/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file brw_eu_compact.c * * Instruction compaction is a feature of G45 and newer hardware that allows * for a smaller instruction encoding. * * The instruction cache is on the order of 32KB, and many programs generate * far more instructions than that. The instruction cache is built to barely * keep up with instruction dispatch ability in cache hit cases -- L1 * instruction cache misses that still hit in the next level could limit * throughput by around 50%. * * The idea of instruction compaction is that most instructions use a tiny * subset of the GPU functionality, so we can encode what would be a 16 byte * instruction in 8 bytes using some lookup tables for various fields. * * * Instruction compaction capabilities vary subtly by generation. * * G45's support for instruction compaction is very limited. Jump counts on * this generation are in units of 16-byte uncompacted instructions. As such, * all jump targets must be 16-byte aligned. Also, all instructions must be * naturally aligned, i.e. uncompacted instructions must be 16-byte aligned. * A G45-only instruction, NENOP, must be used to provide padding to align * uncompacted instructions. * * Gen5 removes these restrictions and changes jump counts to be in units of * 8-byte compacted instructions, allowing jump targets to be only 8-byte * aligned. Uncompacted instructions can also be placed on 8-byte boundaries. * * Gen6 adds the ability to compact instructions with a limited range of * immediate values. Compactable immediates have 12 unrestricted bits, and a * 13th bit that's replicated through the high 20 bits, to create the 32-bit * value of DW3 in the uncompacted instruction word. * * On Gen7 we can compact some control flow instructions with a small positive * immediate in the low bits of DW3, like ENDIF with the JIP field. Other * control flow instructions with UIP cannot be compacted, because of the * replicated 13th bit. No control flow instructions can be compacted on Gen6 * since the jump count field is not in DW3. * * break JIP/UIP * cont JIP/UIP * halt JIP/UIP * if JIP/UIP * else JIP (plus UIP on BDW+) * endif JIP * while JIP (must be negative) * * Gen 8 adds support for compacting 3-src instructions. */ #include "brw_context.h" #include "brw_eu.h" #include "intel_asm_annotation.h" #include "util/u_atomic.h" /* for p_atomic_cmpxchg */ static const uint32_t g45_control_index_table[32] = { 0b00000000000000000, 0b01000000000000000, 0b00110000000000000, 0b00000000000000010, 0b00100000000000000, 0b00010000000000000, 0b01000000000100000, 0b01000000100000000, 0b01010000000100000, 0b00000000100000010, 0b11000000000000000, 0b00001000100000010, 0b01001000100000000, 0b00000000100000000, 0b11000000000100000, 0b00001000100000000, 0b10110000000000000, 0b11010000000100000, 0b00110000100000000, 0b00100000100000000, 0b01000000000001000, 0b01000000000000100, 0b00111100000000000, 0b00101011000000000, 0b00110000000010000, 0b00010000100000000, 0b01000000000100100, 0b01000000000101000, 0b00110000000000110, 0b00000000000001010, 0b01010000000101000, 0b01010000000100100 }; static const uint32_t g45_datatype_table[32] = { 0b001000000000100001, 0b001011010110101101, 0b001000001000110001, 0b001111011110111101, 0b001011010110101100, 0b001000000110101101, 0b001000000000100000, 0b010100010110110001, 0b001100011000101101, 0b001000000000100010, 0b001000001000110110, 0b010000001000110001, 0b001000001000110010, 0b011000001000110010, 0b001111011110111100, 0b001000000100101000, 0b010100011000110001, 0b001010010100101001, 0b001000001000101001, 0b010000001000110110, 0b101000001000110001, 0b001011011000101101, 0b001000000100001001, 0b001011011000101100, 0b110100011000110001, 0b001000001110111101, 0b110000001000110001, 0b011000000100101010, 0b101000001000101001, 0b001011010110001100, 0b001000000110100001, 0b001010010100001000 }; static const uint16_t g45_subreg_table[32] = { 0b000000000000000, 0b000000010000000, 0b000001000000000, 0b000100000000000, 0b000000000100000, 0b100000000000000, 0b000000000010000, 0b001100000000000, 0b001010000000000, 0b000000100000000, 0b001000000000000, 0b000000000001000, 0b000000001000000, 0b000000000000001, 0b000010000000000, 0b000000010100000, 0b000000000000111, 0b000001000100000, 0b011000000000000, 0b000000110000000, 0b000000000000010, 0b000000000000100, 0b000000001100000, 0b000100000000010, 0b001110011000110, 0b001110100001000, 0b000110011000110, 0b000001000011000, 0b000110010000100, 0b001100000000110, 0b000000010000110, 0b000001000110000 }; static const uint16_t g45_src_index_table[32] = { 0b000000000000, 0b010001101000, 0b010110001000, 0b011010010000, 0b001101001000, 0b010110001010, 0b010101110000, 0b011001111000, 0b001000101000, 0b000000101000, 0b010001010000, 0b111101101100, 0b010110001100, 0b010001101100, 0b011010010100, 0b010001001100, 0b001100101000, 0b000000000010, 0b111101001100, 0b011001101000, 0b010101001000, 0b000000000100, 0b000000101100, 0b010001101010, 0b000000111000, 0b010101011000, 0b000100100000, 0b010110000000, 0b010000000100, 0b010000111000, 0b000101100000, 0b111101110100 }; static const uint32_t gen6_control_index_table[32] = { 0b00000000000000000, 0b01000000000000000, 0b00110000000000000, 0b00000000100000000, 0b00010000000000000, 0b00001000100000000, 0b00000000100000010, 0b00000000000000010, 0b01000000100000000, 0b01010000000000000, 0b10110000000000000, 0b00100000000000000, 0b11010000000000000, 0b11000000000000000, 0b01001000100000000, 0b01000000000001000, 0b01000000000000100, 0b00000000000001000, 0b00000000000000100, 0b00111000100000000, 0b00001000100000010, 0b00110000100000000, 0b00110000000000001, 0b00100000000000001, 0b00110000000000010, 0b00110000000000101, 0b00110000000001001, 0b00110000000010000, 0b00110000000000011, 0b00110000000000100, 0b00110000100001000, 0b00100000000001001 }; static const uint32_t gen6_datatype_table[32] = { 0b001001110000000000, 0b001000110000100000, 0b001001110000000001, 0b001000000001100000, 0b001010110100101001, 0b001000000110101101, 0b001100011000101100, 0b001011110110101101, 0b001000000111101100, 0b001000000001100001, 0b001000110010100101, 0b001000000001000001, 0b001000001000110001, 0b001000001000101001, 0b001000000000100000, 0b001000001000110010, 0b001010010100101001, 0b001011010010100101, 0b001000000110100101, 0b001100011000101001, 0b001011011000101100, 0b001011010110100101, 0b001011110110100101, 0b001111011110111101, 0b001111011110111100, 0b001111011110111101, 0b001111011110011101, 0b001111011110111110, 0b001000000000100001, 0b001000000000100010, 0b001001111111011101, 0b001000001110111110, }; static const uint16_t gen6_subreg_table[32] = { 0b000000000000000, 0b000000000000100, 0b000000110000000, 0b111000000000000, 0b011110000001000, 0b000010000000000, 0b000000000010000, 0b000110000001100, 0b001000000000000, 0b000001000000000, 0b000001010010100, 0b000000001010110, 0b010000000000000, 0b110000000000000, 0b000100000000000, 0b000000010000000, 0b000000000001000, 0b100000000000000, 0b000001010000000, 0b001010000000000, 0b001100000000000, 0b000000001010100, 0b101101010010100, 0b010100000000000, 0b000000010001111, 0b011000000000000, 0b111110000000000, 0b101000000000000, 0b000000000001111, 0b000100010001111, 0b001000010001111, 0b000110000000000, }; static const uint16_t gen6_src_index_table[32] = { 0b000000000000, 0b010110001000, 0b010001101000, 0b001000101000, 0b011010010000, 0b000100100000, 0b010001101100, 0b010101110000, 0b011001111000, 0b001100101000, 0b010110001100, 0b001000100000, 0b010110001010, 0b000000000010, 0b010101010000, 0b010101101000, 0b111101001100, 0b111100101100, 0b011001110000, 0b010110001001, 0b010101011000, 0b001101001000, 0b010000101100, 0b010000000000, 0b001101110000, 0b001100010000, 0b001100000000, 0b010001101010, 0b001101111000, 0b000001110000, 0b001100100000, 0b001101010000, }; static const uint32_t gen7_control_index_table[32] = { 0b0000000000000000010, 0b0000100000000000000, 0b0000100000000000001, 0b0000100000000000010, 0b0000100000000000011, 0b0000100000000000100, 0b0000100000000000101, 0b0000100000000000111, 0b0000100000000001000, 0b0000100000000001001, 0b0000100000000001101, 0b0000110000000000000, 0b0000110000000000001, 0b0000110000000000010, 0b0000110000000000011, 0b0000110000000000100, 0b0000110000000000101, 0b0000110000000000111, 0b0000110000000001001, 0b0000110000000001101, 0b0000110000000010000, 0b0000110000100000000, 0b0001000000000000000, 0b0001000000000000010, 0b0001000000000000100, 0b0001000000100000000, 0b0010110000000000000, 0b0010110000000010000, 0b0011000000000000000, 0b0011000000100000000, 0b0101000000000000000, 0b0101000000100000000 }; static const uint32_t gen7_datatype_table[32] = { 0b001000000000000001, 0b001000000000100000, 0b001000000000100001, 0b001000000001100001, 0b001000000010111101, 0b001000001011111101, 0b001000001110100001, 0b001000001110100101, 0b001000001110111101, 0b001000010000100001, 0b001000110000100000, 0b001000110000100001, 0b001001010010100101, 0b001001110010100100, 0b001001110010100101, 0b001111001110111101, 0b001111011110011101, 0b001111011110111100, 0b001111011110111101, 0b001111111110111100, 0b000000001000001100, 0b001000000000111101, 0b001000000010100101, 0b001000010000100000, 0b001001010010100100, 0b001001110010000100, 0b001010010100001001, 0b001101111110111101, 0b001111111110111101, 0b001011110110101100, 0b001010010100101000, 0b001010110100101000 }; static const uint16_t gen7_subreg_table[32] = { 0b000000000000000, 0b000000000000001, 0b000000000001000, 0b000000000001111, 0b000000000010000, 0b000000010000000, 0b000000100000000, 0b000000110000000, 0b000001000000000, 0b000001000010000, 0b000010100000000, 0b001000000000000, 0b001000000000001, 0b001000010000001, 0b001000010000010, 0b001000010000011, 0b001000010000100, 0b001000010000111, 0b001000010001000, 0b001000010001110, 0b001000010001111, 0b001000110000000, 0b001000111101000, 0b010000000000000, 0b010000110000000, 0b011000000000000, 0b011110010000111, 0b100000000000000, 0b101000000000000, 0b110000000000000, 0b111000000000000, 0b111000000011100 }; static const uint16_t gen7_src_index_table[32] = { 0b000000000000, 0b000000000010, 0b000000010000, 0b000000010010, 0b000000011000, 0b000000100000, 0b000000101000, 0b000001001000, 0b000001010000, 0b000001110000, 0b000001111000, 0b001100000000, 0b001100000010, 0b001100001000, 0b001100010000, 0b001100010010, 0b001100100000, 0b001100101000, 0b001100111000, 0b001101000000, 0b001101000010, 0b001101001000, 0b001101010000, 0b001101100000, 0b001101101000, 0b001101110000, 0b001101110001, 0b001101111000, 0b010001101000, 0b010001101001, 0b010001101010, 0b010110001000 }; static const uint32_t gen8_control_index_table[32] = { 0b0000000000000000010, 0b0000100000000000000, 0b0000100000000000001, 0b0000100000000000010, 0b0000100000000000011, 0b0000100000000000100, 0b0000100000000000101, 0b0000100000000000111, 0b0000100000000001000, 0b0000100000000001001, 0b0000100000000001101, 0b0000110000000000000, 0b0000110000000000001, 0b0000110000000000010, 0b0000110000000000011, 0b0000110000000000100, 0b0000110000000000101, 0b0000110000000000111, 0b0000110000000001001, 0b0000110000000001101, 0b0000110000000010000, 0b0000110000100000000, 0b0001000000000000000, 0b0001000000000000010, 0b0001000000000000100, 0b0001000000100000000, 0b0010110000000000000, 0b0010110000000010000, 0b0011000000000000000, 0b0011000000100000000, 0b0101000000000000000, 0b0101000000100000000 }; static const uint32_t gen8_datatype_table[32] = { 0b001000000000000000001, 0b001000000000001000000, 0b001000000000001000001, 0b001000000000011000001, 0b001000000000101011101, 0b001000000010111011101, 0b001000000011101000001, 0b001000000011101000101, 0b001000000011101011101, 0b001000001000001000001, 0b001000011000001000000, 0b001000011000001000001, 0b001000101000101000101, 0b001000111000101000100, 0b001000111000101000101, 0b001011100011101011101, 0b001011101011100011101, 0b001011101011101011100, 0b001011101011101011101, 0b001011111011101011100, 0b000000000010000001100, 0b001000000000001011101, 0b001000000000101000101, 0b001000001000001000000, 0b001000101000101000100, 0b001000111000100000100, 0b001001001001000001001, 0b001010111011101011101, 0b001011111011101011101, 0b001001111001101001100, 0b001001001001001001000, 0b001001011001001001000 }; static const uint16_t gen8_subreg_table[32] = { 0b000000000000000, 0b000000000000001, 0b000000000001000, 0b000000000001111, 0b000000000010000, 0b000000010000000, 0b000000100000000, 0b000000110000000, 0b000001000000000, 0b000001000010000, 0b000001010000000, 0b001000000000000, 0b001000000000001, 0b001000010000001, 0b001000010000010, 0b001000010000011, 0b001000010000100, 0b001000010000111, 0b001000010001000, 0b001000010001110, 0b001000010001111, 0b001000110000000, 0b001000111101000, 0b010000000000000, 0b010000110000000, 0b011000000000000, 0b011110010000111, 0b100000000000000, 0b101000000000000, 0b110000000000000, 0b111000000000000, 0b111000000011100 }; static const uint16_t gen8_src_index_table[32] = { 0b000000000000, 0b000000000010, 0b000000010000, 0b000000010010, 0b000000011000, 0b000000100000, 0b000000101000, 0b000001001000, 0b000001010000, 0b000001110000, 0b000001111000, 0b001100000000, 0b001100000010, 0b001100001000, 0b001100010000, 0b001100010010, 0b001100100000, 0b001100101000, 0b001100111000, 0b001101000000, 0b001101000010, 0b001101001000, 0b001101010000, 0b001101100000, 0b001101101000, 0b001101110000, 0b001101110001, 0b001101111000, 0b010001101000, 0b010001101001, 0b010001101010, 0b010110001000 }; /* This is actually the control index table for Cherryview (26 bits), but the * only difference from Broadwell (24 bits) is that it has two extra 0-bits at * the start. * * The low 24 bits have the same mappings on both hardware. */ static const uint32_t gen8_3src_control_index_table[4] = { 0b00100000000110000000000001, 0b00000000000110000000000001, 0b00000000001000000000000001, 0b00000000001000000000100001 }; /* This is actually the control index table for Cherryview (49 bits), but the * only difference from Broadwell (46 bits) is that it has three extra 0-bits * at the start. * * The low 44 bits have the same mappings on both hardware, and since the high * three bits on Broadwell are zero, we can reuse Cherryview's table. */ static const uint64_t gen8_3src_source_index_table[4] = { 0b0000001110010011100100111001000001111000000000000, 0b0000001110010011100100111001000001111000000000010, 0b0000001110010011100100111001000001111000000001000, 0b0000001110010011100100111001000001111000000100000 }; static const uint32_t *control_index_table; static const uint32_t *datatype_table; static const uint16_t *subreg_table; static const uint16_t *src_index_table; static bool set_control_index(const struct brw_device_info *devinfo, brw_compact_inst *dst, brw_inst *src) { uint32_t uncompacted = devinfo->gen >= 8 /* 17b/G45; 19b/IVB+ */ ? (brw_inst_bits(src, 33, 31) << 16) | /* 3b */ (brw_inst_bits(src, 23, 12) << 4) | /* 12b */ (brw_inst_bits(src, 10, 9) << 2) | /* 2b */ (brw_inst_bits(src, 34, 34) << 1) | /* 1b */ (brw_inst_bits(src, 8, 8)) /* 1b */ : (brw_inst_bits(src, 31, 31) << 16) | /* 1b */ (brw_inst_bits(src, 23, 8)); /* 16b */ /* On gen7, the flag register and subregister numbers are integrated into * the control index. */ if (devinfo->gen == 7) uncompacted |= brw_inst_bits(src, 90, 89) << 17; /* 2b */ for (int i = 0; i < 32; i++) { if (control_index_table[i] == uncompacted) { brw_compact_inst_set_control_index(dst, i); return true; } } return false; } static bool set_datatype_index(const struct brw_device_info *devinfo, brw_compact_inst *dst, brw_inst *src) { uint32_t uncompacted = devinfo->gen >= 8 /* 18b/G45+; 21b/BDW+ */ ? (brw_inst_bits(src, 63, 61) << 18) | /* 3b */ (brw_inst_bits(src, 94, 89) << 12) | /* 6b */ (brw_inst_bits(src, 46, 35)) /* 12b */ : (brw_inst_bits(src, 63, 61) << 15) | /* 3b */ (brw_inst_bits(src, 46, 32)); /* 15b */ for (int i = 0; i < 32; i++) { if (datatype_table[i] == uncompacted) { brw_compact_inst_set_datatype_index(dst, i); return true; } } return false; } static bool set_subreg_index(const struct brw_device_info *devinfo, brw_compact_inst *dst, brw_inst *src, bool is_immediate) { uint16_t uncompacted = /* 15b */ (brw_inst_bits(src, 52, 48) << 0) | /* 5b */ (brw_inst_bits(src, 68, 64) << 5); /* 5b */ if (!is_immediate) uncompacted |= brw_inst_bits(src, 100, 96) << 10; /* 5b */ for (int i = 0; i < 32; i++) { if (subreg_table[i] == uncompacted) { brw_compact_inst_set_subreg_index(dst, i); return true; } } return false; } static bool get_src_index(uint16_t uncompacted, uint16_t *compacted) { for (int i = 0; i < 32; i++) { if (src_index_table[i] == uncompacted) { *compacted = i; return true; } } return false; } static bool set_src0_index(const struct brw_device_info *devinfo, brw_compact_inst *dst, brw_inst *src) { uint16_t compacted; uint16_t uncompacted = brw_inst_bits(src, 88, 77); /* 12b */ if (!get_src_index(uncompacted, &compacted)) return false; brw_compact_inst_set_src0_index(dst, compacted); return true; } static bool set_src1_index(const struct brw_device_info *devinfo, brw_compact_inst *dst, brw_inst *src, bool is_immediate) { uint16_t compacted; if (is_immediate) { compacted = (brw_inst_imm_ud(devinfo, src) >> 8) & 0x1f; } else { uint16_t uncompacted = brw_inst_bits(src, 120, 109); /* 12b */ if (!get_src_index(uncompacted, &compacted)) return false; } brw_compact_inst_set_src1_index(dst, compacted); return true; } static bool set_3src_control_index(const struct brw_device_info *devinfo, brw_compact_inst *dst, brw_inst *src) { assert(devinfo->gen >= 8); uint32_t uncompacted = /* 24b/BDW; 26b/CHV */ (brw_inst_bits(src, 34, 32) << 21) | /* 3b */ (brw_inst_bits(src, 28, 8)); /* 21b */ if (devinfo->gen >= 9 || devinfo->is_cherryview) uncompacted |= brw_inst_bits(src, 36, 35) << 24; /* 2b */ for (unsigned i = 0; i < ARRAY_SIZE(gen8_3src_control_index_table); i++) { if (gen8_3src_control_index_table[i] == uncompacted) { brw_compact_inst_set_3src_control_index(dst, i); return true; } } return false; } static bool set_3src_source_index(const struct brw_device_info *devinfo, brw_compact_inst *dst, brw_inst *src) { assert(devinfo->gen >= 8); uint64_t uncompacted = /* 46b/BDW; 49b/CHV */ (brw_inst_bits(src, 83, 83) << 43) | /* 1b */ (brw_inst_bits(src, 114, 107) << 35) | /* 8b */ (brw_inst_bits(src, 93, 86) << 27) | /* 8b */ (brw_inst_bits(src, 72, 65) << 19) | /* 8b */ (brw_inst_bits(src, 55, 37)); /* 19b */ if (devinfo->gen >= 9 || devinfo->is_cherryview) { uncompacted |= (brw_inst_bits(src, 126, 125) << 47) | /* 2b */ (brw_inst_bits(src, 105, 104) << 45) | /* 2b */ (brw_inst_bits(src, 84, 84) << 44); /* 1b */ } else { uncompacted |= (brw_inst_bits(src, 125, 125) << 45) | /* 1b */ (brw_inst_bits(src, 104, 104) << 44); /* 1b */ } for (unsigned i = 0; i < ARRAY_SIZE(gen8_3src_source_index_table); i++) { if (gen8_3src_source_index_table[i] == uncompacted) { brw_compact_inst_set_3src_source_index(dst, i); return true; } } return false; } static bool has_unmapped_bits(const struct brw_device_info *devinfo, brw_inst *src) { /* EOT can only be mapped on a send if the src1 is an immediate */ if ((brw_inst_opcode(devinfo, src) == BRW_OPCODE_SENDC || brw_inst_opcode(devinfo, src) == BRW_OPCODE_SEND) && brw_inst_eot(devinfo, src)) return true; /* Check for instruction bits that don't map to any of the fields of the * compacted instruction. The instruction cannot be compacted if any of * them are set. They overlap with: * - NibCtrl (bit 47 on Gen7, bit 11 on Gen8) * - Dst.AddrImm[9] (bit 47 on Gen8) * - Src0.AddrImm[9] (bit 95 on Gen8) * - Imm64[27:31] (bits 91-95 on Gen7, bit 95 on Gen8) * - UIP[31] (bit 95 on Gen8) */ if (devinfo->gen >= 8) { assert(!brw_inst_bits(src, 7, 7)); return brw_inst_bits(src, 95, 95) || brw_inst_bits(src, 47, 47) || brw_inst_bits(src, 11, 11); } else { assert(!brw_inst_bits(src, 7, 7) && !(devinfo->gen < 7 && brw_inst_bits(src, 90, 90))); return brw_inst_bits(src, 95, 91) || brw_inst_bits(src, 47, 47); } } static bool has_3src_unmapped_bits(const struct brw_device_info *devinfo, brw_inst *src) { /* Check for three-source instruction bits that don't map to any of the * fields of the compacted instruction. All of them seem to be reserved * bits currently. */ if (devinfo->gen >= 9 || devinfo->is_cherryview) { assert(!brw_inst_bits(src, 127, 127) && !brw_inst_bits(src, 7, 7)); } else { assert(devinfo->gen >= 8); assert(!brw_inst_bits(src, 127, 126) && !brw_inst_bits(src, 105, 105) && !brw_inst_bits(src, 84, 84) && !brw_inst_bits(src, 36, 35) && !brw_inst_bits(src, 7, 7)); } return false; } static bool brw_try_compact_3src_instruction(const struct brw_device_info *devinfo, brw_compact_inst *dst, brw_inst *src) { assert(devinfo->gen >= 8); if (has_3src_unmapped_bits(devinfo, src)) return false; #define compact(field) \ brw_compact_inst_set_3src_##field(dst, brw_inst_3src_##field(devinfo, src)) compact(opcode); if (!set_3src_control_index(devinfo, dst, src)) return false; if (!set_3src_source_index(devinfo, dst, src)) return false; compact(dst_reg_nr); compact(src0_rep_ctrl); brw_compact_inst_set_3src_cmpt_control(dst, true); compact(debug_control); compact(saturate); compact(src1_rep_ctrl); compact(src2_rep_ctrl); compact(src0_reg_nr); compact(src1_reg_nr); compact(src2_reg_nr); compact(src0_subreg_nr); compact(src1_subreg_nr); compact(src2_subreg_nr); #undef compact return true; } /* Compacted instructions have 12-bits for immediate sources, and a 13th bit * that's replicated through the high 20 bits. * * Effectively this means we get 12-bit integers, 0.0f, and some limited uses * of packed vectors as compactable immediates. */ static bool is_compactable_immediate(unsigned imm) { /* We get the low 12 bits as-is. */ imm &= ~0xfff; /* We get one bit replicated through the top 20 bits. */ return imm == 0 || imm == 0xfffff000; } /* Returns whether an opcode takes three sources. */ static bool is_3src(uint32_t op) { return opcode_descs[op].nsrc == 3; } /** * Tries to compact instruction src into dst. * * It doesn't modify dst unless src is compactable, which is relied on by * brw_compact_instructions(). */ bool brw_try_compact_instruction(const struct brw_device_info *devinfo, brw_compact_inst *dst, brw_inst *src) { brw_compact_inst temp; assert(brw_inst_cmpt_control(devinfo, src) == 0); if (is_3src(brw_inst_opcode(devinfo, src))) { if (devinfo->gen >= 8) { memset(&temp, 0, sizeof(temp)); if (brw_try_compact_3src_instruction(devinfo, &temp, src)) { *dst = temp; return true; } else { return false; } } else { return false; } } bool is_immediate = brw_inst_src0_reg_file(devinfo, src) == BRW_IMMEDIATE_VALUE || brw_inst_src1_reg_file(devinfo, src) == BRW_IMMEDIATE_VALUE; if (is_immediate && (devinfo->gen < 6 || !is_compactable_immediate(brw_inst_imm_ud(devinfo, src)))) { return false; } if (has_unmapped_bits(devinfo, src)) return false; memset(&temp, 0, sizeof(temp)); brw_compact_inst_set_opcode(&temp, brw_inst_opcode(devinfo, src)); brw_compact_inst_set_debug_control(&temp, brw_inst_debug_control(devinfo, src)); if (!set_control_index(devinfo, &temp, src)) return false; if (!set_datatype_index(devinfo, &temp, src)) return false; if (!set_subreg_index(devinfo, &temp, src, is_immediate)) return false; brw_compact_inst_set_acc_wr_control(&temp, brw_inst_acc_wr_control(devinfo, src)); brw_compact_inst_set_cond_modifier(&temp, brw_inst_cond_modifier(devinfo, src)); if (devinfo->gen <= 6) brw_compact_inst_set_flag_subreg_nr(&temp, brw_inst_flag_subreg_nr(devinfo, src)); brw_compact_inst_set_cmpt_control(&temp, true); if (!set_src0_index(devinfo, &temp, src)) return false; if (!set_src1_index(devinfo, &temp, src, is_immediate)) return false; brw_compact_inst_set_dst_reg_nr(&temp, brw_inst_dst_da_reg_nr(devinfo, src)); brw_compact_inst_set_src0_reg_nr(&temp, brw_inst_src0_da_reg_nr(devinfo, src)); if (is_immediate) { brw_compact_inst_set_src1_reg_nr(&temp, brw_inst_imm_ud(devinfo, src) & 0xff); } else { brw_compact_inst_set_src1_reg_nr(&temp, brw_inst_src1_da_reg_nr(devinfo, src)); } *dst = temp; return true; } static void set_uncompacted_control(const struct brw_device_info *devinfo, brw_inst *dst, brw_compact_inst *src) { uint32_t uncompacted = control_index_table[brw_compact_inst_control_index(src)]; if (devinfo->gen >= 8) { brw_inst_set_bits(dst, 33, 31, (uncompacted >> 16)); brw_inst_set_bits(dst, 23, 12, (uncompacted >> 4) & 0xfff); brw_inst_set_bits(dst, 10, 9, (uncompacted >> 2) & 0x3); brw_inst_set_bits(dst, 34, 34, (uncompacted >> 1) & 0x1); brw_inst_set_bits(dst, 8, 8, (uncompacted >> 0) & 0x1); } else { brw_inst_set_bits(dst, 31, 31, (uncompacted >> 16) & 0x1); brw_inst_set_bits(dst, 23, 8, (uncompacted & 0xffff)); if (devinfo->gen == 7) brw_inst_set_bits(dst, 90, 89, uncompacted >> 17); } } static void set_uncompacted_datatype(const struct brw_device_info *devinfo, brw_inst *dst, brw_compact_inst *src) { uint32_t uncompacted = datatype_table[brw_compact_inst_datatype_index(src)]; if (devinfo->gen >= 8) { brw_inst_set_bits(dst, 63, 61, (uncompacted >> 18)); brw_inst_set_bits(dst, 94, 89, (uncompacted >> 12) & 0x3f); brw_inst_set_bits(dst, 46, 35, (uncompacted >> 0) & 0xfff); } else { brw_inst_set_bits(dst, 63, 61, (uncompacted >> 15)); brw_inst_set_bits(dst, 46, 32, (uncompacted & 0x7fff)); } } static void set_uncompacted_subreg(const struct brw_device_info *devinfo, brw_inst *dst, brw_compact_inst *src) { uint16_t uncompacted = subreg_table[brw_compact_inst_subreg_index(src)]; brw_inst_set_bits(dst, 100, 96, (uncompacted >> 10)); brw_inst_set_bits(dst, 68, 64, (uncompacted >> 5) & 0x1f); brw_inst_set_bits(dst, 52, 48, (uncompacted >> 0) & 0x1f); } static void set_uncompacted_src0(const struct brw_device_info *devinfo, brw_inst *dst, brw_compact_inst *src) { uint32_t compacted = brw_compact_inst_src0_index(src); uint16_t uncompacted = src_index_table[compacted]; brw_inst_set_bits(dst, 88, 77, uncompacted); } static void set_uncompacted_src1(const struct brw_device_info *devinfo, brw_inst *dst, brw_compact_inst *src, bool is_immediate) { if (is_immediate) { signed high5 = brw_compact_inst_src1_index(src); /* Replicate top bit of src1_index into high 20 bits of the immediate. */ brw_inst_set_imm_ud(devinfo, dst, (high5 << 27) >> 19); } else { uint16_t uncompacted = src_index_table[brw_compact_inst_src1_index(src)]; brw_inst_set_bits(dst, 120, 109, uncompacted); } } static void set_uncompacted_3src_control_index(const struct brw_device_info *devinfo, brw_inst *dst, brw_compact_inst *src) { assert(devinfo->gen >= 8); uint32_t compacted = brw_compact_inst_3src_control_index(src); uint32_t uncompacted = gen8_3src_control_index_table[compacted]; brw_inst_set_bits(dst, 34, 32, (uncompacted >> 21) & 0x7); brw_inst_set_bits(dst, 28, 8, (uncompacted >> 0) & 0x1fffff); if (devinfo->gen >= 9 || devinfo->is_cherryview) brw_inst_set_bits(dst, 36, 35, (uncompacted >> 24) & 0x3); } static void set_uncompacted_3src_source_index(const struct brw_device_info *devinfo, brw_inst *dst, brw_compact_inst *src) { assert(devinfo->gen >= 8); uint32_t compacted = brw_compact_inst_3src_source_index(src); uint64_t uncompacted = gen8_3src_source_index_table[compacted]; brw_inst_set_bits(dst, 83, 83, (uncompacted >> 43) & 0x1); brw_inst_set_bits(dst, 114, 107, (uncompacted >> 35) & 0xff); brw_inst_set_bits(dst, 93, 86, (uncompacted >> 27) & 0xff); brw_inst_set_bits(dst, 72, 65, (uncompacted >> 19) & 0xff); brw_inst_set_bits(dst, 55, 37, (uncompacted >> 0) & 0x7ffff); if (devinfo->gen >= 9 || devinfo->is_cherryview) { brw_inst_set_bits(dst, 126, 125, (uncompacted >> 47) & 0x3); brw_inst_set_bits(dst, 105, 104, (uncompacted >> 45) & 0x3); brw_inst_set_bits(dst, 84, 84, (uncompacted >> 44) & 0x1); } else { brw_inst_set_bits(dst, 125, 125, (uncompacted >> 45) & 0x1); brw_inst_set_bits(dst, 104, 104, (uncompacted >> 44) & 0x1); } } static void brw_uncompact_3src_instruction(const struct brw_device_info *devinfo, brw_inst *dst, brw_compact_inst *src) { assert(devinfo->gen >= 8); #define uncompact(field) \ brw_inst_set_3src_##field(devinfo, dst, brw_compact_inst_3src_##field(src)) uncompact(opcode); set_uncompacted_3src_control_index(devinfo, dst, src); set_uncompacted_3src_source_index(devinfo, dst, src); uncompact(dst_reg_nr); uncompact(src0_rep_ctrl); brw_inst_set_3src_cmpt_control(devinfo, dst, false); uncompact(debug_control); uncompact(saturate); uncompact(src1_rep_ctrl); uncompact(src2_rep_ctrl); uncompact(src0_reg_nr); uncompact(src1_reg_nr); uncompact(src2_reg_nr); uncompact(src0_subreg_nr); uncompact(src1_subreg_nr); uncompact(src2_subreg_nr); #undef uncompact } void brw_uncompact_instruction(const struct brw_device_info *devinfo, brw_inst *dst, brw_compact_inst *src) { memset(dst, 0, sizeof(*dst)); if (devinfo->gen >= 8 && is_3src(brw_compact_inst_3src_opcode(src))) { brw_uncompact_3src_instruction(devinfo, dst, src); return; } brw_inst_set_opcode(devinfo, dst, brw_compact_inst_opcode(src)); brw_inst_set_debug_control(devinfo, dst, brw_compact_inst_debug_control(src)); set_uncompacted_control(devinfo, dst, src); set_uncompacted_datatype(devinfo, dst, src); /* src0/1 register file fields are in the datatype table. */ bool is_immediate = brw_inst_src0_reg_file(devinfo, dst) == BRW_IMMEDIATE_VALUE || brw_inst_src1_reg_file(devinfo, dst) == BRW_IMMEDIATE_VALUE; set_uncompacted_subreg(devinfo, dst, src); brw_inst_set_acc_wr_control(devinfo, dst, brw_compact_inst_acc_wr_control(src)); brw_inst_set_cond_modifier(devinfo, dst, brw_compact_inst_cond_modifier(src)); if (devinfo->gen <= 6) brw_inst_set_flag_subreg_nr(devinfo, dst, brw_compact_inst_flag_subreg_nr(src)); set_uncompacted_src0(devinfo, dst, src); set_uncompacted_src1(devinfo, dst, src, is_immediate); brw_inst_set_dst_da_reg_nr(devinfo, dst, brw_compact_inst_dst_reg_nr(src)); brw_inst_set_src0_da_reg_nr(devinfo, dst, brw_compact_inst_src0_reg_nr(src)); if (is_immediate) { brw_inst_set_imm_ud(devinfo, dst, brw_inst_imm_ud(devinfo, dst) | brw_compact_inst_src1_reg_nr(src)); } else { brw_inst_set_src1_da_reg_nr(devinfo, dst, brw_compact_inst_src1_reg_nr(src)); } } void brw_debug_compact_uncompact(const struct brw_device_info *devinfo, brw_inst *orig, brw_inst *uncompacted) { fprintf(stderr, "Instruction compact/uncompact changed (gen%d):\n", devinfo->gen); fprintf(stderr, " before: "); brw_disassemble_inst(stderr, devinfo, orig, true); fprintf(stderr, " after: "); brw_disassemble_inst(stderr, devinfo, uncompacted, false); uint32_t *before_bits = (uint32_t *)orig; uint32_t *after_bits = (uint32_t *)uncompacted; fprintf(stderr, " changed bits:\n"); for (int i = 0; i < 128; i++) { uint32_t before = before_bits[i / 32] & (1 << (i & 31)); uint32_t after = after_bits[i / 32] & (1 << (i & 31)); if (before != after) { fprintf(stderr, " bit %d, %s to %s\n", i, before ? "set" : "unset", after ? "set" : "unset"); } } } static int compacted_between(int old_ip, int old_target_ip, int *compacted_counts) { int this_compacted_count = compacted_counts[old_ip]; int target_compacted_count = compacted_counts[old_target_ip]; return target_compacted_count - this_compacted_count; } static void update_uip_jip(const struct brw_device_info *devinfo, brw_inst *insn, int this_old_ip, int *compacted_counts) { /* JIP and UIP are in units of: * - bytes on Gen8+; and * - compacted instructions on Gen6+. */ int shift = devinfo->gen >= 8 ? 3 : 0; int32_t jip_compacted = brw_inst_jip(devinfo, insn) >> shift; jip_compacted -= compacted_between(this_old_ip, this_old_ip + (jip_compacted / 2), compacted_counts); brw_inst_set_jip(devinfo, insn, jip_compacted << shift); if (brw_inst_opcode(devinfo, insn) == BRW_OPCODE_ENDIF || brw_inst_opcode(devinfo, insn) == BRW_OPCODE_WHILE || (brw_inst_opcode(devinfo, insn) == BRW_OPCODE_ELSE && devinfo->gen <= 7)) return; int32_t uip_compacted = brw_inst_uip(devinfo, insn) >> shift; uip_compacted -= compacted_between(this_old_ip, this_old_ip + (uip_compacted / 2), compacted_counts); brw_inst_set_uip(devinfo, insn, uip_compacted << shift); } static void update_gen4_jump_count(const struct brw_device_info *devinfo, brw_inst *insn, int this_old_ip, int *compacted_counts) { assert(devinfo->gen == 5 || devinfo->is_g4x); /* Jump Count is in units of: * - uncompacted instructions on G45; and * - compacted instructions on Gen5. */ int shift = devinfo->is_g4x ? 1 : 0; int jump_count_compacted = brw_inst_gen4_jump_count(devinfo, insn) << shift; int target_old_ip = this_old_ip + (jump_count_compacted / 2); int this_compacted_count = compacted_counts[this_old_ip]; int target_compacted_count = compacted_counts[target_old_ip]; jump_count_compacted -= (target_compacted_count - this_compacted_count); brw_inst_set_gen4_jump_count(devinfo, insn, jump_count_compacted >> shift); } void brw_init_compaction_tables(const struct brw_device_info *devinfo) { static bool initialized; if (initialized || p_atomic_cmpxchg(&initialized, false, true) != false) return; assert(g45_control_index_table[ARRAY_SIZE(g45_control_index_table) - 1] != 0); assert(g45_datatype_table[ARRAY_SIZE(g45_datatype_table) - 1] != 0); assert(g45_subreg_table[ARRAY_SIZE(g45_subreg_table) - 1] != 0); assert(g45_src_index_table[ARRAY_SIZE(g45_src_index_table) - 1] != 0); assert(gen6_control_index_table[ARRAY_SIZE(gen6_control_index_table) - 1] != 0); assert(gen6_datatype_table[ARRAY_SIZE(gen6_datatype_table) - 1] != 0); assert(gen6_subreg_table[ARRAY_SIZE(gen6_subreg_table) - 1] != 0); assert(gen6_src_index_table[ARRAY_SIZE(gen6_src_index_table) - 1] != 0); assert(gen7_control_index_table[ARRAY_SIZE(gen7_control_index_table) - 1] != 0); assert(gen7_datatype_table[ARRAY_SIZE(gen7_datatype_table) - 1] != 0); assert(gen7_subreg_table[ARRAY_SIZE(gen7_subreg_table) - 1] != 0); assert(gen7_src_index_table[ARRAY_SIZE(gen7_src_index_table) - 1] != 0); assert(gen8_control_index_table[ARRAY_SIZE(gen8_control_index_table) - 1] != 0); assert(gen8_datatype_table[ARRAY_SIZE(gen8_datatype_table) - 1] != 0); assert(gen8_subreg_table[ARRAY_SIZE(gen8_subreg_table) - 1] != 0); assert(gen8_src_index_table[ARRAY_SIZE(gen8_src_index_table) - 1] != 0); switch (devinfo->gen) { case 9: case 8: control_index_table = gen8_control_index_table; datatype_table = gen8_datatype_table; subreg_table = gen8_subreg_table; src_index_table = gen8_src_index_table; break; case 7: control_index_table = gen7_control_index_table; datatype_table = gen7_datatype_table; subreg_table = gen7_subreg_table; src_index_table = gen7_src_index_table; break; case 6: control_index_table = gen6_control_index_table; datatype_table = gen6_datatype_table; subreg_table = gen6_subreg_table; src_index_table = gen6_src_index_table; break; case 5: case 4: control_index_table = g45_control_index_table; datatype_table = g45_datatype_table; subreg_table = g45_subreg_table; src_index_table = g45_src_index_table; break; default: unreachable("unknown generation"); } } void brw_compact_instructions(struct brw_codegen *p, int start_offset, int num_annotations, struct annotation *annotation) { const struct brw_device_info *devinfo = p->devinfo; void *store = p->store + start_offset / 16; /* For an instruction at byte offset 16*i before compaction, this is the * number of compacted instructions minus the number of padding NOP/NENOPs * that preceded it. */ int compacted_counts[(p->next_insn_offset - start_offset) / sizeof(brw_inst)]; /* For an instruction at byte offset 8*i after compaction, this was its IP * (in 16-byte units) before compaction. */ int old_ip[(p->next_insn_offset - start_offset) / sizeof(brw_compact_inst)]; if (devinfo->gen == 4 && !devinfo->is_g4x) return; int offset = 0; int compacted_count = 0; for (int src_offset = 0; src_offset < p->next_insn_offset - start_offset; src_offset += sizeof(brw_inst)) { brw_inst *src = store + src_offset; void *dst = store + offset; old_ip[offset / sizeof(brw_compact_inst)] = src_offset / sizeof(brw_inst); compacted_counts[src_offset / sizeof(brw_inst)] = compacted_count; brw_inst saved = *src; if (brw_try_compact_instruction(devinfo, dst, src)) { compacted_count++; if (INTEL_DEBUG) { brw_inst uncompacted; brw_uncompact_instruction(devinfo, &uncompacted, dst); if (memcmp(&saved, &uncompacted, sizeof(uncompacted))) { brw_debug_compact_uncompact(devinfo, &saved, &uncompacted); } } offset += sizeof(brw_compact_inst); } else { /* All uncompacted instructions need to be aligned on G45. */ if ((offset & sizeof(brw_compact_inst)) != 0 && devinfo->is_g4x){ brw_compact_inst *align = store + offset; memset(align, 0, sizeof(*align)); brw_compact_inst_set_opcode(align, BRW_OPCODE_NENOP); brw_compact_inst_set_cmpt_control(align, true); offset += sizeof(brw_compact_inst); compacted_count--; compacted_counts[src_offset / sizeof(brw_inst)] = compacted_count; old_ip[offset / sizeof(brw_compact_inst)] = src_offset / sizeof(brw_inst); dst = store + offset; } /* If we didn't compact this intruction, we need to move it down into * place. */ if (offset != src_offset) { memmove(dst, src, sizeof(brw_inst)); } offset += sizeof(brw_inst); } } /* Fix up control flow offsets. */ p->next_insn_offset = start_offset + offset; for (offset = 0; offset < p->next_insn_offset - start_offset; offset = next_offset(devinfo, store, offset)) { brw_inst *insn = store + offset; int this_old_ip = old_ip[offset / sizeof(brw_compact_inst)]; int this_compacted_count = compacted_counts[this_old_ip]; switch (brw_inst_opcode(devinfo, insn)) { case BRW_OPCODE_BREAK: case BRW_OPCODE_CONTINUE: case BRW_OPCODE_HALT: if (devinfo->gen >= 6) { update_uip_jip(devinfo, insn, this_old_ip, compacted_counts); } else { update_gen4_jump_count(devinfo, insn, this_old_ip, compacted_counts); } break; case BRW_OPCODE_IF: case BRW_OPCODE_IFF: case BRW_OPCODE_ELSE: case BRW_OPCODE_ENDIF: case BRW_OPCODE_WHILE: if (devinfo->gen >= 7) { if (brw_inst_cmpt_control(devinfo, insn)) { brw_inst uncompacted; brw_uncompact_instruction(devinfo, &uncompacted, (brw_compact_inst *)insn); update_uip_jip(devinfo, &uncompacted, this_old_ip, compacted_counts); bool ret = brw_try_compact_instruction(devinfo, (brw_compact_inst *)insn, &uncompacted); assert(ret); (void)ret; } else { update_uip_jip(devinfo, insn, this_old_ip, compacted_counts); } } else if (devinfo->gen == 6) { assert(!brw_inst_cmpt_control(devinfo, insn)); /* Jump Count is in units of compacted instructions on Gen6. */ int jump_count_compacted = brw_inst_gen6_jump_count(devinfo, insn); int target_old_ip = this_old_ip + (jump_count_compacted / 2); int target_compacted_count = compacted_counts[target_old_ip]; jump_count_compacted -= (target_compacted_count - this_compacted_count); brw_inst_set_gen6_jump_count(devinfo, insn, jump_count_compacted); } else { update_gen4_jump_count(devinfo, insn, this_old_ip, compacted_counts); } break; case BRW_OPCODE_ADD: /* Add instructions modifying the IP register use an immediate src1, * and Gens that use this cannot compact instructions with immediate * operands. */ if (brw_inst_cmpt_control(devinfo, insn)) break; if (brw_inst_dst_reg_file(devinfo, insn) == BRW_ARCHITECTURE_REGISTER_FILE && brw_inst_dst_da_reg_nr(devinfo, insn) == BRW_ARF_IP) { assert(brw_inst_src1_reg_file(devinfo, insn) == BRW_IMMEDIATE_VALUE); int shift = 3; int jump_compacted = brw_inst_imm_d(devinfo, insn) >> shift; int target_old_ip = this_old_ip + (jump_compacted / 2); int target_compacted_count = compacted_counts[target_old_ip]; jump_compacted -= (target_compacted_count - this_compacted_count); brw_inst_set_imm_ud(devinfo, insn, jump_compacted << shift); } break; } } /* p->nr_insn is counting the number of uncompacted instructions still, so * divide. We do want to be sure there's a valid instruction in any * alignment padding, so that the next compression pass (for the FS 8/16 * compile passes) parses correctly. */ if (p->next_insn_offset & sizeof(brw_compact_inst)) { brw_compact_inst *align = store + offset; memset(align, 0, sizeof(*align)); brw_compact_inst_set_opcode(align, BRW_OPCODE_NOP); brw_compact_inst_set_cmpt_control(align, true); p->next_insn_offset += sizeof(brw_compact_inst); } p->nr_insn = p->next_insn_offset / sizeof(brw_inst); /* Update the instruction offsets for each annotation. */ if (annotation) { for (int offset = 0, i = 0; i < num_annotations; i++) { while (start_offset + old_ip[offset / sizeof(brw_compact_inst)] * sizeof(brw_inst) != annotation[i].offset) { assert(start_offset + old_ip[offset / sizeof(brw_compact_inst)] * sizeof(brw_inst) < annotation[i].offset); offset = next_offset(devinfo, store, offset); } annotation[i].offset = start_offset + offset; offset = next_offset(devinfo, store, offset); } annotation[num_annotations].offset = p->next_insn_offset; } }