/************************************************************************** * * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #undef NDEBUG #include "main/glheader.h" #include "main/bufferobj.h" #include "main/context.h" #include "main/enums.h" #include "main/macros.h" #include "brw_draw.h" #include "brw_defines.h" #include "brw_context.h" #include "brw_state.h" #include "intel_batchbuffer.h" #include "intel_buffer_objects.h" static GLuint double_types[5] = { 0, BRW_SURFACEFORMAT_R64_FLOAT, BRW_SURFACEFORMAT_R64G64_FLOAT, BRW_SURFACEFORMAT_R64G64B64_FLOAT, BRW_SURFACEFORMAT_R64G64B64A64_FLOAT }; static GLuint float_types[5] = { 0, BRW_SURFACEFORMAT_R32_FLOAT, BRW_SURFACEFORMAT_R32G32_FLOAT, BRW_SURFACEFORMAT_R32G32B32_FLOAT, BRW_SURFACEFORMAT_R32G32B32A32_FLOAT }; static GLuint half_float_types[5] = { 0, BRW_SURFACEFORMAT_R16_FLOAT, BRW_SURFACEFORMAT_R16G16_FLOAT, BRW_SURFACEFORMAT_R16G16B16A16_FLOAT, BRW_SURFACEFORMAT_R16G16B16A16_FLOAT }; static GLuint uint_types_direct[5] = { 0, BRW_SURFACEFORMAT_R32_UINT, BRW_SURFACEFORMAT_R32G32_UINT, BRW_SURFACEFORMAT_R32G32B32_UINT, BRW_SURFACEFORMAT_R32G32B32A32_UINT }; static GLuint uint_types_norm[5] = { 0, BRW_SURFACEFORMAT_R32_UNORM, BRW_SURFACEFORMAT_R32G32_UNORM, BRW_SURFACEFORMAT_R32G32B32_UNORM, BRW_SURFACEFORMAT_R32G32B32A32_UNORM }; static GLuint uint_types_scale[5] = { 0, BRW_SURFACEFORMAT_R32_USCALED, BRW_SURFACEFORMAT_R32G32_USCALED, BRW_SURFACEFORMAT_R32G32B32_USCALED, BRW_SURFACEFORMAT_R32G32B32A32_USCALED }; static GLuint int_types_direct[5] = { 0, BRW_SURFACEFORMAT_R32_SINT, BRW_SURFACEFORMAT_R32G32_SINT, BRW_SURFACEFORMAT_R32G32B32_SINT, BRW_SURFACEFORMAT_R32G32B32A32_SINT }; static GLuint int_types_norm[5] = { 0, BRW_SURFACEFORMAT_R32_SNORM, BRW_SURFACEFORMAT_R32G32_SNORM, BRW_SURFACEFORMAT_R32G32B32_SNORM, BRW_SURFACEFORMAT_R32G32B32A32_SNORM }; static GLuint int_types_scale[5] = { 0, BRW_SURFACEFORMAT_R32_SSCALED, BRW_SURFACEFORMAT_R32G32_SSCALED, BRW_SURFACEFORMAT_R32G32B32_SSCALED, BRW_SURFACEFORMAT_R32G32B32A32_SSCALED }; static GLuint ushort_types_direct[5] = { 0, BRW_SURFACEFORMAT_R16_UINT, BRW_SURFACEFORMAT_R16G16_UINT, BRW_SURFACEFORMAT_R16G16B16A16_UINT, BRW_SURFACEFORMAT_R16G16B16A16_UINT }; static GLuint ushort_types_norm[5] = { 0, BRW_SURFACEFORMAT_R16_UNORM, BRW_SURFACEFORMAT_R16G16_UNORM, BRW_SURFACEFORMAT_R16G16B16_UNORM, BRW_SURFACEFORMAT_R16G16B16A16_UNORM }; static GLuint ushort_types_scale[5] = { 0, BRW_SURFACEFORMAT_R16_USCALED, BRW_SURFACEFORMAT_R16G16_USCALED, BRW_SURFACEFORMAT_R16G16B16_USCALED, BRW_SURFACEFORMAT_R16G16B16A16_USCALED }; static GLuint short_types_direct[5] = { 0, BRW_SURFACEFORMAT_R16_SINT, BRW_SURFACEFORMAT_R16G16_SINT, BRW_SURFACEFORMAT_R16G16B16A16_SINT, BRW_SURFACEFORMAT_R16G16B16A16_SINT }; static GLuint short_types_norm[5] = { 0, BRW_SURFACEFORMAT_R16_SNORM, BRW_SURFACEFORMAT_R16G16_SNORM, BRW_SURFACEFORMAT_R16G16B16_SNORM, BRW_SURFACEFORMAT_R16G16B16A16_SNORM }; static GLuint short_types_scale[5] = { 0, BRW_SURFACEFORMAT_R16_SSCALED, BRW_SURFACEFORMAT_R16G16_SSCALED, BRW_SURFACEFORMAT_R16G16B16_SSCALED, BRW_SURFACEFORMAT_R16G16B16A16_SSCALED }; static GLuint ubyte_types_direct[5] = { 0, BRW_SURFACEFORMAT_R8_UINT, BRW_SURFACEFORMAT_R8G8_UINT, BRW_SURFACEFORMAT_R8G8B8A8_UINT, BRW_SURFACEFORMAT_R8G8B8A8_UINT }; static GLuint ubyte_types_norm[5] = { 0, BRW_SURFACEFORMAT_R8_UNORM, BRW_SURFACEFORMAT_R8G8_UNORM, BRW_SURFACEFORMAT_R8G8B8_UNORM, BRW_SURFACEFORMAT_R8G8B8A8_UNORM }; static GLuint ubyte_types_scale[5] = { 0, BRW_SURFACEFORMAT_R8_USCALED, BRW_SURFACEFORMAT_R8G8_USCALED, BRW_SURFACEFORMAT_R8G8B8_USCALED, BRW_SURFACEFORMAT_R8G8B8A8_USCALED }; static GLuint byte_types_direct[5] = { 0, BRW_SURFACEFORMAT_R8_SINT, BRW_SURFACEFORMAT_R8G8_SINT, BRW_SURFACEFORMAT_R8G8B8A8_SINT, BRW_SURFACEFORMAT_R8G8B8A8_SINT }; static GLuint byte_types_norm[5] = { 0, BRW_SURFACEFORMAT_R8_SNORM, BRW_SURFACEFORMAT_R8G8_SNORM, BRW_SURFACEFORMAT_R8G8B8_SNORM, BRW_SURFACEFORMAT_R8G8B8A8_SNORM }; static GLuint byte_types_scale[5] = { 0, BRW_SURFACEFORMAT_R8_SSCALED, BRW_SURFACEFORMAT_R8G8_SSCALED, BRW_SURFACEFORMAT_R8G8B8_SSCALED, BRW_SURFACEFORMAT_R8G8B8A8_SSCALED }; /** * Given vertex array type/size/format/normalized info, return * the appopriate hardware surface type. * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays. */ static GLuint get_surface_type( GLenum type, GLuint size, GLenum format, bool normalized, bool integer ) { if (unlikely(INTEL_DEBUG & DEBUG_VERTS)) printf("type %s size %d normalized %d\n", _mesa_lookup_enum_by_nr(type), size, normalized); if (integer) { assert(format == GL_RGBA); /* sanity check */ switch (type) { case GL_INT: return int_types_direct[size]; case GL_SHORT: return short_types_direct[size]; case GL_BYTE: return byte_types_direct[size]; case GL_UNSIGNED_INT: return uint_types_direct[size]; case GL_UNSIGNED_SHORT: return ushort_types_direct[size]; case GL_UNSIGNED_BYTE: return ubyte_types_direct[size]; default: assert(0); return 0; } } else if (normalized) { switch (type) { case GL_DOUBLE: return double_types[size]; case GL_FLOAT: return float_types[size]; case GL_HALF_FLOAT: return half_float_types[size]; case GL_INT: return int_types_norm[size]; case GL_SHORT: return short_types_norm[size]; case GL_BYTE: return byte_types_norm[size]; case GL_UNSIGNED_INT: return uint_types_norm[size]; case GL_UNSIGNED_SHORT: return ushort_types_norm[size]; case GL_UNSIGNED_BYTE: if (format == GL_BGRA) { /* See GL_EXT_vertex_array_bgra */ assert(size == 4); return BRW_SURFACEFORMAT_B8G8R8A8_UNORM; } else { return ubyte_types_norm[size]; } default: assert(0); return 0; } } else { assert(format == GL_RGBA); /* sanity check */ switch (type) { case GL_DOUBLE: return double_types[size]; case GL_FLOAT: return float_types[size]; case GL_HALF_FLOAT: return half_float_types[size]; case GL_INT: return int_types_scale[size]; case GL_SHORT: return short_types_scale[size]; case GL_BYTE: return byte_types_scale[size]; case GL_UNSIGNED_INT: return uint_types_scale[size]; case GL_UNSIGNED_SHORT: return ushort_types_scale[size]; case GL_UNSIGNED_BYTE: return ubyte_types_scale[size]; /* This produces GL_FIXED inputs as values between INT32_MIN and * INT32_MAX, which will be scaled down by 1/65536 by the VS. */ case GL_FIXED: return int_types_scale[size]; default: assert(0); return 0; } } } static GLuint get_size( GLenum type ) { switch (type) { case GL_DOUBLE: return sizeof(GLdouble); case GL_FLOAT: return sizeof(GLfloat); case GL_HALF_FLOAT: return sizeof(GLhalfARB); case GL_INT: return sizeof(GLint); case GL_SHORT: return sizeof(GLshort); case GL_BYTE: return sizeof(GLbyte); case GL_UNSIGNED_INT: return sizeof(GLuint); case GL_UNSIGNED_SHORT: return sizeof(GLushort); case GL_UNSIGNED_BYTE: return sizeof(GLubyte); case GL_FIXED: return sizeof(GLuint); default: assert(0); return 0; } } static GLuint get_index_type(GLenum type) { switch (type) { case GL_UNSIGNED_BYTE: return BRW_INDEX_BYTE; case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD; case GL_UNSIGNED_INT: return BRW_INDEX_DWORD; default: assert(0); return 0; } } static void copy_array_to_vbo_array(struct brw_context *brw, struct brw_vertex_element *element, int min, int max, struct brw_vertex_buffer *buffer, GLuint dst_stride) { if (min == -1) { /* If we don't have computed min/max bounds, then this must be a use of * the current attribute, which has a 0 stride. Otherwise, we wouldn't * know what data to upload. */ assert(element->glarray->StrideB == 0); intel_upload_data(&brw->intel, element->glarray->Ptr, element->element_size, element->element_size, &buffer->bo, &buffer->offset); buffer->stride = 0; return; } int src_stride = element->glarray->StrideB; const unsigned char *src = element->glarray->Ptr + min * src_stride; int count = max - min + 1; GLuint size = count * dst_stride; if (dst_stride == src_stride) { intel_upload_data(&brw->intel, src, size, dst_stride, &buffer->bo, &buffer->offset); } else { char * const map = intel_upload_map(&brw->intel, size, dst_stride); char *dst = map; while (count--) { memcpy(dst, src, dst_stride); src += src_stride; dst += dst_stride; } intel_upload_unmap(&brw->intel, map, size, dst_stride, &buffer->bo, &buffer->offset); } buffer->stride = dst_stride; } static void brw_prepare_vertices(struct brw_context *brw) { struct gl_context *ctx = &brw->intel.ctx; struct intel_context *intel = intel_context(ctx); /* CACHE_NEW_VS_PROG */ GLbitfield vs_inputs = brw->vs.prog_data->inputs_read; const unsigned char *ptr = NULL; GLuint interleaved = 0, total_size = 0; unsigned int min_index = brw->vb.min_index; unsigned int max_index = brw->vb.max_index; int delta, i, j; struct brw_vertex_element *upload[VERT_ATTRIB_MAX]; GLuint nr_uploads = 0; /* First build an array of pointers to ve's in vb.inputs_read */ if (0) printf("%s %d..%d\n", __FUNCTION__, min_index, max_index); /* Accumulate the list of enabled arrays. */ brw->vb.nr_enabled = 0; while (vs_inputs) { GLuint i = ffs(vs_inputs) - 1; struct brw_vertex_element *input = &brw->vb.inputs[i]; vs_inputs &= ~(1 << i); if (input->glarray->Size && get_size(input->glarray->Type)) brw->vb.enabled[brw->vb.nr_enabled++] = input; } if (brw->vb.nr_enabled == 0) return; if (brw->vb.nr_buffers) goto prepare; /* XXX: In the rare cases where this happens we fallback all * the way to software rasterization, although a tnl fallback * would be sufficient. I don't know of *any* real world * cases with > 17 vertex attributes enabled, so it probably * isn't an issue at this point. */ if (brw->vb.nr_enabled >= BRW_VEP_MAX) { intel->Fallback = true; /* boolean, not bitfield */ return; } for (i = j = 0; i < brw->vb.nr_enabled; i++) { struct brw_vertex_element *input = brw->vb.enabled[i]; const struct gl_client_array *glarray = input->glarray; int type_size = get_size(glarray->Type); input->element_size = type_size * glarray->Size; if (_mesa_is_bufferobj(glarray->BufferObj)) { struct intel_buffer_object *intel_buffer = intel_buffer_object(glarray->BufferObj); int k; for (k = 0; k < i; k++) { const struct gl_client_array *other = brw->vb.enabled[k]->glarray; if (glarray->BufferObj == other->BufferObj && glarray->StrideB == other->StrideB && (uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB) { input->buffer = brw->vb.enabled[k]->buffer; input->offset = glarray->Ptr - other->Ptr; break; } } if (k == i) { struct brw_vertex_buffer *buffer = &brw->vb.buffers[j]; /* Named buffer object: Just reference its contents directly. */ buffer->bo = intel_bufferobj_source(intel, intel_buffer, type_size, &buffer->offset); drm_intel_bo_reference(buffer->bo); buffer->offset += (uintptr_t)glarray->Ptr; buffer->stride = glarray->StrideB; input->buffer = j++; input->offset = 0; } /* This is a common place to reach if the user mistakenly supplies * a pointer in place of a VBO offset. If we just let it go through, * we may end up dereferencing a pointer beyond the bounds of the * GTT. We would hope that the VBO's max_index would save us, but * Mesa appears to hand us min/max values not clipped to the * array object's _MaxElement, and _MaxElement frequently appears * to be wrong anyway. * * The VBO spec allows application termination in this case, and it's * probably a service to the poor programmer to do so rather than * trying to just not render. */ assert(input->offset < brw->vb.buffers[input->buffer].bo->size); } else { /* Queue the buffer object up to be uploaded in the next pass, * when we've decided if we're doing interleaved or not. */ if (nr_uploads == 0) { /* Position array not properly enabled: */ if (input->attrib == VERT_ATTRIB_POS && glarray->StrideB == 0) { intel->Fallback = true; /* boolean, not bitfield */ return; } interleaved = glarray->StrideB; ptr = glarray->Ptr; } else if (interleaved != glarray->StrideB || (uintptr_t)(glarray->Ptr - ptr) > interleaved) { interleaved = 0; } else if ((uintptr_t)(glarray->Ptr - ptr) & (type_size -1)) { /* enforce natural alignment (for doubles) */ interleaved = 0; } upload[nr_uploads++] = input; total_size = ALIGN(total_size, type_size); total_size += input->element_size; } } /* If we need to upload all the arrays, then we can trim those arrays to * only the used elements [min_index, max_index] so long as we adjust all * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias. */ brw->vb.start_vertex_bias = 0; delta = min_index; if (nr_uploads == brw->vb.nr_enabled) { brw->vb.start_vertex_bias = -delta; delta = 0; } if (delta && !brw->intel.intelScreen->relaxed_relocations) min_index = delta = 0; /* Handle any arrays to be uploaded. */ if (nr_uploads > 1) { if (interleaved && interleaved <= 2*total_size) { struct brw_vertex_buffer *buffer = &brw->vb.buffers[j]; /* All uploads are interleaved, so upload the arrays together as * interleaved. First, upload the contents and set up upload[0]. */ copy_array_to_vbo_array(brw, upload[0], min_index, max_index, buffer, interleaved); buffer->offset -= delta * interleaved; for (i = 0; i < nr_uploads; i++) { /* Then, just point upload[i] at upload[0]'s buffer. */ upload[i]->offset = ((const unsigned char *)upload[i]->glarray->Ptr - ptr); upload[i]->buffer = j; } j++; nr_uploads = 0; } else if (total_size < 2048) { /* Upload non-interleaved arrays into a single interleaved array */ struct brw_vertex_buffer *buffer; int count = MAX2(max_index - min_index + 1, 1); int offset; char *map; map = intel_upload_map(&brw->intel, total_size * count, total_size); for (i = offset = 0; i < nr_uploads; i++) { const unsigned char *src = upload[i]->glarray->Ptr; int size = upload[i]->element_size; int stride = upload[i]->glarray->StrideB; char *dst; int n; offset = ALIGN(offset, get_size(upload[i]->glarray->Type)); dst = map + offset; src += min_index * stride; for (n = 0; n < count; n++) { memcpy(dst, src, size); src += stride; dst += total_size; } upload[i]->offset = offset; upload[i]->buffer = j; offset += size; } assert(offset == total_size); buffer = &brw->vb.buffers[j++]; intel_upload_unmap(&brw->intel, map, offset * count, offset, &buffer->bo, &buffer->offset); buffer->stride = offset; buffer->offset -= delta * offset; nr_uploads = 0; } } /* Upload non-interleaved arrays */ for (i = 0; i < nr_uploads; i++) { struct brw_vertex_buffer *buffer = &brw->vb.buffers[j]; copy_array_to_vbo_array(brw, upload[i], min_index, max_index, buffer, upload[i]->element_size); buffer->offset -= delta * buffer->stride; upload[i]->buffer = j++; upload[i]->offset = 0; } /* can we simply extend the current vb? */ if (j == brw->vb.nr_current_buffers) { int delta = 0; for (i = 0; i < j; i++) { int d; if (brw->vb.current_buffers[i].handle != brw->vb.buffers[i].bo->handle || brw->vb.current_buffers[i].stride != brw->vb.buffers[i].stride) break; d = brw->vb.buffers[i].offset - brw->vb.current_buffers[i].offset; if (d < 0) break; if (i == 0) delta = d / brw->vb.current_buffers[i].stride; if (delta * brw->vb.current_buffers[i].stride != d) break; } if (i == j) { brw->vb.start_vertex_bias += delta; while (--j >= 0) drm_intel_bo_unreference(brw->vb.buffers[j].bo); j = 0; } } brw->vb.nr_buffers = j; prepare: brw_prepare_query_begin(brw); } static void brw_emit_vertices(struct brw_context *brw) { struct gl_context *ctx = &brw->intel.ctx; struct intel_context *intel = intel_context(ctx); GLuint i; brw_prepare_vertices(brw); brw_emit_query_begin(brw); /* If the VS doesn't read any inputs (calculating vertex position from * a state variable for some reason, for example), emit a single pad * VERTEX_ELEMENT struct and bail. * * The stale VB state stays in place, but they don't do anything unless * a VE loads from them. */ if (brw->vb.nr_enabled == 0) { BEGIN_BATCH(3); OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1); if (intel->gen >= 6) { OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) | GEN6_VE0_VALID | (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) | (0 << BRW_VE0_SRC_OFFSET_SHIFT)); } else { OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) | BRW_VE0_VALID | (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) | (0 << BRW_VE0_SRC_OFFSET_SHIFT)); } OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) | (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) | (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) | (BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT)); CACHED_BATCH(); return; } /* Now emit VB and VEP state packets. */ if (brw->vb.nr_buffers) { BEGIN_BATCH(1 + 4*brw->vb.nr_buffers); OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4*brw->vb.nr_buffers - 1)); for (i = 0; i < brw->vb.nr_buffers; i++) { struct brw_vertex_buffer *buffer = &brw->vb.buffers[i]; uint32_t dw0; if (intel->gen >= 6) { dw0 = GEN6_VB0_ACCESS_VERTEXDATA | (i << GEN6_VB0_INDEX_SHIFT); } else { dw0 = BRW_VB0_ACCESS_VERTEXDATA | (i << BRW_VB0_INDEX_SHIFT); } if (intel->gen >= 7) dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE; OUT_BATCH(dw0 | (buffer->stride << BRW_VB0_PITCH_SHIFT)); OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->offset); if (intel->gen >= 5) { OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->bo->size - 1); } else OUT_BATCH(0); OUT_BATCH(0); /* Instance data step rate */ brw->vb.current_buffers[i].handle = buffer->bo->handle; brw->vb.current_buffers[i].offset = buffer->offset; brw->vb.current_buffers[i].stride = buffer->stride; } brw->vb.nr_current_buffers = i; ADVANCE_BATCH(); } BEGIN_BATCH(1 + brw->vb.nr_enabled * 2); OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2*brw->vb.nr_enabled - 1)); for (i = 0; i < brw->vb.nr_enabled; i++) { struct brw_vertex_element *input = brw->vb.enabled[i]; uint32_t format = get_surface_type(input->glarray->Type, input->glarray->Size, input->glarray->Format, input->glarray->Normalized, input->glarray->Integer); uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC; uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC; uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC; uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC; switch (input->glarray->Size) { case 0: comp0 = BRW_VE1_COMPONENT_STORE_0; case 1: comp1 = BRW_VE1_COMPONENT_STORE_0; case 2: comp2 = BRW_VE1_COMPONENT_STORE_0; case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT : BRW_VE1_COMPONENT_STORE_1_FLT; break; } if (intel->gen >= 6) { OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) | GEN6_VE0_VALID | (format << BRW_VE0_FORMAT_SHIFT) | (input->offset << BRW_VE0_SRC_OFFSET_SHIFT)); } else { OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) | BRW_VE0_VALID | (format << BRW_VE0_FORMAT_SHIFT) | (input->offset << BRW_VE0_SRC_OFFSET_SHIFT)); } if (intel->gen >= 5) OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) | (comp1 << BRW_VE1_COMPONENT_1_SHIFT) | (comp2 << BRW_VE1_COMPONENT_2_SHIFT) | (comp3 << BRW_VE1_COMPONENT_3_SHIFT)); else OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) | (comp1 << BRW_VE1_COMPONENT_1_SHIFT) | (comp2 << BRW_VE1_COMPONENT_2_SHIFT) | (comp3 << BRW_VE1_COMPONENT_3_SHIFT) | ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT)); } CACHED_BATCH(); } const struct brw_tracked_state brw_vertices = { .dirty = { .mesa = 0, .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES, .cache = CACHE_NEW_VS_PROG, }, .emit = brw_emit_vertices, }; static void brw_upload_indices(struct brw_context *brw) { struct gl_context *ctx = &brw->intel.ctx; struct intel_context *intel = &brw->intel; const struct _mesa_index_buffer *index_buffer = brw->ib.ib; GLuint ib_size; drm_intel_bo *bo = NULL; struct gl_buffer_object *bufferobj; GLuint offset; GLuint ib_type_size; if (index_buffer == NULL) return; ib_type_size = get_size(index_buffer->type); ib_size = ib_type_size * index_buffer->count; bufferobj = index_buffer->obj; /* Turn into a proper VBO: */ if (!_mesa_is_bufferobj(bufferobj)) { /* Get new bufferobj, offset: */ intel_upload_data(&brw->intel, index_buffer->ptr, ib_size, ib_type_size, &bo, &offset); brw->ib.start_vertex_offset = offset / ib_type_size; } else { offset = (GLuint) (unsigned long) index_buffer->ptr; /* If the index buffer isn't aligned to its element size, we have to * rebase it into a temporary. */ if ((get_size(index_buffer->type) - 1) & offset) { GLubyte *map = ctx->Driver.MapBufferRange(ctx, offset, ib_size, GL_MAP_WRITE_BIT, bufferobj); intel_upload_data(&brw->intel, map, ib_size, ib_type_size, &bo, &offset); brw->ib.start_vertex_offset = offset / ib_type_size; ctx->Driver.UnmapBuffer(ctx, bufferobj); } else { /* Use CMD_3D_PRIM's start_vertex_offset to avoid re-uploading * the index buffer state when we're just moving the start index * of our drawing. */ brw->ib.start_vertex_offset = offset / ib_type_size; bo = intel_bufferobj_source(intel, intel_buffer_object(bufferobj), ib_type_size, &offset); drm_intel_bo_reference(bo); brw->ib.start_vertex_offset += offset / ib_type_size; } } if (brw->ib.bo != bo) { drm_intel_bo_unreference(brw->ib.bo); brw->ib.bo = bo; brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER; } else { drm_intel_bo_unreference(bo); } if (index_buffer->type != brw->ib.type) { brw->ib.type = index_buffer->type; brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER; } } const struct brw_tracked_state brw_indices = { .dirty = { .mesa = 0, .brw = BRW_NEW_INDICES, .cache = 0, }, .emit = brw_upload_indices, }; static void brw_emit_index_buffer(struct brw_context *brw) { struct intel_context *intel = &brw->intel; const struct _mesa_index_buffer *index_buffer = brw->ib.ib; if (index_buffer == NULL) return; BEGIN_BATCH(3); OUT_BATCH(CMD_INDEX_BUFFER << 16 | /* cut index enable << 10 */ get_index_type(index_buffer->type) << 8 | 1); OUT_RELOC(brw->ib.bo, I915_GEM_DOMAIN_VERTEX, 0, 0); OUT_RELOC(brw->ib.bo, I915_GEM_DOMAIN_VERTEX, 0, brw->ib.bo->size - 1); ADVANCE_BATCH(); } const struct brw_tracked_state brw_index_buffer = { .dirty = { .mesa = 0, .brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER, .cache = 0, }, .emit = brw_emit_index_buffer, };