/************************************************************************** * * Copyright 2003 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "main/glheader.h" #include "main/bufferobj.h" #include "main/context.h" #include "main/enums.h" #include "main/macros.h" #include "main/glformats.h" #include "brw_draw.h" #include "brw_defines.h" #include "brw_context.h" #include "brw_state.h" #include "intel_batchbuffer.h" #include "intel_buffer_objects.h" static GLuint double_types[5] = { 0, BRW_SURFACEFORMAT_R64_FLOAT, BRW_SURFACEFORMAT_R64G64_FLOAT, BRW_SURFACEFORMAT_R64G64B64_FLOAT, BRW_SURFACEFORMAT_R64G64B64A64_FLOAT }; static GLuint float_types[5] = { 0, BRW_SURFACEFORMAT_R32_FLOAT, BRW_SURFACEFORMAT_R32G32_FLOAT, BRW_SURFACEFORMAT_R32G32B32_FLOAT, BRW_SURFACEFORMAT_R32G32B32A32_FLOAT }; static GLuint half_float_types[5] = { 0, BRW_SURFACEFORMAT_R16_FLOAT, BRW_SURFACEFORMAT_R16G16_FLOAT, BRW_SURFACEFORMAT_R16G16B16A16_FLOAT, BRW_SURFACEFORMAT_R16G16B16A16_FLOAT }; static GLuint fixed_point_types[5] = { 0, BRW_SURFACEFORMAT_R32_SFIXED, BRW_SURFACEFORMAT_R32G32_SFIXED, BRW_SURFACEFORMAT_R32G32B32_SFIXED, BRW_SURFACEFORMAT_R32G32B32A32_SFIXED, }; static GLuint uint_types_direct[5] = { 0, BRW_SURFACEFORMAT_R32_UINT, BRW_SURFACEFORMAT_R32G32_UINT, BRW_SURFACEFORMAT_R32G32B32_UINT, BRW_SURFACEFORMAT_R32G32B32A32_UINT }; static GLuint uint_types_norm[5] = { 0, BRW_SURFACEFORMAT_R32_UNORM, BRW_SURFACEFORMAT_R32G32_UNORM, BRW_SURFACEFORMAT_R32G32B32_UNORM, BRW_SURFACEFORMAT_R32G32B32A32_UNORM }; static GLuint uint_types_scale[5] = { 0, BRW_SURFACEFORMAT_R32_USCALED, BRW_SURFACEFORMAT_R32G32_USCALED, BRW_SURFACEFORMAT_R32G32B32_USCALED, BRW_SURFACEFORMAT_R32G32B32A32_USCALED }; static GLuint int_types_direct[5] = { 0, BRW_SURFACEFORMAT_R32_SINT, BRW_SURFACEFORMAT_R32G32_SINT, BRW_SURFACEFORMAT_R32G32B32_SINT, BRW_SURFACEFORMAT_R32G32B32A32_SINT }; static GLuint int_types_norm[5] = { 0, BRW_SURFACEFORMAT_R32_SNORM, BRW_SURFACEFORMAT_R32G32_SNORM, BRW_SURFACEFORMAT_R32G32B32_SNORM, BRW_SURFACEFORMAT_R32G32B32A32_SNORM }; static GLuint int_types_scale[5] = { 0, BRW_SURFACEFORMAT_R32_SSCALED, BRW_SURFACEFORMAT_R32G32_SSCALED, BRW_SURFACEFORMAT_R32G32B32_SSCALED, BRW_SURFACEFORMAT_R32G32B32A32_SSCALED }; static GLuint ushort_types_direct[5] = { 0, BRW_SURFACEFORMAT_R16_UINT, BRW_SURFACEFORMAT_R16G16_UINT, BRW_SURFACEFORMAT_R16G16B16A16_UINT, BRW_SURFACEFORMAT_R16G16B16A16_UINT }; static GLuint ushort_types_norm[5] = { 0, BRW_SURFACEFORMAT_R16_UNORM, BRW_SURFACEFORMAT_R16G16_UNORM, BRW_SURFACEFORMAT_R16G16B16_UNORM, BRW_SURFACEFORMAT_R16G16B16A16_UNORM }; static GLuint ushort_types_scale[5] = { 0, BRW_SURFACEFORMAT_R16_USCALED, BRW_SURFACEFORMAT_R16G16_USCALED, BRW_SURFACEFORMAT_R16G16B16_USCALED, BRW_SURFACEFORMAT_R16G16B16A16_USCALED }; static GLuint short_types_direct[5] = { 0, BRW_SURFACEFORMAT_R16_SINT, BRW_SURFACEFORMAT_R16G16_SINT, BRW_SURFACEFORMAT_R16G16B16A16_SINT, BRW_SURFACEFORMAT_R16G16B16A16_SINT }; static GLuint short_types_norm[5] = { 0, BRW_SURFACEFORMAT_R16_SNORM, BRW_SURFACEFORMAT_R16G16_SNORM, BRW_SURFACEFORMAT_R16G16B16_SNORM, BRW_SURFACEFORMAT_R16G16B16A16_SNORM }; static GLuint short_types_scale[5] = { 0, BRW_SURFACEFORMAT_R16_SSCALED, BRW_SURFACEFORMAT_R16G16_SSCALED, BRW_SURFACEFORMAT_R16G16B16_SSCALED, BRW_SURFACEFORMAT_R16G16B16A16_SSCALED }; static GLuint ubyte_types_direct[5] = { 0, BRW_SURFACEFORMAT_R8_UINT, BRW_SURFACEFORMAT_R8G8_UINT, BRW_SURFACEFORMAT_R8G8B8A8_UINT, BRW_SURFACEFORMAT_R8G8B8A8_UINT }; static GLuint ubyte_types_norm[5] = { 0, BRW_SURFACEFORMAT_R8_UNORM, BRW_SURFACEFORMAT_R8G8_UNORM, BRW_SURFACEFORMAT_R8G8B8_UNORM, BRW_SURFACEFORMAT_R8G8B8A8_UNORM }; static GLuint ubyte_types_scale[5] = { 0, BRW_SURFACEFORMAT_R8_USCALED, BRW_SURFACEFORMAT_R8G8_USCALED, BRW_SURFACEFORMAT_R8G8B8_USCALED, BRW_SURFACEFORMAT_R8G8B8A8_USCALED }; static GLuint byte_types_direct[5] = { 0, BRW_SURFACEFORMAT_R8_SINT, BRW_SURFACEFORMAT_R8G8_SINT, BRW_SURFACEFORMAT_R8G8B8A8_SINT, BRW_SURFACEFORMAT_R8G8B8A8_SINT }; static GLuint byte_types_norm[5] = { 0, BRW_SURFACEFORMAT_R8_SNORM, BRW_SURFACEFORMAT_R8G8_SNORM, BRW_SURFACEFORMAT_R8G8B8_SNORM, BRW_SURFACEFORMAT_R8G8B8A8_SNORM }; static GLuint byte_types_scale[5] = { 0, BRW_SURFACEFORMAT_R8_SSCALED, BRW_SURFACEFORMAT_R8G8_SSCALED, BRW_SURFACEFORMAT_R8G8B8_SSCALED, BRW_SURFACEFORMAT_R8G8B8A8_SSCALED }; /** * Given vertex array type/size/format/normalized info, return * the appopriate hardware surface type. * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays. */ unsigned brw_get_vertex_surface_type(struct brw_context *brw, const struct gl_client_array *glarray) { int size = glarray->Size; if (unlikely(INTEL_DEBUG & DEBUG_VERTS)) fprintf(stderr, "type %s size %d normalized %d\n", _mesa_lookup_enum_by_nr(glarray->Type), glarray->Size, glarray->Normalized); if (glarray->Integer) { assert(glarray->Format == GL_RGBA); /* sanity check */ switch (glarray->Type) { case GL_INT: return int_types_direct[size]; case GL_SHORT: return short_types_direct[size]; case GL_BYTE: return byte_types_direct[size]; case GL_UNSIGNED_INT: return uint_types_direct[size]; case GL_UNSIGNED_SHORT: return ushort_types_direct[size]; case GL_UNSIGNED_BYTE: return ubyte_types_direct[size]; default: unreachable("not reached"); } } else if (glarray->Type == GL_UNSIGNED_INT_10F_11F_11F_REV) { return BRW_SURFACEFORMAT_R11G11B10_FLOAT; } else if (glarray->Normalized) { switch (glarray->Type) { case GL_DOUBLE: return double_types[size]; case GL_FLOAT: return float_types[size]; case GL_HALF_FLOAT: return half_float_types[size]; case GL_INT: return int_types_norm[size]; case GL_SHORT: return short_types_norm[size]; case GL_BYTE: return byte_types_norm[size]; case GL_UNSIGNED_INT: return uint_types_norm[size]; case GL_UNSIGNED_SHORT: return ushort_types_norm[size]; case GL_UNSIGNED_BYTE: if (glarray->Format == GL_BGRA) { /* See GL_EXT_vertex_array_bgra */ assert(size == 4); return BRW_SURFACEFORMAT_B8G8R8A8_UNORM; } else { return ubyte_types_norm[size]; } case GL_FIXED: if (brw->gen >= 8 || brw->is_haswell) return fixed_point_types[size]; /* This produces GL_FIXED inputs as values between INT32_MIN and * INT32_MAX, which will be scaled down by 1/65536 by the VS. */ return int_types_scale[size]; /* See GL_ARB_vertex_type_2_10_10_10_rev. * W/A: Pre-Haswell, the hardware doesn't really support the formats we'd * like to use here, so upload everything as UINT and fix * it in the shader */ case GL_INT_2_10_10_10_REV: assert(size == 4); if (brw->gen >= 8 || brw->is_haswell) { return glarray->Format == GL_BGRA ? BRW_SURFACEFORMAT_B10G10R10A2_SNORM : BRW_SURFACEFORMAT_R10G10B10A2_SNORM; } return BRW_SURFACEFORMAT_R10G10B10A2_UINT; case GL_UNSIGNED_INT_2_10_10_10_REV: assert(size == 4); if (brw->gen >= 8 || brw->is_haswell) { return glarray->Format == GL_BGRA ? BRW_SURFACEFORMAT_B10G10R10A2_UNORM : BRW_SURFACEFORMAT_R10G10B10A2_UNORM; } return BRW_SURFACEFORMAT_R10G10B10A2_UINT; default: unreachable("not reached"); } } else { /* See GL_ARB_vertex_type_2_10_10_10_rev. * W/A: the hardware doesn't really support the formats we'd * like to use here, so upload everything as UINT and fix * it in the shader */ if (glarray->Type == GL_INT_2_10_10_10_REV) { assert(size == 4); if (brw->gen >= 8 || brw->is_haswell) { return glarray->Format == GL_BGRA ? BRW_SURFACEFORMAT_B10G10R10A2_SSCALED : BRW_SURFACEFORMAT_R10G10B10A2_SSCALED; } return BRW_SURFACEFORMAT_R10G10B10A2_UINT; } else if (glarray->Type == GL_UNSIGNED_INT_2_10_10_10_REV) { assert(size == 4); if (brw->gen >= 8 || brw->is_haswell) { return glarray->Format == GL_BGRA ? BRW_SURFACEFORMAT_B10G10R10A2_USCALED : BRW_SURFACEFORMAT_R10G10B10A2_USCALED; } return BRW_SURFACEFORMAT_R10G10B10A2_UINT; } assert(glarray->Format == GL_RGBA); /* sanity check */ switch (glarray->Type) { case GL_DOUBLE: return double_types[size]; case GL_FLOAT: return float_types[size]; case GL_HALF_FLOAT: return half_float_types[size]; case GL_INT: return int_types_scale[size]; case GL_SHORT: return short_types_scale[size]; case GL_BYTE: return byte_types_scale[size]; case GL_UNSIGNED_INT: return uint_types_scale[size]; case GL_UNSIGNED_SHORT: return ushort_types_scale[size]; case GL_UNSIGNED_BYTE: return ubyte_types_scale[size]; case GL_FIXED: if (brw->gen >= 8 || brw->is_haswell) return fixed_point_types[size]; /* This produces GL_FIXED inputs as values between INT32_MIN and * INT32_MAX, which will be scaled down by 1/65536 by the VS. */ return int_types_scale[size]; default: unreachable("not reached"); } } } unsigned brw_get_index_type(GLenum type) { switch (type) { case GL_UNSIGNED_BYTE: return BRW_INDEX_BYTE; case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD; case GL_UNSIGNED_INT: return BRW_INDEX_DWORD; default: unreachable("not reached"); } } static void copy_array_to_vbo_array(struct brw_context *brw, struct brw_vertex_element *element, int min, int max, struct brw_vertex_buffer *buffer, GLuint dst_stride) { const int src_stride = element->glarray->StrideB; /* If the source stride is zero, we just want to upload the current * attribute once and set the buffer's stride to 0. There's no need * to replicate it out. */ if (src_stride == 0) { intel_upload_data(brw, element->glarray->Ptr, element->glarray->_ElementSize, element->glarray->_ElementSize, &buffer->bo, &buffer->offset); buffer->stride = 0; return; } const unsigned char *src = element->glarray->Ptr + min * src_stride; int count = max - min + 1; GLuint size = count * dst_stride; uint8_t *dst = intel_upload_space(brw, size, dst_stride, &buffer->bo, &buffer->offset); if (dst_stride == src_stride) { memcpy(dst, src, size); } else { while (count--) { memcpy(dst, src, dst_stride); src += src_stride; dst += dst_stride; } } buffer->stride = dst_stride; } void brw_prepare_vertices(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; /* CACHE_NEW_VS_PROG */ GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read; const unsigned char *ptr = NULL; GLuint interleaved = 0; unsigned int min_index = brw->vb.min_index + brw->basevertex; unsigned int max_index = brw->vb.max_index + brw->basevertex; int delta, i, j; struct brw_vertex_element *upload[VERT_ATTRIB_MAX]; GLuint nr_uploads = 0; /* _NEW_POLYGON * * On gen6+, edge flags don't end up in the VUE (either in or out of the * VS). Instead, they're uploaded as the last vertex element, and the data * is passed sideband through the fixed function units. So, we need to * prepare the vertex buffer for it, but it's not present in inputs_read. */ if (brw->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL || ctx->Polygon.BackMode != GL_FILL)) { vs_inputs |= VERT_BIT_EDGEFLAG; } if (0) fprintf(stderr, "%s %d..%d\n", __FUNCTION__, min_index, max_index); /* Accumulate the list of enabled arrays. */ brw->vb.nr_enabled = 0; while (vs_inputs) { GLuint i = ffsll(vs_inputs) - 1; struct brw_vertex_element *input = &brw->vb.inputs[i]; vs_inputs &= ~BITFIELD64_BIT(i); brw->vb.enabled[brw->vb.nr_enabled++] = input; } if (brw->vb.nr_enabled == 0) return; if (brw->vb.nr_buffers) return; for (i = j = 0; i < brw->vb.nr_enabled; i++) { struct brw_vertex_element *input = brw->vb.enabled[i]; const struct gl_client_array *glarray = input->glarray; if (_mesa_is_bufferobj(glarray->BufferObj)) { struct intel_buffer_object *intel_buffer = intel_buffer_object(glarray->BufferObj); int k; /* If we have a VB set to be uploaded for this buffer object * already, reuse that VB state so that we emit fewer * relocations. */ for (k = 0; k < i; k++) { const struct gl_client_array *other = brw->vb.enabled[k]->glarray; if (glarray->BufferObj == other->BufferObj && glarray->StrideB == other->StrideB && glarray->InstanceDivisor == other->InstanceDivisor && (uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB) { input->buffer = brw->vb.enabled[k]->buffer; input->offset = glarray->Ptr - other->Ptr; break; } } if (k == i) { struct brw_vertex_buffer *buffer = &brw->vb.buffers[j]; /* Named buffer object: Just reference its contents directly. */ buffer->offset = (uintptr_t)glarray->Ptr; buffer->stride = glarray->StrideB; buffer->step_rate = glarray->InstanceDivisor; uint32_t offset, size; if (glarray->InstanceDivisor) { offset = buffer->offset; size = (buffer->stride * ((brw->num_instances / glarray->InstanceDivisor) - 1) + glarray->_ElementSize); } else { if (min_index == -1) { offset = 0; size = intel_buffer->Base.Size; } else { offset = buffer->offset + min_index * buffer->stride; size = (buffer->stride * (max_index - min_index) + glarray->_ElementSize); } } buffer->bo = intel_bufferobj_buffer(brw, intel_buffer, offset, size); drm_intel_bo_reference(buffer->bo); input->buffer = j++; input->offset = 0; } /* This is a common place to reach if the user mistakenly supplies * a pointer in place of a VBO offset. If we just let it go through, * we may end up dereferencing a pointer beyond the bounds of the * GTT. We would hope that the VBO's max_index would save us, but * Mesa appears to hand us min/max values not clipped to the * array object's _MaxElement, and _MaxElement frequently appears * to be wrong anyway. * * The VBO spec allows application termination in this case, and it's * probably a service to the poor programmer to do so rather than * trying to just not render. */ assert(input->offset < brw->vb.buffers[input->buffer].bo->size); } else { /* Queue the buffer object up to be uploaded in the next pass, * when we've decided if we're doing interleaved or not. */ if (nr_uploads == 0) { interleaved = glarray->StrideB; ptr = glarray->Ptr; } else if (interleaved != glarray->StrideB || glarray->Ptr < ptr || (uintptr_t)(glarray->Ptr - ptr) + glarray->_ElementSize > interleaved) { /* If our stride is different from the first attribute's stride, * or if the first attribute's stride didn't cover our element, * disable the interleaved upload optimization. The second case * can most commonly occur in cases where there is a single vertex * and, for example, the data is stored on the application's * stack. * * NOTE: This will also disable the optimization in cases where * the data is in a different order than the array indices. * Something like: * * float data[...]; * glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]); * glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]); */ interleaved = 0; } upload[nr_uploads++] = input; } } /* If we need to upload all the arrays, then we can trim those arrays to * only the used elements [min_index, max_index] so long as we adjust all * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias. */ brw->vb.start_vertex_bias = 0; delta = min_index; if (nr_uploads == brw->vb.nr_enabled) { brw->vb.start_vertex_bias = -delta; delta = 0; } /* Handle any arrays to be uploaded. */ if (nr_uploads > 1) { if (interleaved) { struct brw_vertex_buffer *buffer = &brw->vb.buffers[j]; /* All uploads are interleaved, so upload the arrays together as * interleaved. First, upload the contents and set up upload[0]. */ copy_array_to_vbo_array(brw, upload[0], min_index, max_index, buffer, interleaved); buffer->offset -= delta * interleaved; for (i = 0; i < nr_uploads; i++) { /* Then, just point upload[i] at upload[0]'s buffer. */ upload[i]->offset = ((const unsigned char *)upload[i]->glarray->Ptr - ptr); upload[i]->buffer = j; } j++; nr_uploads = 0; } } /* Upload non-interleaved arrays */ for (i = 0; i < nr_uploads; i++) { struct brw_vertex_buffer *buffer = &brw->vb.buffers[j]; if (upload[i]->glarray->InstanceDivisor == 0) { copy_array_to_vbo_array(brw, upload[i], min_index, max_index, buffer, upload[i]->glarray->_ElementSize); } else { /* This is an instanced attribute, since its InstanceDivisor * is not zero. Therefore, its data will be stepped after the * instanced draw has been run InstanceDivisor times. */ uint32_t instanced_attr_max_index = (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor; copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index, buffer, upload[i]->glarray->_ElementSize); } buffer->offset -= delta * buffer->stride; buffer->step_rate = upload[i]->glarray->InstanceDivisor; upload[i]->buffer = j++; upload[i]->offset = 0; } brw->vb.nr_buffers = j; } static void brw_emit_vertices(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; GLuint i, nr_elements; brw_prepare_vertices(brw); brw_emit_query_begin(brw); nr_elements = brw->vb.nr_enabled + brw->vs.prog_data->uses_vertexid; /* If the VS doesn't read any inputs (calculating vertex position from * a state variable for some reason, for example), emit a single pad * VERTEX_ELEMENT struct and bail. * * The stale VB state stays in place, but they don't do anything unless * a VE loads from them. */ if (nr_elements == 0) { BEGIN_BATCH(3); OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1); if (brw->gen >= 6) { OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) | GEN6_VE0_VALID | (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) | (0 << BRW_VE0_SRC_OFFSET_SHIFT)); } else { OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) | BRW_VE0_VALID | (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) | (0 << BRW_VE0_SRC_OFFSET_SHIFT)); } OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) | (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) | (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) | (BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT)); ADVANCE_BATCH(); return; } /* Now emit VB and VEP state packets. */ if (brw->vb.nr_buffers) { if (brw->gen >= 6) { assert(brw->vb.nr_buffers <= 33); } else { assert(brw->vb.nr_buffers <= 17); } BEGIN_BATCH(1 + 4*brw->vb.nr_buffers); OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4*brw->vb.nr_buffers - 1)); for (i = 0; i < brw->vb.nr_buffers; i++) { struct brw_vertex_buffer *buffer = &brw->vb.buffers[i]; uint32_t dw0; if (brw->gen >= 6) { dw0 = buffer->step_rate ? GEN6_VB0_ACCESS_INSTANCEDATA : GEN6_VB0_ACCESS_VERTEXDATA; dw0 |= i << GEN6_VB0_INDEX_SHIFT; } else { dw0 = buffer->step_rate ? BRW_VB0_ACCESS_INSTANCEDATA : BRW_VB0_ACCESS_VERTEXDATA; dw0 |= i << BRW_VB0_INDEX_SHIFT; } if (brw->gen >= 7) dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE; if (brw->gen == 7) dw0 |= GEN7_MOCS_L3 << 16; WARN_ONCE(buffer->stride >= (brw->gen >= 5 ? 2048 : 2047), "VBO stride %d too large, bad rendering may occur\n", buffer->stride); OUT_BATCH(dw0 | (buffer->stride << BRW_VB0_PITCH_SHIFT)); OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->offset); if (brw->gen >= 5) { OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->bo->size - 1); } else OUT_BATCH(0); OUT_BATCH(buffer->step_rate); } ADVANCE_BATCH(); } /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably * for VertexID/InstanceID. */ if (brw->gen >= 6) { assert(nr_elements <= 34); } else { assert(nr_elements <= 18); } struct brw_vertex_element *gen6_edgeflag_input = NULL; BEGIN_BATCH(1 + nr_elements * 2); OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1)); for (i = 0; i < brw->vb.nr_enabled; i++) { struct brw_vertex_element *input = brw->vb.enabled[i]; uint32_t format = brw_get_vertex_surface_type(brw, input->glarray); uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC; uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC; uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC; uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC; if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) { /* Gen6+ passes edgeflag as sideband along with the vertex, instead * of in the VUE. We have to upload it sideband as the last vertex * element according to the B-Spec. */ if (brw->gen >= 6) { gen6_edgeflag_input = input; continue; } } switch (input->glarray->Size) { case 0: comp0 = BRW_VE1_COMPONENT_STORE_0; case 1: comp1 = BRW_VE1_COMPONENT_STORE_0; case 2: comp2 = BRW_VE1_COMPONENT_STORE_0; case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT : BRW_VE1_COMPONENT_STORE_1_FLT; break; } if (brw->gen >= 6) { OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) | GEN6_VE0_VALID | (format << BRW_VE0_FORMAT_SHIFT) | (input->offset << BRW_VE0_SRC_OFFSET_SHIFT)); } else { OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) | BRW_VE0_VALID | (format << BRW_VE0_FORMAT_SHIFT) | (input->offset << BRW_VE0_SRC_OFFSET_SHIFT)); } if (brw->gen >= 5) OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) | (comp1 << BRW_VE1_COMPONENT_1_SHIFT) | (comp2 << BRW_VE1_COMPONENT_2_SHIFT) | (comp3 << BRW_VE1_COMPONENT_3_SHIFT)); else OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) | (comp1 << BRW_VE1_COMPONENT_1_SHIFT) | (comp2 << BRW_VE1_COMPONENT_2_SHIFT) | (comp3 << BRW_VE1_COMPONENT_3_SHIFT) | ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT)); } if (brw->gen >= 6 && gen6_edgeflag_input) { uint32_t format = brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray); OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) | GEN6_VE0_VALID | GEN6_VE0_EDGE_FLAG_ENABLE | (format << BRW_VE0_FORMAT_SHIFT) | (gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT)); OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) | (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) | (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) | (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT)); } if (brw->vs.prog_data->uses_vertexid) { uint32_t dw0 = 0, dw1 = 0; dw1 = ((BRW_VE1_COMPONENT_STORE_VID << BRW_VE1_COMPONENT_0_SHIFT) | (BRW_VE1_COMPONENT_STORE_IID << BRW_VE1_COMPONENT_1_SHIFT) | (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) | (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT)); if (brw->gen >= 6) { dw0 |= GEN6_VE0_VALID; } else { dw0 |= BRW_VE0_VALID; dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT; } /* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values, * the format is ignored and the value is always int. */ OUT_BATCH(dw0); OUT_BATCH(dw1); } ADVANCE_BATCH(); } const struct brw_tracked_state brw_vertices = { .dirty = { .mesa = _NEW_POLYGON, .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES, .cache = CACHE_NEW_VS_PROG, }, .emit = brw_emit_vertices, }; static void brw_upload_indices(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; const struct _mesa_index_buffer *index_buffer = brw->ib.ib; GLuint ib_size; drm_intel_bo *old_bo = brw->ib.bo; struct gl_buffer_object *bufferobj; GLuint offset; GLuint ib_type_size; if (index_buffer == NULL) return; ib_type_size = _mesa_sizeof_type(index_buffer->type); ib_size = ib_type_size * index_buffer->count; bufferobj = index_buffer->obj; /* Turn into a proper VBO: */ if (!_mesa_is_bufferobj(bufferobj)) { /* Get new bufferobj, offset: */ intel_upload_data(brw, index_buffer->ptr, ib_size, ib_type_size, &brw->ib.bo, &offset); } else { offset = (GLuint) (unsigned long) index_buffer->ptr; /* If the index buffer isn't aligned to its element size, we have to * rebase it into a temporary. */ if ((ib_type_size - 1) & offset) { perf_debug("copying index buffer to a temporary to work around " "misaligned offset %d\n", offset); GLubyte *map = ctx->Driver.MapBufferRange(ctx, offset, ib_size, GL_MAP_READ_BIT, bufferobj, MAP_INTERNAL); intel_upload_data(brw, map, ib_size, ib_type_size, &brw->ib.bo, &offset); ctx->Driver.UnmapBuffer(ctx, bufferobj, MAP_INTERNAL); } else { drm_intel_bo *bo = intel_bufferobj_buffer(brw, intel_buffer_object(bufferobj), offset, ib_size); if (bo != brw->ib.bo) { drm_intel_bo_unreference(brw->ib.bo); brw->ib.bo = bo; drm_intel_bo_reference(bo); } } } /* Use 3DPRIMITIVE's start_vertex_offset to avoid re-uploading * the index buffer state when we're just moving the start index * of our drawing. */ brw->ib.start_vertex_offset = offset / ib_type_size; if (brw->ib.bo != old_bo) brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER; if (index_buffer->type != brw->ib.type) { brw->ib.type = index_buffer->type; brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER; } } const struct brw_tracked_state brw_indices = { .dirty = { .mesa = 0, .brw = BRW_NEW_INDICES, .cache = 0, }, .emit = brw_upload_indices, }; static void brw_emit_index_buffer(struct brw_context *brw) { const struct _mesa_index_buffer *index_buffer = brw->ib.ib; GLuint cut_index_setting; if (index_buffer == NULL) return; if (brw->prim_restart.enable_cut_index && !brw->is_haswell) { cut_index_setting = BRW_CUT_INDEX_ENABLE; } else { cut_index_setting = 0; } BEGIN_BATCH(3); OUT_BATCH(CMD_INDEX_BUFFER << 16 | cut_index_setting | brw_get_index_type(index_buffer->type) << 8 | 1); OUT_RELOC(brw->ib.bo, I915_GEM_DOMAIN_VERTEX, 0, 0); OUT_RELOC(brw->ib.bo, I915_GEM_DOMAIN_VERTEX, 0, brw->ib.bo->size - 1); ADVANCE_BATCH(); } const struct brw_tracked_state brw_index_buffer = { .dirty = { .mesa = 0, .brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER, .cache = 0, }, .emit = brw_emit_index_buffer, };