/* Copyright (C) Intel Corp. 2006. All Rights Reserved. Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to develop this 3D driver. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice (including the next paragraph) shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **********************************************************************/ /* * Authors: * Keith Whitwell */ #include "brw_context.h" #include "brw_defines.h" #include "brw_eu.h" #include "glsl/ralloc.h" /* Returns the corresponding conditional mod for swapping src0 and * src1 in e.g. CMP. */ uint32_t brw_swap_cmod(uint32_t cmod) { switch (cmod) { case BRW_CONDITIONAL_Z: case BRW_CONDITIONAL_NZ: return cmod; case BRW_CONDITIONAL_G: return BRW_CONDITIONAL_LE; case BRW_CONDITIONAL_GE: return BRW_CONDITIONAL_L; case BRW_CONDITIONAL_L: return BRW_CONDITIONAL_GE; case BRW_CONDITIONAL_LE: return BRW_CONDITIONAL_G; default: return ~0; } } /* How does predicate control work when execution_size != 8? Do I * need to test/set for 0xffff when execution_size is 16? */ void brw_set_predicate_control_flag_value( struct brw_compile *p, GLuint value ) { p->current->header.predicate_control = BRW_PREDICATE_NONE; if (value != 0xff) { if (value != p->flag_value) { brw_push_insn_state(p); brw_MOV(p, brw_flag_reg(), brw_imm_uw(value)); p->flag_value = value; brw_pop_insn_state(p); } p->current->header.predicate_control = BRW_PREDICATE_NORMAL; } } void brw_set_predicate_control( struct brw_compile *p, GLuint pc ) { p->current->header.predicate_control = pc; } void brw_set_predicate_inverse(struct brw_compile *p, bool predicate_inverse) { p->current->header.predicate_inverse = predicate_inverse; } void brw_set_conditionalmod( struct brw_compile *p, GLuint conditional ) { p->current->header.destreg__conditionalmod = conditional; } void brw_set_access_mode( struct brw_compile *p, GLuint access_mode ) { p->current->header.access_mode = access_mode; } void brw_set_compression_control(struct brw_compile *p, enum brw_compression compression_control) { p->compressed = (compression_control == BRW_COMPRESSION_COMPRESSED); if (p->brw->intel.gen >= 6) { /* Since we don't use the 32-wide support in gen6, we translate * the pre-gen6 compression control here. */ switch (compression_control) { case BRW_COMPRESSION_NONE: /* This is the "use the first set of bits of dmask/vmask/arf * according to execsize" option. */ p->current->header.compression_control = GEN6_COMPRESSION_1Q; break; case BRW_COMPRESSION_2NDHALF: /* For 8-wide, this is "use the second set of 8 bits." */ p->current->header.compression_control = GEN6_COMPRESSION_2Q; break; case BRW_COMPRESSION_COMPRESSED: /* For 16-wide instruction compression, use the first set of 16 bits * since we don't do 32-wide dispatch. */ p->current->header.compression_control = GEN6_COMPRESSION_1H; break; default: assert(!"not reached"); p->current->header.compression_control = GEN6_COMPRESSION_1H; break; } } else { p->current->header.compression_control = compression_control; } } void brw_set_mask_control( struct brw_compile *p, GLuint value ) { p->current->header.mask_control = value; } void brw_set_saturate( struct brw_compile *p, GLuint value ) { p->current->header.saturate = value; } void brw_set_acc_write_control(struct brw_compile *p, GLuint value) { if (p->brw->intel.gen >= 6) p->current->header.acc_wr_control = value; } void brw_push_insn_state( struct brw_compile *p ) { assert(p->current != &p->stack[BRW_EU_MAX_INSN_STACK-1]); memcpy(p->current+1, p->current, sizeof(struct brw_instruction)); p->compressed_stack[p->current - p->stack] = p->compressed; p->current++; } void brw_pop_insn_state( struct brw_compile *p ) { assert(p->current != p->stack); p->current--; p->compressed = p->compressed_stack[p->current - p->stack]; } /*********************************************************************** */ void brw_init_compile(struct brw_context *brw, struct brw_compile *p, void *mem_ctx) { p->brw = brw; /* * Set the initial instruction store array size to 1024, if found that * isn't enough, then it will double the store size at brw_next_insn() * until out of memory. */ p->store_size = 1024; p->store = rzalloc_array(mem_ctx, struct brw_instruction, p->store_size); p->nr_insn = 0; p->current = p->stack; p->compressed = false; memset(p->current, 0, sizeof(p->current[0])); p->mem_ctx = mem_ctx; /* Some defaults? */ brw_set_mask_control(p, BRW_MASK_ENABLE); /* what does this do? */ brw_set_saturate(p, 0); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_set_predicate_control_flag_value(p, 0xff); /* Set up control flow stack */ p->if_stack_depth = 0; p->if_stack_array_size = 16; p->if_stack = rzalloc_array(mem_ctx, int, p->if_stack_array_size); p->loop_stack_depth = 0; p->loop_stack_array_size = 16; p->loop_stack = rzalloc_array(mem_ctx, int, p->loop_stack_array_size); p->if_depth_in_loop = rzalloc_array(mem_ctx, int, p->loop_stack_array_size); } const GLuint *brw_get_program( struct brw_compile *p, GLuint *sz ) { GLuint i; for (i = 0; i < 8; i++) brw_NOP(p); *sz = p->nr_insn * sizeof(struct brw_instruction); return (const GLuint *)p->store; } /** * Subroutine calls require special attention. * Mesa instructions may be expanded into multiple hardware instructions * so the prog_instruction::BranchTarget field can't be used as an index * into the hardware instructions. * * The BranchTarget field isn't needed, however. Mesa's GLSL compiler * emits CAL and BGNSUB instructions with labels that can be used to map * subroutine calls to actual subroutine code blocks. * * The structures and function here implement patching of CAL instructions * so they jump to the right subroutine code... */ /** * For each OPCODE_BGNSUB we create one of these. */ struct brw_glsl_label { const char *name; /**< the label string */ GLuint position; /**< the position of the brw instruction for this label */ struct brw_glsl_label *next; /**< next in linked list */ }; /** * For each OPCODE_CAL we create one of these. */ struct brw_glsl_call { GLuint call_inst_pos; /**< location of the CAL instruction */ const char *sub_name; /**< name of subroutine to call */ struct brw_glsl_call *next; /**< next in linked list */ }; /** * Called for each OPCODE_BGNSUB. */ void brw_save_label(struct brw_compile *c, const char *name, GLuint position) { struct brw_glsl_label *label = CALLOC_STRUCT(brw_glsl_label); label->name = name; label->position = position; label->next = c->first_label; c->first_label = label; } /** * Called for each OPCODE_CAL. */ void brw_save_call(struct brw_compile *c, const char *name, GLuint call_pos) { struct brw_glsl_call *call = CALLOC_STRUCT(brw_glsl_call); call->call_inst_pos = call_pos; call->sub_name = name; call->next = c->first_call; c->first_call = call; } /** * Lookup a label, return label's position/offset. */ static GLuint brw_lookup_label(struct brw_compile *c, const char *name) { const struct brw_glsl_label *label; for (label = c->first_label; label; label = label->next) { if (strcmp(name, label->name) == 0) { return label->position; } } abort(); /* should never happen */ return ~0; } /** * When we're done generating code, this function is called to resolve * subroutine calls. */ void brw_resolve_cals(struct brw_compile *c) { const struct brw_glsl_call *call; for (call = c->first_call; call; call = call->next) { const GLuint sub_loc = brw_lookup_label(c, call->sub_name); struct brw_instruction *brw_call_inst = &c->store[call->call_inst_pos]; struct brw_instruction *brw_sub_inst = &c->store[sub_loc]; GLint offset = brw_sub_inst - brw_call_inst; /* patch brw_inst1 to point to brw_inst2 */ brw_set_src1(c, brw_call_inst, brw_imm_d(offset * 16)); } /* free linked list of calls */ { struct brw_glsl_call *call, *next; for (call = c->first_call; call; call = next) { next = call->next; free(call); } c->first_call = NULL; } /* free linked list of labels */ { struct brw_glsl_label *label, *next; for (label = c->first_label; label; label = next) { next = label->next; free(label); } c->first_label = NULL; } }