payload_regs; } c->prog_data.curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8; /* Map the offsets in the UNIFORM file to fixed HW regs. */ foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == UNIFORM) { int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset; int constant_nr; if (uniform_nr >= 0 && uniform_nr < (int) uniforms) { constant_nr = push_constant_loc[uniform_nr]; } else { /* Section 5.11 of the OpenGL 4.1 spec says: * "Out-of-bounds reads return undefined values, which include * values from other variables of the active program or zero." * Just return the first push constant. */ constant_nr = 0; } struct brw_reg brw_reg = brw_vec1_grf(c->nr_payload_regs + constant_nr / 8, constant_nr % 8); inst->src[i].file = HW_REG; inst->src[i].fixed_hw_reg = byte_offset( retype(brw_reg, inst->src[i].type), inst->src[i].subreg_offset); } } } } void fs_visitor::calculate_urb_setup() { for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) { c->prog_data.urb_setup[i] = -1; } int urb_next = 0; /* Figure out where each of the incoming setup attributes lands. */ if (brw->gen >= 6) { if (_mesa_bitcount_64(fp->Base.InputsRead & BRW_FS_VARYING_INPUT_MASK) <= 16) { /* The SF/SBE pipeline stage can do arbitrary rearrangement of the * first 16 varying inputs, so we can put them wherever we want. * Just put them in order. * * This is useful because it means that (a) inputs not used by the * fragment shader won't take up valuable register space, and (b) we * won't have to recompile the fragment shader if it gets paired with * a different vertex (or geometry) shader. */ for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) { if (fp->Base.InputsRead & BRW_FS_VARYING_INPUT_MASK & BITFIELD64_BIT(i)) { c->prog_data.urb_setup[i] = urb_next++; } } } else { /* We have enough input varyings that the SF/SBE pipeline stage can't * arbitrarily rearrange them to suit our whim; we have to put them * in an order that matches the output of the previous pipeline stage * (geometry or vertex shader). */ struct brw_vue_map prev_stage_vue_map; brw_compute_vue_map(brw, &prev_stage_vue_map, c->key.input_slots_valid); int first_slot = 2 * BRW_SF_URB_ENTRY_READ_OFFSET; assert(prev_stage_vue_map.num_slots <= first_slot + 32); for (int slot = first_slot; slot < prev_stage_vue_map.num_slots; slot++) { int varying = prev_stage_vue_map.slot_to_varying[slot]; /* Note that varying == BRW_VARYING_SLOT_COUNT when a slot is * unused. */ if (varying != BRW_VARYING_SLOT_COUNT && (fp->Base.InputsRead & BRW_FS_VARYING_INPUT_MASK & BITFIELD64_BIT(varying))) { c->prog_data.urb_setup[varying] = slot - first_slot; } } urb_next = prev_stage_vue_map.num_slots - first_slot; } } else { /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */ for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) { /* Point size is packed into the header, not as a general attribute */ if (i == VARYING_SLOT_PSIZ) continue; if (c->key.input_slots_valid & BITFIELD64_BIT(i)) { /* The back color slot is skipped when the front color is * also written to. In addition, some slots can be * written in the vertex shader and not read in the * fragment shader. So the register number must always be * incremented, mapped or not. */ if (_mesa_varying_slot_in_fs((gl_varying_slot) i)) c->prog_data.urb_setup[i] = urb_next; urb_next++; } } /* * It's a FS only attribute, and we did interpolation for this attribute * in SF thread. So, count it here, too. * * See compile_sf_prog() for more info. */ if (fp->Base.InputsRead & BITFIELD64_BIT(VARYING_SLOT_PNTC)) c->prog_data.urb_setup[VARYING_SLOT_PNTC] = urb_next++; } c->prog_data.num_varying_inputs = urb_next; } void fs_visitor::assign_urb_setup() { int urb_start = c->nr_payload_regs + c->prog_data.curb_read_length; /* Offset all the urb_setup[] index by the actual position of the * setup regs, now that the location of the constants has been chosen. */ foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; if (inst->opcode == FS_OPCODE_LINTERP) { assert(inst->src[2].file == HW_REG); inst->src[2].fixed_hw_reg.nr += urb_start; } if (inst->opcode == FS_OPCODE_CINTERP) { assert(inst->src[0].file == HW_REG); inst->src[0].fixed_hw_reg.nr += urb_start; } } /* Each attribute is 4 setup channels, each of which is half a reg. */ this->first_non_payload_grf = urb_start + c->prog_data.num_varying_inputs * 2; } /** * Split large virtual GRFs into separate components if we can. * * This is mostly duplicated with what brw_fs_vector_splitting does, * but that's really conservative because it's afraid of doing * splitting that doesn't result in real progress after the rest of * the optimization phases, which would cause infinite looping in * optimization. We can do it once here, safely. This also has the * opportunity to split interpolated values, or maybe even uniforms, * which we don't have at the IR level. * * We want to split, because virtual GRFs are what we register * allocate and spill (due to contiguousness requirements for some * instructions), and they're what we naturally generate in the * codegen process, but most virtual GRFs don't actually need to be * contiguous sets of GRFs. If we split, we'll end up with reduced * live intervals and better dead code elimination and coalescing. */ void fs_visitor::split_virtual_grfs() { int num_vars = this->virtual_grf_count; bool split_grf[num_vars]; int new_virtual_grf[num_vars]; /* Try to split anything > 0 sized. */ for (int i = 0; i < num_vars; i++) { if (this->virtual_grf_sizes[i] != 1) split_grf[i] = true; else split_grf[i] = false; } if (brw->has_pln && this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].file == GRF) { /* PLN opcodes rely on the delta_xy being contiguous. We only have to * check this for BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC, because prior to * Gen6, that was the only supported interpolation mode, and since Gen6, * delta_x and delta_y are in fixed hardware registers. */ split_grf[this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg] = false; } foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; /* If there's a SEND message that requires contiguous destination * registers, no splitting is allowed. */ if (inst->regs_written > 1) { split_grf[inst->dst.reg] = false; } /* If we're sending from a GRF, don't split it, on the assumption that * the send is reading the whole thing. */ if (inst->is_send_from_grf()) { for (int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) { split_grf[inst->src[i].reg] = false; } } } } /* Allocate new space for split regs. Note that the virtual * numbers will be contiguous. */ for (int i = 0; i < num_vars; i++) { if (split_grf[i]) { new_virtual_grf[i] = virtual_grf_alloc(1); for (int j = 2; j < this->virtual_grf_sizes[i]; j++) { int reg = virtual_grf_alloc(1); assert(reg == new_virtual_grf[i] + j - 1); (void) reg; } this->virtual_grf_sizes[i] = 1; } } foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; if (inst->dst.file == GRF && split_grf[inst->dst.reg] && inst->dst.reg_offset != 0) { inst->dst.reg = (new_virtual_grf[inst->dst.reg] + inst->dst.reg_offset - 1); inst->dst.reg_offset = 0; } for (int i = 0; i < 3; i++) { if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] && inst->src[i].reg_offset != 0) { inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] + inst->src[i].reg_offset - 1); inst->src[i].reg_offset = 0; } } } invalidate_live_intervals(); } /** * Remove unused virtual GRFs and compact the virtual_grf_* arrays. * * During code generation, we create tons of temporary variables, many of * which get immediately killed and are never used again. Yet, in later * optimization and analysis passes, such as compute_live_intervals, we need * to loop over all the virtual GRFs. Compacting them can save a lot of * overhead. */ void fs_visitor::compact_virtual_grfs() { /* Mark which virtual GRFs are used, and count how many. */ int remap_table[this->virtual_grf_count]; memset(remap_table, -1, sizeof(remap_table)); foreach_list(node, &this->instructions) { const fs_inst *inst = (const fs_inst *) node; if (inst->dst.file == GRF) remap_table[inst->dst.reg] = 0; for (int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) remap_table[inst->src[i].reg] = 0; } } /* In addition to registers used in instructions, fs_visitor keeps * direct references to certain special values which must be patched: */ struct { fs_reg *reg; unsigned count; } special[] = { { &frag_depth, 1 }, { &pixel_x, 1 }, { &pixel_y, 1 }, { &pixel_w, 1 }, { &wpos_w, 1 }, { &dual_src_output, 1 }, { outputs, ARRAY_SIZE(outputs) }, { delta_x, ARRAY_SIZE(delta_x) }, { delta_y, ARRAY_SIZE(delta_y) }, { &sample_mask, 1 }, { &shader_start_time, 1 }, }; /* Treat all special values as used, to be conservative */ for (unsigned i = 0; i < ARRAY_SIZE(special); i++) { for (unsigned j = 0; j < special[i].count; j++) { if (special[i].reg[j].file == GRF) remap_table[special[i].reg[j].reg] = 0; } } /* Compact the GRF arrays. */ int new_index = 0; for (int i = 0; i < this->virtual_grf_count; i++) { if (remap_table[i] != -1) { remap_table[i] = new_index; virtual_grf_sizes[new_index] = virtual_grf_sizes[i]; invalidate_live_intervals(); ++new_index; } } this->virtual_grf_count = new_index; /* Patch all the instructions to use the newly renumbered registers */ foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *) node; if (inst->dst.file == GRF) inst->dst.reg = remap_table[inst->dst.reg]; for (int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) inst->src[i].reg = remap_table[inst->src[i].reg]; } } /* Patch all the references to special values */ for (unsigned i = 0; i < ARRAY_SIZE(special); i++) { for (unsigned j = 0; j < special[i].count; j++) { fs_reg *reg = &special[i].reg[j]; if (reg->file == GRF && remap_table[reg->reg] != -1) reg->reg = remap_table[reg->reg]; } } } /* * Implements array access of uniforms by inserting a * PULL_CONSTANT_LOAD instruction. * * Unlike temporary GRF array access (where we don't support it due to * the difficulty of doing relative addressing on instruction * destinations), we could potentially do array access of uniforms * that were loaded in GRF space as push constants. In real-world * usage we've seen, though, the arrays being used are always larger * than we could load as push constants, so just always move all * uniform array access out to a pull constant buffer. */ void fs_visitor::move_uniform_array_access_to_pull_constants() { if (dispatch_width != 8) return; pull_constant_loc = ralloc_array(mem_ctx, int, uniforms); for (unsigned int i = 0; i < uniforms; i++) { pull_constant_loc[i] = -1; } /* Walk through and find array access of uniforms. Put a copy of that * uniform in the pull constant buffer. * * Note that we don't move constant-indexed accesses to arrays. No * testing has been done of the performance impact of this choice. */ foreach_list_safe(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; for (int i = 0 ; i < 3; i++) { if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr) continue; int uniform = inst->src[i].reg; /* If this array isn't already present in the pull constant buffer, * add it. */ if (pull_constant_loc[uniform] == -1) { const float **values = &stage_prog_data->param[uniform]; assert(param_size[uniform]); for (int j = 0; j < param_size[uniform]; j++) { pull_constant_loc[uniform + j] = stage_prog_data->nr_pull_params; stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] = values[j]; } } } } } /** * Assign UNIFORM file registers to either push constants or pull constants. * * We allow a fragment shader to have more than the specified minimum * maximum number of fragment shader uniform components (64). If * there are too many of these, they'd fill up all of register space. * So, this will push some of them out to the pull constant buffer and * update the program to load them. */ void fs_visitor::assign_constant_locations() { /* Only the first compile (SIMD8 mode) gets to decide on locations. */ if (dispatch_width != 8) return; /* Find which UNIFORM registers are still in use. */ bool is_live[uniforms]; for (unsigned int i = 0; i < uniforms; i++) { is_live[i] = false; } foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *) node; for (int i = 0; i < 3; i++) { if (inst->src[i].file != UNIFORM) continue; int constant_nr = inst->src[i].reg + inst->src[i].reg_offset; if (constant_nr >= 0 && constant_nr < (int) uniforms) is_live[constant_nr] = true; } } /* Only allow 16 registers (128 uniform components) as push constants. * * Just demote the end of the list. We could probably do better * here, demoting things that are rarely used in the program first. */ unsigned int max_push_components = 16 * 8; unsigned int num_push_constants = 0; push_constant_loc = ralloc_array(mem_ctx, int, uniforms); for (unsigned int i = 0; i < uniforms; i++) { if (!is_live[i] || pull_constant_loc[i] != -1) { /* This UNIFORM register is either dead, or has already been demoted * to a pull const. Mark it as no longer living in the param[] array. */ push_constant_loc[i] = -1; continue; } if (num_push_constants < max_push_components) { /* Retain as a push constant. Record the location in the params[] * array. */ push_constant_loc[i] = num_push_constants++; } else { /* Demote to a pull constant. */ push_constant_loc[i] = -1; int pull_index = stage_prog_data->nr_pull_params++; stage_prog_data->pull_param[pull_index] = stage_prog_data->param[i]; pull_constant_loc[i] = pull_index; } } stage_prog_data->nr_params = num_push_constants; /* Up until now, the param[] array has been indexed by reg + reg_offset * of UNIFORM registers. Condense it to only contain the uniforms we * chose to upload as push constants. */ for (unsigned int i = 0; i < uniforms; i++) { int remapped = push_constant_loc[i]; if (remapped == -1) continue; assert(remapped <= (int)i); stage_prog_data->param[remapped] = stage_prog_data->param[i]; } } /** * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs. */ void fs_visitor::demote_pull_constants() { foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; for (int i = 0; i < 3; i++) { if (inst->src[i].file != UNIFORM) continue; int pull_index = pull_constant_loc[inst->src[i].reg + inst->src[i].reg_offset]; if (pull_index == -1) continue; /* Set up the annotation tracking for new generated instructions. */ base_ir = inst->ir; current_annotation = inst->annotation; fs_reg surf_index(stage_prog_data->binding_table.pull_constants_start); fs_reg dst = fs_reg(this, glsl_type::float_type); /* Generate a pull load into dst. */ if (inst->src[i].reladdr) { exec_list list = VARYING_PULL_CONSTANT_LOAD(dst, surf_index, *inst->src[i].reladdr, pull_index); inst->insert_before(&list); inst->src[i].reladdr = NULL; } else { fs_reg offset = fs_reg((unsigned)(pull_index * 4) & ~15); fs_inst *pull = new(mem_ctx) fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, dst, surf_index, offset); inst->insert_before(pull); inst->src[i].set_smear(pull_index & 3); } /* Rewrite the instruction to use the temporary VGRF. */ inst->src[i].file = GRF; inst->src[i].reg = dst.reg; inst->src[i].reg_offset = 0; } } invalidate_live_intervals(); } bool fs_visitor::opt_algebraic() { bool progress = false; foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; switch (inst->opcode) { case BRW_OPCODE_MUL: if (inst->src[1].file != IMM) continue; /* a * 1.0 = a */ if (inst->src[1].is_one()) { inst->opcode = BRW_OPCODE_MOV; inst->src[1] = reg_undef; progress = true; break; } /* a * 0.0 = 0.0 */ if (inst->src[1].is_zero()) { inst->opcode = BRW_OPCODE_MOV; inst->src[0] = inst->src[1]; inst->src[1] = reg_undef; progress = true; break; } break; case BRW_OPCODE_ADD: if (inst->src[1].file != IMM) continue; /* a + 0.0 = a */ if (inst->src[1].is_zero()) { inst->opcode = BRW_OPCODE_MOV; inst->src[1] = reg_undef; progress = true; break; } break; case BRW_OPCODE_OR: if (inst->src[0].equals(inst->src[1])) { inst->opcode = BRW_OPCODE_MOV; inst->src[1] = reg_undef; progress = true; break; } break; case BRW_OPCODE_LRP: if (inst->src[1].equals(inst->src[2])) { inst->opcode = BRW_OPCODE_MOV; inst->src[0] = inst->src[1]; inst->src[1] = reg_undef; inst->src[2] = reg_undef; progress = true; break; } break; case BRW_OPCODE_SEL: if (inst->saturate && inst->src[1].file == IMM) { switch (inst->conditional_mod) { case BRW_CONDITIONAL_LE: case BRW_CONDITIONAL_L: switch (inst->src[1].type) { case BRW_REGISTER_TYPE_F: if (inst->src[1].imm.f >= 1.0f) { inst->opcode = BRW_OPCODE_MOV; inst->src[1] = reg_undef; progress = true; } break; default: break; } break; case BRW_CONDITIONAL_GE: case BRW_CONDITIONAL_G: switch (inst->src[1].type) { case BRW_REGISTER_TYPE_F: if (inst->src[1].imm.f <= 0.0f) { inst->opcode = BRW_OPCODE_MOV; inst->src[1] = reg_undef; inst->conditional_mod = BRW_CONDITIONAL_NONE; progress = true; } break; default: break; } default: break; } } break; default: break; } } return progress; } bool fs_visitor::compute_to_mrf() { bool progress = false; int next_ip = 0; calculate_live_intervals(); foreach_list_safe(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; int ip = next_ip; next_ip++; if (inst->opcode != BRW_OPCODE_MOV || inst->is_partial_write() || inst->dst.file != MRF || inst->src[0].file != GRF || inst->dst.type != inst->src[0].type || inst->src[0].abs || inst->src[0].negate || !inst->src[0].is_contiguous() || inst->src[0].subreg_offset) continue; /* Work out which hardware MRF registers are written by this * instruction. */ int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4; int mrf_high; if (inst->dst.reg & BRW_MRF_COMPR4) { mrf_high = mrf_low + 4; } else if (dispatch_width == 16 && (!inst->force_uncompressed && !inst->force_sechalf)) { mrf_high = mrf_low + 1; } else { mrf_high = mrf_low; } /* Can't compute-to-MRF this GRF if someone else was going to * read it later. */ if (this->virtual_grf_end[inst->src[0].reg] > ip) continue; /* Found a move of a GRF to a MRF. Let's see if we can go * rewrite the thing that made this GRF to write into the MRF. */ fs_inst *scan_inst; for (scan_inst = (fs_inst *)inst->prev; scan_inst->prev != NULL; scan_inst = (fs_inst *)scan_inst->prev) { if (scan_inst->dst.file == GRF && scan_inst->dst.reg == inst->src[0].reg) { /* Found the last thing to write our reg we want to turn * into a compute-to-MRF. */ /* If this one instruction didn't populate all the * channels, bail. We might be able to rewrite everything * that writes that reg, but it would require smarter * tracking to delay the rewriting until complete success. */ if (scan_inst->is_partial_write()) break; /* Things returning more than one register would need us to * understand coalescing out more than one MOV at a time. */ if (scan_inst->regs_written > 1) break; /* SEND instructions can't have MRF as a destination. */ if (scan_inst->mlen) break; if (brw->gen == 6) { /* gen6 math instructions must have the destination be * GRF, so no compute-to-MRF for them. */ if (scan_inst->is_math()) { break; } } if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) { /* Found the creator of our MRF's source value. */ scan_inst->dst.file = MRF; scan_inst->dst.reg = inst->dst.reg; scan_inst->saturate |= inst->saturate; inst->remove(); progress = true; } break; } /* We don't handle control flow here. Most computation of * values that end up in MRFs are shortly before the MRF * write anyway. */ if (scan_inst->is_control_flow() && scan_inst->opcode != BRW_OPCODE_IF) break; /* You can't read from an MRF, so if someone else reads our * MRF's source GRF that we wanted to rewrite, that stops us. */ bool interfered = false; for (int i = 0; i < 3; i++) { if (scan_inst->src[i].file == GRF && scan_inst->src[i].reg == inst->src[0].reg && scan_inst->src[i].reg_offset == inst->src[0].reg_offset) { interfered = true; } } if (interfered) break; if (scan_inst->dst.file == MRF) { /* If somebody else writes our MRF here, we can't * compute-to-MRF before that. */ int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4; int scan_mrf_high; if (scan_inst->dst.reg & BRW_MRF_COMPR4) { scan_mrf_high = scan_mrf_low + 4; } else if (dispatch_width == 16 && (!scan_inst->force_uncompressed && !scan_inst->force_sechalf)) { scan_mrf_high = scan_mrf_low + 1; } else { scan_mrf_high = scan_mrf_low; } if (mrf_low == scan_mrf_low || mrf_low == scan_mrf_high || mrf_high == scan_mrf_low || mrf_high == scan_mrf_high) { break; } } if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) { /* Found a SEND instruction, which means that there are * live values in MRFs from base_mrf to base_mrf + * scan_inst->mlen - 1. Don't go pushing our MRF write up * above it. */ if (mrf_low >= scan_inst->base_mrf && mrf_low < scan_inst->base_mrf + scan_inst->mlen) { break; } if (mrf_high >= scan_inst->base_mrf && mrf_high < scan_inst->base_mrf + scan_inst->mlen) { break; } } } } if (progress) invalidate_live_intervals(); return progress; } /** * Walks through basic blocks, looking for repeated MRF writes and * removing the later ones. */ bool fs_visitor::remove_duplicate_mrf_writes() { fs_inst *last_mrf_move[16]; bool progress = false; /* Need to update the MRF tracking for compressed instructions. */ if (dispatch_width == 16) return false; memset(last_mrf_move, 0, sizeof(last_mrf_move)); foreach_list_safe(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; if (inst->is_control_flow()) { memset(last_mrf_move, 0, sizeof(last_mrf_move)); } if (inst->opcode == BRW_OPCODE_MOV && inst->dst.file == MRF) { fs_inst *prev_inst = last_mrf_move[inst->dst.reg]; if (prev_inst && inst->equals(prev_inst)) { inst->remove(); progress = true; continue; } } /* Clear out the last-write records for MRFs that were overwritten. */ if (inst->dst.file == MRF) { last_mrf_move[inst->dst.reg] = NULL; } if (inst->mlen > 0 && inst->base_mrf != -1) { /* Found a SEND instruction, which will include two or fewer * implied MRF writes. We could do better here. */ for (int i = 0; i < implied_mrf_writes(inst); i++) { last_mrf_move[inst->base_mrf + i] = NULL; } } /* Clear out any MRF move records whose sources got overwritten. */ if (inst->dst.file == GRF) { for (unsigned int i = 0; i < Elements(last_mrf_move); i++) { if (last_mrf_move[i] && last_mrf_move[i]->src[0].reg == inst->dst.reg) { last_mrf_move[i] = NULL; } } } if (inst->opcode == BRW_OPCODE_MOV && inst->dst.file == MRF && inst->src[0].file == GRF && !inst->is_partial_write()) { last_mrf_move[inst->dst.reg] = inst; } } if (progress) invalidate_live_intervals(); return progress; } static void clear_deps_for_inst_src(fs_inst *inst, int dispatch_width, bool *deps, int first_grf, int grf_len) { bool inst_simd16 = (dispatch_width > 8 && !inst->force_uncompressed && !inst->force_sechalf); /* Clear the flag for registers that actually got read (as expected). */ for (int i = 0; i < 3; i++) { int grf; if (inst->src[i].file == GRF) { grf = inst->src[i].reg; } else if (inst->src[i].file == HW_REG && inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) { grf = inst->src[i].fixed_hw_reg.nr; } else { continue; } if (grf >= first_grf && grf < first_grf + grf_len) { deps[grf - first_grf] = false; if (inst_simd16) deps[grf - first_grf + 1] = false; } } } /** * Implements this workaround for the original 965: * * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not * check for post destination dependencies on this instruction, software * must ensure that there is no destination hazard for the case of ‘write * followed by a posted write’ shown in the following example. * * 1. mov r3 0 * 2. send r3.xy * 3. mov r2 r3 * * Due to no post-destination dependency check on the ‘send’, the above * code sequence could have two instructions (1 and 2) in flight at the * same time that both consider ‘r3’ as the target of their final writes. */ void fs_visitor::insert_gen4_pre_send_dependency_workarounds(fs_inst *inst) { int reg_size = dispatch_width / 8; int write_len = inst->regs_written * reg_size; int first_write_grf = inst->dst.reg; bool needs_dep[BRW_MAX_MRF]; assert(write_len < (int)sizeof(needs_dep) - 1); memset(needs_dep, false, sizeof(needs_dep)); memset(needs_dep, true, write_len); clear_deps_for_inst_src(inst, dispatch_width, needs_dep, first_write_grf, write_len); /* Walk backwards looking for writes to registers we're writing which * aren't read since being written. If we hit the start of the program, * we assume that there are no outstanding dependencies on entry to the * program. */ for (fs_inst *scan_inst = (fs_inst *)inst->prev; scan_inst != NULL; scan_inst = (fs_inst *)scan_inst->prev) { /* If we hit control flow, assume that there *are* outstanding * dependencies, and force their cleanup before our instruction. */ if (scan_inst->is_control_flow()) { for (int i = 0; i < write_len; i++) { if (needs_dep[i]) { inst->insert_before(DEP_RESOLVE_MOV(first_write_grf + i)); } } return; } bool scan_inst_simd16 = (dispatch_width > 8 && !scan_inst->force_uncompressed && !scan_inst->force_sechalf); /* We insert our reads as late as possible on the assumption that any * instruction but a MOV that might have left us an outstanding * dependency has more latency than a MOV. */ if (scan_inst->dst.file == GRF) { for (int i = 0; i < scan_inst->regs_written; i++) { int reg = scan_inst->dst.reg + i * reg_size; if (reg >= first_write_grf && reg < first_write_grf + write_len && needs_dep[reg - first_write_grf]) { inst->insert_before(DEP_RESOLVE_MOV(reg)); needs_dep[reg - first_write_grf] = false; if (scan_inst_simd16) needs_dep[reg - first_write_grf + 1] = false; } } } /* Clear the flag for registers that actually got read (as expected). */ clear_deps_for_inst_src(scan_inst, dispatch_width, needs_dep, first_write_grf, write_len); /* Continue the loop only if we haven't resolved all the dependencies */ int i; for (i = 0; i < write_len; i++) { if (needs_dep[i]) break; } if (i == write_len) return; } } /** * Implements this workaround for the original 965: * * "[DevBW, DevCL] Errata: A destination register from a send can not be * used as a destination register until after it has been sourced by an * instruction with a different destination register. */ void fs_visitor::insert_gen4_post_send_dependency_workarounds(fs_inst *inst) { int write_len = inst->regs_written * dispatch_width / 8; int first_write_grf = inst->dst.reg; bool needs_dep[BRW_MAX_MRF]; assert(write_len < (int)sizeof(needs_dep) - 1); memset(needs_dep, false, sizeof(needs_dep)); memset(needs_dep, true, write_len); /* Walk forwards looking for writes to registers we're writing which aren't * read before being written. */ for (fs_inst *scan_inst = (fs_inst *)inst->next; !scan_inst->is_tail_sentinel(); scan_inst = (fs_inst *)scan_inst->next) { /* If we hit control flow, force resolve all remaining dependencies. */ if (scan_inst->is_control_flow()) { for (int i = 0; i < write_len; i++) { if (needs_dep[i]) scan_inst->insert_before(DEP_RESOLVE_MOV(first_write_grf + i)); } return; } /* Clear the flag for registers that actually got read (as expected). */ clear_deps_for_inst_src(scan_inst, dispatch_width, needs_dep, first_write_grf, write_len); /* We insert our reads as late as possible since they're reading the * result of a SEND, which has massive latency. */ if (scan_inst->dst.file == GRF && scan_inst->dst.reg >= first_write_grf && scan_inst->dst.reg < first_write_grf + write_len && needs_dep[scan_inst->dst.reg - first_write_grf]) { scan_inst->insert_before(DEP_RESOLVE_MOV(scan_inst->dst.reg)); needs_dep[scan_inst->dst.reg - first_write_grf] = false; } /* Continue the loop only if we haven't resolved all the dependencies */ int i; for (i = 0; i < write_len; i++) { if (needs_dep[i]) break; } if (i == write_len) return; } /* If we hit the end of the program, resolve all remaining dependencies out * of paranoia. */ fs_inst *last_inst = (fs_inst *)this->instructions.get_tail(); assert(last_inst->eot); for (int i = 0; i < write_len; i++) { if (needs_dep[i]) last_inst->insert_before(DEP_RESOLVE_MOV(first_write_grf + i)); } } void fs_visitor::insert_gen4_send_dependency_workarounds() { if (brw->gen != 4 || brw->is_g4x) return; /* Note that we're done with register allocation, so GRF fs_regs always * have a .reg_offset of 0. */ foreach_list_safe(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; if (inst->mlen != 0 && inst->dst.file == GRF) { insert_gen4_pre_send_dependency_workarounds(inst); insert_gen4_post_send_dependency_workarounds(inst); } } } /** * Turns the generic expression-style uniform pull constant load instruction * into a hardware-specific series of instructions for loading a pull * constant. * * The expression style allows the CSE pass before this to optimize out * repeated loads from the same offset, and gives the pre-register-allocation * scheduling full flexibility, while the conversion to native instructions * allows the post-register-allocation scheduler the best information * possible. * * Note that execution masking for setting up pull constant loads is special: * the channels that need to be written are unrelated to the current execution * mask, since a later instruction will use one of the result channels as a * source operand for all 8 or 16 of its channels. */ void fs_visitor::lower_uniform_pull_constant_loads() { foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD) continue; if (brw->gen >= 7) { /* The offset arg before was a vec4-aligned byte offset. We need to * turn it into a dword offset. */ fs_reg const_offset_reg = inst->src[1]; assert(const_offset_reg.file == IMM && const_offset_reg.type == BRW_REGISTER_TYPE_UD); const_offset_reg.imm.u /= 4; fs_reg payload = fs_reg(this, glsl_type::uint_type); /* This is actually going to be a MOV, but since only the first dword * is accessed, we have a special opcode to do just that one. Note * that this needs to be an operation that will be considered a def * by live variable analysis, or register allocation will explode. */ fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET, payload, const_offset_reg); setup->force_writemask_all = true; setup->ir = inst->ir; setup->annotation = inst->annotation; inst->insert_before(setup); /* Similarly, this will only populate the first 4 channels of the * result register (since we only use smear values from 0-3), but we * don't tell the optimizer. */ inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7; inst->src[1] = payload; invalidate_live_intervals(); } else { /* Before register allocation, we didn't tell the scheduler about the * MRF we use. We know it's safe to use this MRF because nothing * else does except for register spill/unspill, which generates and * uses its MRF within a single IR instruction. */ inst->base_mrf = 14; inst->mlen = 1; } } } void fs_visitor::dump_instructions() { calculate_register_pressure(); int ip = 0, max_pressure = 0; foreach_list(node, &this->instructions) { backend_instruction *inst = (backend_instruction *)node; max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]); fprintf(stderr, "{%3d} %4d: ", regs_live_at_ip[ip], ip); dump_instruction(inst); ++ip; } fprintf(stderr, "Maximum %3d registers live at once.\n", max_pressure); } void fs_visitor::dump_instruction(backend_instruction *be_inst) { fs_inst *inst = (fs_inst *)be_inst; if (inst->predicate) { fprintf(stderr, "(%cf0.%d) ", inst->predicate_inverse ? '-' : '+', inst->flag_subreg); } fprintf(stderr, "%s", brw_instruction_name(inst->opcode)); if (inst->saturate) fprintf(stderr, ".sat"); if (inst->conditional_mod) { fprintf(stderr, "%s", conditional_modifier[inst->conditional_mod]); if (!inst->predicate && (brw->gen < 5 || (inst->opcode != BRW_OPCODE_SEL && inst->opcode != BRW_OPCODE_IF && inst->opcode != BRW_OPCODE_WHILE))) { fprintf(stderr, ".f0.%d", inst->flag_subreg); } } fprintf(stderr, " "); switch (inst->dst.file) { case GRF: fprintf(stderr, "vgrf%d", inst->dst.reg); if (virtual_grf_sizes[inst->dst.reg] != 1 || inst->dst.subreg_offset) fprintf(stderr, "+%d.%d", inst->dst.reg_offset, inst->dst.subreg_offset); break; case MRF: fprintf(stderr, "m%d", inst->dst.reg); break; case BAD_FILE: fprintf(stderr, "(null)"); break; case UNIFORM: fprintf(stderr, "***u%d***", inst->dst.reg + inst->dst.reg_offset); break; case HW_REG: if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) { switch (inst->dst.fixed_hw_reg.nr) { case BRW_ARF_NULL: fprintf(stderr, "null"); break; case BRW_ARF_ADDRESS: fprintf(stderr, "a0.%d", inst->dst.fixed_hw_reg.subnr); break; case BRW_ARF_ACCUMULATOR: fprintf(stderr, "acc%d", inst->dst.fixed_hw_reg.subnr); break; case BRW_ARF_FLAG: fprintf(stderr, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf, inst->dst.fixed_hw_reg.subnr); break; default: fprintf(stderr, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf, inst->dst.fixed_hw_reg.subnr); break; } } else { fprintf(stderr, "hw_reg%d", inst->dst.fixed_hw_reg.nr); } if (inst->dst.fixed_hw_reg.subnr) fprintf(stderr, "+%d", inst->dst.fixed_hw_reg.subnr); break; default: fprintf(stderr, "???"); break; } fprintf(stderr, ":%s, ", brw_reg_type_letters(inst->dst.type)); for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) { if (inst->src[i].negate) fprintf(stderr, "-"); if (inst->src[i].abs) fprintf(stderr, "|"); switch (inst->src[i].file) { case GRF: fprintf(stderr, "vgrf%d", inst->src[i].reg); if (virtual_grf_sizes[inst->src[i].reg] != 1 || inst->src[i].subreg_offset) fprintf(stderr, "+%d.%d", inst->src[i].reg_offset, inst->src[i].subreg_offset); break; case MRF: fprintf(stderr, "***m%d***", inst->src[i].reg); break; case UNIFORM: fprintf(stderr, "u%d", inst->src[i].reg + inst->src[i].reg_offset); if (inst->src[i].reladdr) { fprintf(stderr, "+reladdr"); } else if (virtual_grf_sizes[inst->src[i].reg] != 1 || inst->src[i].subreg_offset) { fprintf(stderr, "+%d.%d", inst->src[i].reg_offset, inst->src[i].subreg_offset); } break; case BAD_FILE: fprintf(stderr, "(null)"); break; case IMM: switch (inst->src[i].type) { case BRW_REGISTER_TYPE_F: fprintf(stderr, "%ff", inst->src[i].imm.f); break; case BRW_REGISTER_TYPE_D: fprintf(stderr, "%dd", inst->src[i].imm.i); break; case BRW_REGISTER_TYPE_UD: fprintf(stderr, "%uu", inst->src[i].imm.u); break; default: fprintf(stderr, "???"); break; } break; case HW_REG: if (inst->src[i].fixed_hw_reg.negate) fprintf(stderr, "-"); if (inst->src[i].fixed_hw_reg.abs) fprintf(stderr, "|"); if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) { switch (inst->src[i].fixed_hw_reg.nr) { case BRW_ARF_NULL: fprintf(stderr, "null"); break; case BRW_ARF_ADDRESS: fprintf(stderr, "a0.%d", inst->src[i].fixed_hw_reg.subnr); break; case BRW_ARF_ACCUMULATOR: fprintf(stderr, "acc%d", inst->src[i].fixed_hw_reg.subnr); break; case BRW_ARF_FLAG: fprintf(stderr, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf, inst->src[i].fixed_hw_reg.subnr); break; default: fprintf(stderr, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf, inst->src[i].fixed_hw_reg.subnr); break; } } else { fprintf(stderr, "hw_reg%d", inst->src[i].fixed_hw_reg.nr); } if (inst->src[i].fixed_hw_reg.subnr) fprintf(stderr, "+%d", inst->src[i].fixed_hw_reg.subnr); if (inst->src[i].fixed_hw_reg.abs) fprintf(stderr, "|"); break; default: fprintf(stderr, "???"); break; } if (inst->src[i].abs) fprintf(stderr, "|"); if (inst->src[i].file != IMM) { fprintf(stderr, ":%s", brw_reg_type_letters(inst->src[i].type)); } if (i < 2 && inst->src[i + 1].file != BAD_FILE) fprintf(stderr, ", "); } fprintf(stderr, " "); if (inst->force_uncompressed) fprintf(stderr, "1sthalf "); if (inst->force_sechalf) fprintf(stderr, "2ndhalf "); fprintf(stderr, "\n"); } /** * Possibly returns an instruction that set up @param reg. * * Sometimes we want to take the result of some expression/variable * dereference tree and rewrite the instruction generating the result * of the tree. When processing the tree, we know that the * instructions generated are all writing temporaries that are dead * outside of this tree. So, if we have some instructions that write * a temporary, we're free to point that temp write somewhere else. * * Note that this doesn't guarantee that the instruction generated * only reg -- it might be the size=4 destination of a texture instruction. */ fs_inst * fs_visitor::get_instruction_generating_reg(fs_inst *start, fs_inst *end, const fs_reg ®) { if (end == start || end->is_partial_write() || reg.reladdr || !reg.equals(end->dst)) { return NULL; } else { return end; } } void fs_visitor::setup_payload_gen6() { bool uses_depth = (fp->Base.InputsRead & (1 << VARYING_SLOT_POS)) != 0; unsigned barycentric_interp_modes = c->prog_data.barycentric_interp_modes; assert(brw->gen >= 6); /* R0-1: masks, pixel X/Y coordinates. */ c->nr_payload_regs = 2; /* R2: only for 32-pixel dispatch.*/ /* R3-26: barycentric interpolation coordinates. These appear in the * same order that they appear in the brw_wm_barycentric_interp_mode * enum. Each set of coordinates occupies 2 registers if dispatch width * == 8 and 4 registers if dispatch width == 16. Coordinates only * appear if they were enabled using the "Barycentric Interpolation * Mode" bits in WM_STATE. */ for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) { if (barycentric_interp_modes & (1 << i)) { c->barycentric_coord_reg[i] = c->nr_payload_regs; c->nr_payload_regs += 2; if (dispatch_width == 16) { c->nr_payload_regs += 2; } } } /* R27: interpolated depth if uses source depth */ if (uses_depth) { c->source_depth_reg = c->nr_payload_regs; c->nr_payload_regs++; if (dispatch_width == 16) { /* R28: interpolated depth if not SIMD8. */ c->nr_payload_regs++; } } /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */ if (uses_depth) { c->source_w_reg = c->nr_payload_regs; c->nr_payload_regs++; if (dispatch_width == 16) { /* R30: interpolated W if not SIMD8. */ c->nr_payload_regs++; } } c->prog_data.uses_pos_offset = c->key.compute_pos_offset; /* R31: MSAA position offsets. */ if (c->prog_data.uses_pos_offset) { c->sample_pos_reg = c->nr_payload_regs; c->nr_payload_regs++; } /* R32: MSAA input coverage mask */ if (fp->Base.SystemValuesRead & SYSTEM_BIT_SAMPLE_MASK_IN) { assert(brw->gen >= 7); c->sample_mask_reg = c->nr_payload_regs; c->nr_payload_regs++; if (dispatch_width == 16) { /* R33: input coverage mask if not SIMD8. */ c->nr_payload_regs++; } } /* R34-: bary for 32-pixel. */ /* R58-59: interp W for 32-pixel. */ if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) { c->source_depth_to_render_target = true; } } void fs_visitor::assign_binding_table_offsets() { uint32_t next_binding_table_offset = 0; /* If there are no color regions, we still perform an FB write to a null * renderbuffer, which we place at surface index 0. */ c->prog_data.binding_table.render_target_start = next_binding_table_offset; next_binding_table_offset += MAX2(c->key.nr_color_regions, 1); assign_common_binding_table_offsets(next_binding_table_offset); } void fs_visitor::calculate_register_pressure() { invalidate_live_intervals(); calculate_live_intervals(); int num_instructions = 0; foreach_list(node, &this->instructions) { ++num_instructions; } regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions); for (int reg = 0; reg < virtual_grf_count; reg++) { for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++) regs_live_at_ip[ip] += virtual_grf_sizes[reg]; } } /** * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones. * * The needs_unlit_centroid_workaround ends up producing one of these per * channel of centroid input, so it's good to clean them up. * * An assumption here is that nothing ever modifies the dispatched pixels * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware * dictates that anyway. */ void fs_visitor::opt_drop_redundant_mov_to_flags() { bool flag_mov_found[2] = {false}; foreach_list_safe(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; if (inst->is_control_flow()) { memset(flag_mov_found, 0, sizeof(flag_mov_found)); } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) { if (!flag_mov_found[inst->flag_subreg]) flag_mov_found[inst->flag_subreg] = true; else inst->remove(); } else if (inst->writes_flag()) { flag_mov_found[inst->flag_subreg] = false; } } } bool fs_visitor::run() { sanity_param_count = fp->Base.Parameters->NumParameters; bool allocated_without_spills; assign_binding_table_offsets(); if (brw->gen >= 6) setup_payload_gen6(); else setup_payload_gen4(); if (0) { emit_dummy_fs(); } else { if (INTEL_DEBUG & DEBUG_SHADER_TIME) emit_shader_time_begin(); calculate_urb_setup(); if (fp->Base.InputsRead > 0) { if (brw->gen < 6) emit_interpolation_setup_gen4(); else emit_interpolation_setup_gen6(); } /* We handle discards by keeping track of the still-live pixels in f0.1. * Initialize it with the dispatched pixels. */ if (fp->UsesKill || c->key.alpha_test_func) { fs_inst *discard_init = emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS); discard_init->flag_subreg = 1; } /* Generate FS IR for main(). (the visitor only descends into * functions called "main"). */ if (shader) { foreach_list(node, &*shader->base.ir) { ir_instruction *ir = (ir_instruction *)node; base_ir = ir; this->result = reg_undef; ir->accept(this); } } else { emit_fragment_program_code(); } base_ir = NULL; if (failed) return false; emit(FS_OPCODE_PLACEHOLDER_HALT); if (c->key.alpha_test_func) emit_alpha_test(); emit_fb_writes(); split_virtual_grfs(); move_uniform_array_access_to_pull_constants(); assign_constant_locations(); demote_pull_constants(); opt_drop_redundant_mov_to_flags(); bool progress; do { progress = false; compact_virtual_grfs(); progress = remove_duplicate_mrf_writes() || progress; progress = opt_algebraic() || progress; progress = opt_cse() || progress; progress = opt_copy_propagate() || progress; progress = opt_peephole_predicated_break() || progress; progress = dead_code_eliminate() || progress; progress = opt_peephole_sel() || progress; progress = dead_control_flow_eliminate(this) || progress; progress = opt_saturate_propagation() || progress; progress = register_coalesce() || progress; progress = compute_to_mrf() || progress; } while (progress); lower_uniform_pull_constant_loads(); assign_curb_setup(); assign_urb_setup(); static enum instruction_scheduler_mode pre_modes[] = { SCHEDULE_PRE, SCHEDULE_PRE_NON_LIFO, SCHEDULE_PRE_LIFO, }; /* Try each scheduling heuristic to see if it can successfully register * allocate without spilling. They should be ordered by decreasing * performance but increasing likelihood of allocating. */ for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) { schedule_instructions(pre_modes[i]); if (0) { assign_regs_trivial(); allocated_without_spills = true; } else { allocated_without_spills = assign_regs(false); } if (allocated_without_spills) break; } if (!allocated_without_spills) { /* We assume that any spilling is worse than just dropping back to * SIMD8. There's probably actually some intermediate point where * SIMD16 with a couple of spills is still better. */ if (dispatch_width == 16) { fail("Failure to register allocate. Reduce number of " "live scalar values to avoid this."); } /* Since we're out of heuristics, just go spill registers until we * get an allocation. */ while (!assign_regs(true)) { if (failed) break; } } } assert(force_uncompressed_stack == 0); /* This must come after all optimization and register allocation, since * it inserts dead code that happens to have side effects, and it does * so based on the actual physical registers in use. */ insert_gen4_send_dependency_workarounds(); if (failed) return false; if (!allocated_without_spills) schedule_instructions(SCHEDULE_POST); if (dispatch_width == 8) c->prog_data.reg_blocks = brw_register_blocks(grf_used); else c->prog_data.reg_blocks_16 = brw_register_blocks(grf_used); /* If any state parameters were appended, then ParameterValues could have * been realloced, in which case the driver uniform storage set up by * _mesa_associate_uniform_storage() would point to freed memory. Make * sure that didn't happen. */ assert(sanity_param_count == fp->Base.Parameters->NumParameters); return !failed; } const unsigned * brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c, struct gl_fragment_program *fp, struct gl_shader_program *prog, unsigned *final_assembly_size) { bool start_busy = false; double start_time = 0; if (unlikely(brw->perf_debug)) { start_busy = (brw->batch.last_bo && drm_intel_bo_busy(brw->batch.last_bo)); start_time = get_time(); } struct brw_shader *shader = NULL; if (prog) shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; if (unlikely(INTEL_DEBUG & DEBUG_WM)) brw_dump_ir(brw, "fragment", prog, &shader->base, &fp->Base); /* Now the main event: Visit the shader IR and generate our FS IR for it. */ fs_visitor v(brw, c, prog, fp, 8); if (!v.run()) { if (prog) { prog->LinkStatus = false; ralloc_strcat(&prog->InfoLog, v.fail_msg); } _mesa_problem(NULL, "Failed to compile fragment shader: %s\n", v.fail_msg); return NULL; } exec_list *simd16_instructions = NULL; fs_visitor v2(brw, c, prog, fp, 16); if (brw->gen >= 5 && likely(!(INTEL_DEBUG & DEBUG_NO16))) { if (!v.simd16_unsupported) { /* Try a SIMD16 compile */ v2.import_uniforms(&v); if (!v2.run()) { perf_debug("SIMD16 shader failed to compile, falling back to " "SIMD8 at a 10-20%% performance cost: %s", v2.fail_msg); } else { simd16_instructions = &v2.instructions; } } else { perf_debug("SIMD16 shader unsupported, falling back to " "SIMD8 at a 10-20%% performance cost: %s", v.no16_msg); } } const unsigned *assembly = NULL; if (brw->gen >= 8) { gen8_fs_generator g(brw, c, prog, fp, v.do_dual_src); assembly = g.generate_assembly(&v.instructions, simd16_instructions, final_assembly_size); } else { fs_generator g(brw, c, prog, fp, v.do_dual_src); assembly = g.generate_assembly(&v.instructions, simd16_instructions, final_assembly_size); } if (unlikely(brw->perf_debug) && shader) { if (shader->compiled_once) brw_wm_debug_recompile(brw, prog, &c->key); shader->compiled_once = true; if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) { perf_debug("FS compile took %.03f ms and stalled the GPU\n", (get_time() - start_time) * 1000); } } return assembly; } bool brw_fs_precompile(struct gl_context *ctx, struct gl_shader_program *prog) { struct brw_context *brw = brw_context(ctx); struct brw_wm_prog_key key; if (!prog->_LinkedShaders[MESA_SHADER_FRAGMENT]) return true; struct gl_fragment_program *fp = (struct gl_fragment_program *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program; struct brw_fragment_program *bfp = brw_fragment_program(fp); bool program_uses_dfdy = fp->UsesDFdy; memset(&key, 0, sizeof(key)); if (brw->gen < 6) { if (fp->UsesKill) key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT; if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT; /* Just assume depth testing. */ key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT; key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT; } if (brw->gen < 6 || _mesa_bitcount_64(fp->Base.InputsRead & BRW_FS_VARYING_INPUT_MASK) > 16) key.input_slots_valid = fp->Base.InputsRead | VARYING_BIT_POS; key.clamp_fragment_color = ctx->API == API_OPENGL_COMPAT; unsigned sampler_count = _mesa_fls(fp->Base.SamplersUsed); for (unsigned i = 0; i < sampler_count; i++) { if (fp->Base.ShadowSamplers & (1 << i)) { /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */ key.tex.swizzles[i] = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE); } else { /* Color sampler: assume no swizzling. */ key.tex.swizzles[i] = SWIZZLE_XYZW; } } if (fp->Base.InputsRead & VARYING_BIT_POS) { key.drawable_height = ctx->DrawBuffer->Height; } key.nr_color_regions = _mesa_bitcount_64(fp->Base.OutputsWritten & ~(BITFIELD64_BIT(FRAG_RESULT_DEPTH) | BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK))); if ((fp->Base.InputsRead & VARYING_BIT_POS) || program_uses_dfdy) { key.render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer) || key.nr_color_regions > 1; } /* GL_FRAGMENT_SHADER_DERIVATIVE_HINT is almost always GL_DONT_CARE. The * quality of the derivatives is likely to be determined by the driconf * option. */ key.high_quality_derivatives = brw->disable_derivative_optimization; key.program_string_id = bfp->id; uint32_t old_prog_offset = brw->wm.base.prog_offset; struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data; bool success = do_wm_prog(brw, prog, bfp, &key); brw->wm.base.prog_offset = old_prog_offset; brw->wm.prog_data = old_prog_data; return success; }