/* * Copyright 2003 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include "main/blend.h" #include "main/context.h" #include "main/condrender.h" #include "main/samplerobj.h" #include "main/state.h" #include "main/enums.h" #include "main/macros.h" #include "main/transformfeedback.h" #include "main/framebuffer.h" #include "tnl/tnl.h" #include "vbo/vbo_context.h" #include "swrast/swrast.h" #include "swrast_setup/swrast_setup.h" #include "drivers/common/meta.h" #include "util/bitscan.h" #include "brw_blorp.h" #include "brw_draw.h" #include "brw_defines.h" #include "compiler/brw_eu_defines.h" #include "brw_context.h" #include "brw_state.h" #include "intel_batchbuffer.h" #include "intel_buffers.h" #include "intel_fbo.h" #include "intel_mipmap_tree.h" #include "intel_buffer_objects.h" #define FILE_DEBUG_FLAG DEBUG_PRIMS static const GLenum reduced_prim[GL_POLYGON+1] = { [GL_POINTS] = GL_POINTS, [GL_LINES] = GL_LINES, [GL_LINE_LOOP] = GL_LINES, [GL_LINE_STRIP] = GL_LINES, [GL_TRIANGLES] = GL_TRIANGLES, [GL_TRIANGLE_STRIP] = GL_TRIANGLES, [GL_TRIANGLE_FAN] = GL_TRIANGLES, [GL_QUADS] = GL_TRIANGLES, [GL_QUAD_STRIP] = GL_TRIANGLES, [GL_POLYGON] = GL_TRIANGLES }; /* When the primitive changes, set a state bit and re-validate. Not * the nicest and would rather deal with this by having all the * programs be immune to the active primitive (ie. cope with all * possibilities). That may not be realistic however. */ static void brw_set_prim(struct brw_context *brw, const struct _mesa_prim *prim) { struct gl_context *ctx = &brw->ctx; uint32_t hw_prim = get_hw_prim_for_gl_prim(prim->mode); DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode)); /* Slight optimization to avoid the GS program when not needed: */ if (prim->mode == GL_QUAD_STRIP && ctx->Light.ShadeModel != GL_FLAT && ctx->Polygon.FrontMode == GL_FILL && ctx->Polygon.BackMode == GL_FILL) hw_prim = _3DPRIM_TRISTRIP; if (prim->mode == GL_QUADS && prim->count == 4 && ctx->Light.ShadeModel != GL_FLAT && ctx->Polygon.FrontMode == GL_FILL && ctx->Polygon.BackMode == GL_FILL) { hw_prim = _3DPRIM_TRIFAN; } if (hw_prim != brw->primitive) { brw->primitive = hw_prim; brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE; if (reduced_prim[prim->mode] != brw->reduced_primitive) { brw->reduced_primitive = reduced_prim[prim->mode]; brw->ctx.NewDriverState |= BRW_NEW_REDUCED_PRIMITIVE; } } } static void gen6_set_prim(struct brw_context *brw, const struct _mesa_prim *prim) { const struct gl_context *ctx = &brw->ctx; uint32_t hw_prim; DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode)); if (prim->mode == GL_PATCHES) { hw_prim = _3DPRIM_PATCHLIST(ctx->TessCtrlProgram.patch_vertices); } else { hw_prim = get_hw_prim_for_gl_prim(prim->mode); } if (hw_prim != brw->primitive) { brw->primitive = hw_prim; brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE; if (prim->mode == GL_PATCHES) brw->ctx.NewDriverState |= BRW_NEW_PATCH_PRIMITIVE; } } /** * The hardware is capable of removing dangling vertices on its own; however, * prior to Gen6, we sometimes convert quads into trifans (and quad strips * into tristrips), since pre-Gen6 hardware requires a GS to render quads. * This function manually trims dangling vertices from a draw call involving * quads so that those dangling vertices won't get drawn when we convert to * trifans/tristrips. */ static GLuint trim(GLenum prim, GLuint length) { if (prim == GL_QUAD_STRIP) return length > 3 ? (length - length % 2) : 0; else if (prim == GL_QUADS) return length - length % 4; else return length; } static void brw_emit_prim(struct brw_context *brw, const struct _mesa_prim *prim, uint32_t hw_prim, struct brw_transform_feedback_object *xfb_obj, unsigned stream) { const struct gen_device_info *devinfo = &brw->screen->devinfo; int verts_per_instance; int vertex_access_type; int indirect_flag; DBG("PRIM: %s %d %d\n", _mesa_enum_to_string(prim->mode), prim->start, prim->count); int start_vertex_location = prim->start; int base_vertex_location = prim->basevertex; if (prim->indexed) { vertex_access_type = devinfo->gen >= 7 ? GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM : GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM; start_vertex_location += brw->ib.start_vertex_offset; base_vertex_location += brw->vb.start_vertex_bias; } else { vertex_access_type = devinfo->gen >= 7 ? GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL : GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL; start_vertex_location += brw->vb.start_vertex_bias; } /* We only need to trim the primitive count on pre-Gen6. */ if (devinfo->gen < 6) verts_per_instance = trim(prim->mode, prim->count); else verts_per_instance = prim->count; /* If nothing to emit, just return. */ if (verts_per_instance == 0 && !prim->is_indirect && !xfb_obj) return; /* If we're set to always flush, do it before and after the primitive emit. * We want to catch both missed flushes that hurt instruction/state cache * and missed flushes of the render cache as it heads to other parts of * the besides the draw code. */ if (brw->always_flush_cache) brw_emit_mi_flush(brw); /* If indirect, emit a bunch of loads from the indirect BO. */ if (xfb_obj) { indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE; brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, xfb_obj->prim_count_bo, stream * sizeof(uint32_t)); BEGIN_BATCH(9); OUT_BATCH(MI_LOAD_REGISTER_IMM | (9 - 2)); OUT_BATCH(GEN7_3DPRIM_INSTANCE_COUNT); OUT_BATCH(prim->num_instances); OUT_BATCH(GEN7_3DPRIM_START_VERTEX); OUT_BATCH(0); OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX); OUT_BATCH(0); OUT_BATCH(GEN7_3DPRIM_START_INSTANCE); OUT_BATCH(0); ADVANCE_BATCH(); } else if (prim->is_indirect) { struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer; struct brw_bo *bo = intel_bufferobj_buffer(brw, intel_buffer_object(indirect_buffer), prim->indirect_offset, 5 * sizeof(GLuint), false); indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE; brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo, prim->indirect_offset + 0); brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo, prim->indirect_offset + 4); brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo, prim->indirect_offset + 8); if (prim->indexed) { brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo, prim->indirect_offset + 12); brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo, prim->indirect_offset + 16); } else { brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo, prim->indirect_offset + 12); brw_load_register_imm32(brw, GEN7_3DPRIM_BASE_VERTEX, 0); } } else { indirect_flag = 0; } BEGIN_BATCH(devinfo->gen >= 7 ? 7 : 6); if (devinfo->gen >= 7) { const int predicate_enable = (brw->predicate.state == BRW_PREDICATE_STATE_USE_BIT) ? GEN7_3DPRIM_PREDICATE_ENABLE : 0; OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag | predicate_enable); OUT_BATCH(hw_prim | vertex_access_type); } else { OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) | hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT | vertex_access_type); } OUT_BATCH(verts_per_instance); OUT_BATCH(start_vertex_location); OUT_BATCH(prim->num_instances); OUT_BATCH(prim->base_instance); OUT_BATCH(base_vertex_location); ADVANCE_BATCH(); if (brw->always_flush_cache) brw_emit_mi_flush(brw); } static void brw_merge_inputs(struct brw_context *brw, const struct gl_vertex_array *arrays[]) { const struct gen_device_info *devinfo = &brw->screen->devinfo; const struct gl_context *ctx = &brw->ctx; GLuint i; for (i = 0; i < brw->vb.nr_buffers; i++) { brw_bo_unreference(brw->vb.buffers[i].bo); brw->vb.buffers[i].bo = NULL; } brw->vb.nr_buffers = 0; for (i = 0; i < VERT_ATTRIB_MAX; i++) { brw->vb.inputs[i].buffer = -1; brw->vb.inputs[i].glarray = arrays[i]; } if (devinfo->gen < 8 && !devinfo->is_haswell) { uint64_t mask = ctx->VertexProgram._Current->info.inputs_read; /* Prior to Haswell, the hardware can't natively support GL_FIXED or * 2_10_10_10_REV vertex formats. Set appropriate workaround flags. */ while (mask) { uint8_t wa_flags = 0; i = u_bit_scan64(&mask); switch (brw->vb.inputs[i].glarray->Type) { case GL_FIXED: wa_flags = brw->vb.inputs[i].glarray->Size; break; case GL_INT_2_10_10_10_REV: wa_flags |= BRW_ATTRIB_WA_SIGN; /* fallthough */ case GL_UNSIGNED_INT_2_10_10_10_REV: if (brw->vb.inputs[i].glarray->Format == GL_BGRA) wa_flags |= BRW_ATTRIB_WA_BGRA; if (brw->vb.inputs[i].glarray->Normalized) wa_flags |= BRW_ATTRIB_WA_NORMALIZE; else if (!brw->vb.inputs[i].glarray->Integer) wa_flags |= BRW_ATTRIB_WA_SCALE; break; } if (brw->vb.attrib_wa_flags[i] != wa_flags) { brw->vb.attrib_wa_flags[i] = wa_flags; brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS; } } } } /* Disable auxiliary buffers if a renderbuffer is also bound as a texture * or shader image. This causes a self-dependency, where both rendering * and sampling may concurrently read or write the CCS buffer, causing * incorrect pixels. */ static bool intel_disable_rb_aux_buffer(struct brw_context *brw, struct intel_mipmap_tree *tex_mt, unsigned min_level, unsigned num_levels, const char *usage) { const struct gl_framebuffer *fb = brw->ctx.DrawBuffer; bool found = false; /* We only need to worry about color compression and fast clears. */ if (tex_mt->aux_usage != ISL_AUX_USAGE_CCS_D && tex_mt->aux_usage != ISL_AUX_USAGE_CCS_E) return false; for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) { const struct intel_renderbuffer *irb = intel_renderbuffer(fb->_ColorDrawBuffers[i]); if (irb && irb->mt->bo == tex_mt->bo && irb->mt_level >= min_level && irb->mt_level < min_level + num_levels) { found = brw->draw_aux_buffer_disabled[i] = true; } } if (found) { perf_debug("Disabling CCS because a renderbuffer is also bound %s.\n", usage); } return found; } /** * \brief Resolve buffers before drawing. * * Resolve the depth buffer's HiZ buffer, resolve the depth buffer of each * enabled depth texture, and flush the render cache for any dirty textures. */ void brw_predraw_resolve_inputs(struct brw_context *brw, bool rendering) { struct gl_context *ctx = &brw->ctx; struct intel_texture_object *tex_obj; memset(brw->draw_aux_buffer_disabled, 0, sizeof(brw->draw_aux_buffer_disabled)); /* Resolve depth buffer and render cache of each enabled texture. */ int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit; for (int i = 0; i <= maxEnabledUnit; i++) { if (!ctx->Texture.Unit[i]._Current) continue; tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current); if (!tex_obj || !tex_obj->mt) continue; struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, i); enum isl_format view_format = translate_tex_format(brw, tex_obj->_Format, sampler->sRGBDecode); unsigned min_level, min_layer, num_levels, num_layers; if (tex_obj->base.Immutable) { min_level = tex_obj->base.MinLevel; num_levels = MIN2(tex_obj->base.NumLevels, tex_obj->_MaxLevel + 1); min_layer = tex_obj->base.MinLayer; num_layers = tex_obj->base.Target != GL_TEXTURE_3D ? tex_obj->base.NumLayers : INTEL_REMAINING_LAYERS; } else { min_level = tex_obj->base.BaseLevel; num_levels = tex_obj->_MaxLevel - tex_obj->base.BaseLevel + 1; min_layer = 0; num_layers = INTEL_REMAINING_LAYERS; } const bool disable_aux = rendering && intel_disable_rb_aux_buffer(brw, tex_obj->mt, min_level, num_levels, "for sampling"); intel_miptree_prepare_texture(brw, tex_obj->mt, view_format, min_level, num_levels, min_layer, num_layers, disable_aux); brw_cache_flush_for_read(brw, tex_obj->mt->bo); if (tex_obj->base.StencilSampling || tex_obj->mt->format == MESA_FORMAT_S_UINT8) { intel_update_r8stencil(brw, tex_obj->mt); } } /* Resolve color for each active shader image. */ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { const struct gl_program *prog = ctx->_Shader->CurrentProgram[i]; if (unlikely(prog && prog->info.num_images)) { for (unsigned j = 0; j < prog->info.num_images; j++) { struct gl_image_unit *u = &ctx->ImageUnits[prog->sh.ImageUnits[j]]; tex_obj = intel_texture_object(u->TexObj); if (tex_obj && tex_obj->mt) { intel_disable_rb_aux_buffer(brw, tex_obj->mt, 0, ~0, "as a shader image"); intel_miptree_prepare_image(brw, tex_obj->mt); brw_cache_flush_for_read(brw, tex_obj->mt->bo); } } } } } static void brw_predraw_resolve_framebuffer(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; struct intel_renderbuffer *depth_irb; /* Resolve the depth buffer's HiZ buffer. */ depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH); if (depth_irb && depth_irb->mt) { intel_miptree_prepare_depth(brw, depth_irb->mt, depth_irb->mt_level, depth_irb->mt_layer, depth_irb->layer_count); } /* Resolve color buffers for non-coherent framebuffer fetch. */ if (!ctx->Extensions.MESA_shader_framebuffer_fetch && ctx->FragmentProgram._Current && ctx->FragmentProgram._Current->info.outputs_read) { const struct gl_framebuffer *fb = ctx->DrawBuffer; /* This is only used for non-coherent framebuffer fetch, so we don't * need to worry about CCS_E and can simply pass 'false' below. */ assert(brw->screen->devinfo.gen < 9); for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) { const struct intel_renderbuffer *irb = intel_renderbuffer(fb->_ColorDrawBuffers[i]); if (irb) { intel_miptree_prepare_texture(brw, irb->mt, irb->mt->surf.format, irb->mt_level, 1, irb->mt_layer, irb->layer_count, false); } } } struct gl_framebuffer *fb = ctx->DrawBuffer; for (int i = 0; i < fb->_NumColorDrawBuffers; i++) { struct intel_renderbuffer *irb = intel_renderbuffer(fb->_ColorDrawBuffers[i]); if (irb == NULL || irb->mt == NULL) continue; mesa_format mesa_format = _mesa_get_render_format(ctx, intel_rb_format(irb)); enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format); intel_miptree_prepare_render(brw, irb->mt, irb->mt_level, irb->mt_layer, irb->layer_count, isl_format, ctx->Color.BlendEnabled & (1 << i)); } } /** * \brief Call this after drawing to mark which buffers need resolving * * If the depth buffer was written to and if it has an accompanying HiZ * buffer, then mark that it needs a depth resolve. * * If the color buffer is a multisample window system buffer, then * mark that it needs a downsample. * * Also mark any render targets which will be textured as needing a render * cache flush. */ static void brw_postdraw_set_buffers_need_resolve(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; struct gl_framebuffer *fb = ctx->DrawBuffer; struct intel_renderbuffer *front_irb = NULL; struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT); struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH); struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL); struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH]; if (_mesa_is_front_buffer_drawing(fb)) front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT); if (front_irb) front_irb->need_downsample = true; if (back_irb) back_irb->need_downsample = true; if (depth_irb) { bool depth_written = brw_depth_writes_enabled(brw); if (depth_att->Layered) { intel_miptree_finish_depth(brw, depth_irb->mt, depth_irb->mt_level, depth_irb->mt_layer, depth_irb->layer_count, depth_written); } else { intel_miptree_finish_depth(brw, depth_irb->mt, depth_irb->mt_level, depth_irb->mt_layer, 1, depth_written); } if (depth_written) brw_depth_cache_add_bo(brw, depth_irb->mt->bo); } if (stencil_irb && brw->stencil_write_enabled) brw_depth_cache_add_bo(brw, stencil_irb->mt->bo); for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) { struct intel_renderbuffer *irb = intel_renderbuffer(fb->_ColorDrawBuffers[i]); if (!irb) continue; mesa_format mesa_format = _mesa_get_render_format(ctx, intel_rb_format(irb)); enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format); brw_render_cache_add_bo(brw, irb->mt->bo); intel_miptree_finish_render(brw, irb->mt, irb->mt_level, irb->mt_layer, irb->layer_count, isl_format, ctx->Color.BlendEnabled & (1 << i)); } } static void intel_renderbuffer_move_temp_back(struct brw_context *brw, struct intel_renderbuffer *irb) { if (irb->align_wa_mt == NULL) return; brw_cache_flush_for_read(brw, irb->align_wa_mt->bo); intel_miptree_copy_slice(brw, irb->align_wa_mt, 0, 0, irb->mt, irb->Base.Base.TexImage->Level, irb->mt_layer); intel_miptree_reference(&irb->align_wa_mt, NULL); /* Finally restore the x,y to correspond to full miptree. */ intel_renderbuffer_set_draw_offset(irb); /* Make sure render surface state gets re-emitted with updated miptree. */ brw->NewGLState |= _NEW_BUFFERS; } static void brw_postdraw_reconcile_align_wa_slices(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; struct gl_framebuffer *fb = ctx->DrawBuffer; struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH); struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL); if (depth_irb && depth_irb->align_wa_mt) intel_renderbuffer_move_temp_back(brw, depth_irb); if (stencil_irb && stencil_irb->align_wa_mt) intel_renderbuffer_move_temp_back(brw, stencil_irb); for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) { struct intel_renderbuffer *irb = intel_renderbuffer(fb->_ColorDrawBuffers[i]); if (!irb || irb->align_wa_mt == NULL) continue; intel_renderbuffer_move_temp_back(brw, irb); } } static void brw_prepare_drawing(struct gl_context *ctx, const struct gl_vertex_array *arrays[], const struct _mesa_index_buffer *ib, bool index_bounds_valid, GLuint min_index, GLuint max_index) { struct brw_context *brw = brw_context(ctx); if (ctx->NewState) _mesa_update_state(ctx); /* We have to validate the textures *before* checking for fallbacks; * otherwise, the software fallback won't be able to rely on the * texture state, the firstLevel and lastLevel fields won't be * set in the intel texture object (they'll both be 0), and the * software fallback will segfault if it attempts to access any * texture level other than level 0. */ brw_validate_textures(brw); /* Find the highest sampler unit used by each shader program. A bit-count * won't work since ARB programs use the texture unit number as the sampler * index. */ brw->wm.base.sampler_count = util_last_bit(ctx->FragmentProgram._Current->SamplersUsed); brw->gs.base.sampler_count = ctx->GeometryProgram._Current ? util_last_bit(ctx->GeometryProgram._Current->SamplersUsed) : 0; brw->tes.base.sampler_count = ctx->TessEvalProgram._Current ? util_last_bit(ctx->TessEvalProgram._Current->SamplersUsed) : 0; brw->tcs.base.sampler_count = ctx->TessCtrlProgram._Current ? util_last_bit(ctx->TessCtrlProgram._Current->SamplersUsed) : 0; brw->vs.base.sampler_count = util_last_bit(ctx->VertexProgram._Current->SamplersUsed); intel_prepare_render(brw); /* This workaround has to happen outside of brw_upload_render_state() * because it may flush the batchbuffer for a blit, affecting the state * flags. */ brw_workaround_depthstencil_alignment(brw, 0); /* Resolves must occur after updating renderbuffers, updating context state, * and finalizing textures but before setting up any hardware state for * this draw call. */ brw_predraw_resolve_inputs(brw, true); brw_predraw_resolve_framebuffer(brw); /* Bind all inputs, derive varying and size information: */ brw_merge_inputs(brw, arrays); brw->ib.ib = ib; brw->ctx.NewDriverState |= BRW_NEW_INDICES; brw->vb.index_bounds_valid = index_bounds_valid; brw->vb.min_index = min_index; brw->vb.max_index = max_index; brw->ctx.NewDriverState |= BRW_NEW_VERTICES; } static void brw_finish_drawing(struct gl_context *ctx) { struct brw_context *brw = brw_context(ctx); if (brw->always_flush_batch) intel_batchbuffer_flush(brw); brw_program_cache_check_size(brw); brw_postdraw_reconcile_align_wa_slices(brw); brw_postdraw_set_buffers_need_resolve(brw); if (brw->draw.draw_params_count_bo) { brw_bo_unreference(brw->draw.draw_params_count_bo); brw->draw.draw_params_count_bo = NULL; } } /* May fail if out of video memory for texture or vbo upload, or on * fallback conditions. */ static void brw_draw_single_prim(struct gl_context *ctx, const struct gl_vertex_array *arrays[], const struct _mesa_prim *prim, unsigned prim_id, struct brw_transform_feedback_object *xfb_obj, unsigned stream, struct gl_buffer_object *indirect) { struct brw_context *brw = brw_context(ctx); const struct gen_device_info *devinfo = &brw->screen->devinfo; bool fail_next = false; /* Flag BRW_NEW_DRAW_CALL on every draw. This allows us to have * atoms that happen on every draw call. */ brw->ctx.NewDriverState |= BRW_NEW_DRAW_CALL; /* Flush the batch if the batch/state buffers are nearly full. We can * grow them if needed, but this is not free, so we'd like to avoid it. */ intel_batchbuffer_require_space(brw, 1500, RENDER_RING); brw_require_statebuffer_space(brw, 2400); intel_batchbuffer_save_state(brw); if (brw->num_instances != prim->num_instances || brw->basevertex != prim->basevertex || brw->baseinstance != prim->base_instance) { brw->num_instances = prim->num_instances; brw->basevertex = prim->basevertex; brw->baseinstance = prim->base_instance; if (prim_id > 0) { /* For i == 0 we just did this before the loop */ brw->ctx.NewDriverState |= BRW_NEW_VERTICES; brw_merge_inputs(brw, arrays); } } /* Determine if we need to flag BRW_NEW_VERTICES for updating the * gl_BaseVertexARB or gl_BaseInstanceARB values. For indirect draw, we * always flag if the shader uses one of the values. For direct draws, * we only flag if the values change. */ const int new_basevertex = prim->indexed ? prim->basevertex : prim->start; const int new_baseinstance = prim->base_instance; const struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(brw->vs.base.prog_data); if (prim_id > 0) { const bool uses_draw_parameters = vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance; if ((uses_draw_parameters && prim->is_indirect) || (vs_prog_data->uses_basevertex && brw->draw.params.gl_basevertex != new_basevertex) || (vs_prog_data->uses_baseinstance && brw->draw.params.gl_baseinstance != new_baseinstance)) brw->ctx.NewDriverState |= BRW_NEW_VERTICES; } brw->draw.params.gl_basevertex = new_basevertex; brw->draw.params.gl_baseinstance = new_baseinstance; brw_bo_unreference(brw->draw.draw_params_bo); if (prim->is_indirect) { /* Point draw_params_bo at the indirect buffer. */ brw->draw.draw_params_bo = intel_buffer_object(ctx->DrawIndirectBuffer)->buffer; brw_bo_reference(brw->draw.draw_params_bo); brw->draw.draw_params_offset = prim->indirect_offset + (prim->indexed ? 12 : 8); } else { /* Set draw_params_bo to NULL so brw_prepare_vertices knows it * has to upload gl_BaseVertex and such if they're needed. */ brw->draw.draw_params_bo = NULL; brw->draw.draw_params_offset = 0; } /* gl_DrawID always needs its own vertex buffer since it's not part of * the indirect parameter buffer. If the program uses gl_DrawID we need * to flag BRW_NEW_VERTICES. For the first iteration, we don't have * valid vs_prog_data, but we always flag BRW_NEW_VERTICES before * the loop. */ brw->draw.gl_drawid = prim->draw_id; brw_bo_unreference(brw->draw.draw_id_bo); brw->draw.draw_id_bo = NULL; if (prim_id > 0 && vs_prog_data->uses_drawid) brw->ctx.NewDriverState |= BRW_NEW_VERTICES; if (devinfo->gen < 6) brw_set_prim(brw, prim); else gen6_set_prim(brw, prim); retry: /* Note that before the loop, brw->ctx.NewDriverState was set to != 0, and * that the state updated in the loop outside of this block is that in * *_set_prim or intel_batchbuffer_flush(), which only impacts * brw->ctx.NewDriverState. */ if (brw->ctx.NewDriverState) { brw->batch.no_wrap = true; brw_upload_render_state(brw); } brw_emit_prim(brw, prim, brw->primitive, xfb_obj, stream); brw->batch.no_wrap = false; if (!brw_batch_has_aperture_space(brw, 0)) { if (!fail_next) { intel_batchbuffer_reset_to_saved(brw); intel_batchbuffer_flush(brw); fail_next = true; goto retry; } else { int ret = intel_batchbuffer_flush(brw); WARN_ONCE(ret == -ENOSPC, "i965: Single primitive emit exceeded " "available aperture space\n"); } } /* Now that we know we haven't run out of aperture space, we can safely * reset the dirty bits. */ if (brw->ctx.NewDriverState) brw_render_state_finished(brw); return; } void brw_draw_prims(struct gl_context *ctx, const struct _mesa_prim *prims, GLuint nr_prims, const struct _mesa_index_buffer *ib, GLboolean index_bounds_valid, GLuint min_index, GLuint max_index, struct gl_transform_feedback_object *gl_xfb_obj, unsigned stream, struct gl_buffer_object *indirect) { unsigned i; struct brw_context *brw = brw_context(ctx); const struct gl_vertex_array **arrays = ctx->Array._DrawArrays; int predicate_state = brw->predicate.state; struct brw_transform_feedback_object *xfb_obj = (struct brw_transform_feedback_object *) gl_xfb_obj; if (!brw_check_conditional_render(brw)) return; /* Handle primitive restart if needed */ if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, indirect)) { /* The draw was handled, so we can exit now */ return; } /* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it * won't support all the extensions we support. */ if (ctx->RenderMode != GL_RENDER) { perf_debug("%s render mode not supported in hardware\n", _mesa_enum_to_string(ctx->RenderMode)); _swsetup_Wakeup(ctx); _tnl_wakeup(ctx); _tnl_draw_prims(ctx, prims, nr_prims, ib, index_bounds_valid, min_index, max_index, NULL, 0, NULL); return; } /* If we're going to have to upload any of the user's vertex arrays, then * get the minimum and maximum of their index buffer so we know what range * to upload. */ if (!index_bounds_valid && !vbo_all_varyings_in_vbos(arrays)) { perf_debug("Scanning index buffer to compute index buffer bounds. " "Use glDrawRangeElements() to avoid this.\n"); vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims); index_bounds_valid = true; } brw_prepare_drawing(ctx, arrays, ib, index_bounds_valid, min_index, max_index); /* Try drawing with the hardware, but don't do anything else if we can't * manage it. swrast doesn't support our featureset, so we can't fall back * to it. */ for (i = 0; i < nr_prims; i++) { /* Implementation of ARB_indirect_parameters via predicates */ if (brw->draw.draw_params_count_bo) { brw_emit_pipe_control_flush(brw, PIPE_CONTROL_FLUSH_ENABLE); /* Upload the current draw count from the draw parameters buffer to * MI_PREDICATE_SRC0. */ brw_load_register_mem(brw, MI_PREDICATE_SRC0, brw->draw.draw_params_count_bo, brw->draw.draw_params_count_offset); /* Zero the top 32-bits of MI_PREDICATE_SRC0 */ brw_load_register_imm32(brw, MI_PREDICATE_SRC0 + 4, 0); /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */ brw_load_register_imm64(brw, MI_PREDICATE_SRC1, prims[i].draw_id); BEGIN_BATCH(1); if (i == 0 && brw->predicate.state != BRW_PREDICATE_STATE_USE_BIT) { OUT_BATCH(GEN7_MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV | MI_PREDICATE_COMBINEOP_SET | MI_PREDICATE_COMPAREOP_SRCS_EQUAL); } else { OUT_BATCH(GEN7_MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD | MI_PREDICATE_COMBINEOP_XOR | MI_PREDICATE_COMPAREOP_SRCS_EQUAL); } ADVANCE_BATCH(); brw->predicate.state = BRW_PREDICATE_STATE_USE_BIT; } brw_draw_single_prim(ctx, arrays, &prims[i], i, xfb_obj, stream, indirect); } brw_finish_drawing(ctx); brw->predicate.state = predicate_state; } void brw_draw_indirect_prims(struct gl_context *ctx, GLuint mode, struct gl_buffer_object *indirect_data, GLsizeiptr indirect_offset, unsigned draw_count, unsigned stride, struct gl_buffer_object *indirect_params, GLsizeiptr indirect_params_offset, const struct _mesa_index_buffer *ib) { struct brw_context *brw = brw_context(ctx); struct _mesa_prim *prim; GLsizei i; prim = calloc(draw_count, sizeof(*prim)); if (prim == NULL) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "gl%sDraw%sIndirect%s", (draw_count > 1) ? "Multi" : "", ib ? "Elements" : "Arrays", indirect_params ? "CountARB" : ""); return; } prim[0].begin = 1; prim[draw_count - 1].end = 1; for (i = 0; i < draw_count; ++i, indirect_offset += stride) { prim[i].mode = mode; prim[i].indexed = ib != NULL; prim[i].indirect_offset = indirect_offset; prim[i].is_indirect = 1; prim[i].draw_id = i; } if (indirect_params) { brw->draw.draw_params_count_bo = intel_buffer_object(indirect_params)->buffer; brw_bo_reference(brw->draw.draw_params_count_bo); brw->draw.draw_params_count_offset = indirect_params_offset; } brw_draw_prims(ctx, prim, draw_count, ib, false, 0, ~0, NULL, 0, indirect_data); free(prim); } void brw_draw_init(struct brw_context *brw) { struct gl_context *ctx = &brw->ctx; struct vbo_context *vbo = vbo_context(ctx); /* Register our drawing function: */ vbo->draw_prims = brw_draw_prims; vbo->draw_indirect_prims = brw_draw_indirect_prims; for (int i = 0; i < VERT_ATTRIB_MAX; i++) brw->vb.inputs[i].buffer = -1; brw->vb.nr_buffers = 0; brw->vb.nr_enabled = 0; } void brw_draw_destroy(struct brw_context *brw) { unsigned i; for (i = 0; i < brw->vb.nr_buffers; i++) { brw_bo_unreference(brw->vb.buffers[i].bo); brw->vb.buffers[i].bo = NULL; } brw->vb.nr_buffers = 0; for (i = 0; i < brw->vb.nr_enabled; i++) { brw->vb.enabled[i]->buffer = -1; } brw->vb.nr_enabled = 0; brw_bo_unreference(brw->ib.bo); brw->ib.bo = NULL; }