/* Copyright (C) Intel Corp. 2006. All Rights Reserved. Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to develop this 3D driver. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice (including the next paragraph) shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **********************************************************************/ /* * Authors: * Keith Whitwell */ #include "main/glheader.h" #include "main/macros.h" #include "main/enums.h" #include "program/program.h" #include "intel_batchbuffer.h" #include "brw_defines.h" #include "brw_context.h" #include "brw_eu.h" #include "brw_clip.h" struct brw_reg get_tmp( struct brw_clip_compile *c ) { struct brw_reg tmp = brw_vec4_grf(c->last_tmp, 0); if (++c->last_tmp > c->prog_data.total_grf) c->prog_data.total_grf = c->last_tmp; return tmp; } static void release_tmp( struct brw_clip_compile *c, struct brw_reg tmp ) { if (tmp.nr == c->last_tmp-1) c->last_tmp--; } static struct brw_reg make_plane_ud(GLuint x, GLuint y, GLuint z, GLuint w) { return brw_imm_ud((w<<24) | (z<<16) | (y<<8) | x); } void brw_clip_init_planes( struct brw_clip_compile *c ) { struct brw_compile *p = &c->func; if (!c->key.nr_userclip) { brw_MOV(p, get_element_ud(c->reg.fixed_planes, 0), make_plane_ud( 0, 0, 0xff, 1)); brw_MOV(p, get_element_ud(c->reg.fixed_planes, 1), make_plane_ud( 0, 0, 1, 1)); brw_MOV(p, get_element_ud(c->reg.fixed_planes, 2), make_plane_ud( 0, 0xff, 0, 1)); brw_MOV(p, get_element_ud(c->reg.fixed_planes, 3), make_plane_ud( 0, 1, 0, 1)); brw_MOV(p, get_element_ud(c->reg.fixed_planes, 4), make_plane_ud(0xff, 0, 0, 1)); brw_MOV(p, get_element_ud(c->reg.fixed_planes, 5), make_plane_ud( 1, 0, 0, 1)); } } #define W 3 /* Project 'pos' to screen space (or back again), overwrite with results: */ void brw_clip_project_position(struct brw_clip_compile *c, struct brw_reg pos ) { struct brw_compile *p = &c->func; /* calc rhw */ brw_math_invert(p, get_element(pos, W), get_element(pos, W)); /* value.xyz *= value.rhw */ brw_set_access_mode(p, BRW_ALIGN_16); brw_MUL(p, brw_writemask(pos, WRITEMASK_XYZ), pos, brw_swizzle1(pos, W)); brw_set_access_mode(p, BRW_ALIGN_1); } static void brw_clip_project_vertex( struct brw_clip_compile *c, struct brw_indirect vert_addr ) { struct brw_compile *p = &c->func; struct brw_reg tmp = get_tmp(c); GLuint hpos_offset = brw_varying_to_offset(&c->vue_map, VARYING_SLOT_POS); GLuint ndc_offset = brw_varying_to_offset(&c->vue_map, BRW_VARYING_SLOT_NDC); /* Fixup position. Extract from the original vertex and re-project * to screen space: */ brw_MOV(p, tmp, deref_4f(vert_addr, hpos_offset)); brw_clip_project_position(c, tmp); brw_MOV(p, deref_4f(vert_addr, ndc_offset), tmp); release_tmp(c, tmp); } /* Interpolate between two vertices and put the result into a0.0. * Increment a0.0 accordingly. */ void brw_clip_interp_vertex( struct brw_clip_compile *c, struct brw_indirect dest_ptr, struct brw_indirect v0_ptr, /* from */ struct brw_indirect v1_ptr, /* to */ struct brw_reg t0, bool force_edgeflag) { struct brw_compile *p = &c->func; struct brw_reg tmp = get_tmp(c); GLuint slot; /* Just copy the vertex header: */ /* * After CLIP stage, only first 256 bits of the VUE are read * back on Ironlake, so needn't change it */ brw_copy_indirect_to_indirect(p, dest_ptr, v0_ptr, 1); /* Iterate over each attribute (could be done in pairs?) */ for (slot = 0; slot < c->vue_map.num_slots; slot++) { int varying = c->vue_map.slot_to_varying[slot]; GLuint delta = brw_vue_slot_to_offset(slot); if (varying == VARYING_SLOT_EDGE) { if (force_edgeflag) brw_MOV(p, deref_4f(dest_ptr, delta), brw_imm_f(1)); else brw_MOV(p, deref_4f(dest_ptr, delta), deref_4f(v0_ptr, delta)); } else if (varying == VARYING_SLOT_PSIZ || varying == VARYING_SLOT_CLIP_DIST0 || varying == VARYING_SLOT_CLIP_DIST1) { /* PSIZ doesn't need interpolation because it isn't used by the * fragment shader. CLIP_DIST0 and CLIP_DIST1 don't need * intepolation because on pre-GEN6, these are just placeholder VUE * slots that don't perform any action. */ } else if (varying < VARYING_SLOT_MAX) { /* This is a true vertex result (and not a special value for the VUE * header), so interpolate: * * New = attr0 + t*attr1 - t*attr0 */ brw_MUL(p, vec4(brw_null_reg()), deref_4f(v1_ptr, delta), t0); brw_MAC(p, tmp, negate(deref_4f(v0_ptr, delta)), t0); brw_ADD(p, deref_4f(dest_ptr, delta), deref_4f(v0_ptr, delta), tmp); } } if (c->vue_map.num_slots % 2) { GLuint delta = brw_vue_slot_to_offset(c->vue_map.num_slots); brw_MOV(p, deref_4f(dest_ptr, delta), brw_imm_f(0)); } release_tmp(c, tmp); /* Recreate the projected (NDC) coordinate in the new vertex * header: */ brw_clip_project_vertex(c, dest_ptr ); } void brw_clip_emit_vue(struct brw_clip_compile *c, struct brw_indirect vert, bool allocate, bool eot, GLuint header) { struct brw_compile *p = &c->func; brw_clip_ff_sync(c); assert(!(allocate && eot)); /* Copy the vertex from vertn into m1..mN+1: */ brw_copy_from_indirect(p, brw_message_reg(1), vert, c->nr_regs); /* Overwrite PrimType and PrimStart in the message header, for * each vertex in turn: */ brw_MOV(p, get_element_ud(c->reg.R0, 2), brw_imm_ud(header)); /* Send each vertex as a seperate write to the urb. This * is different to the concept in brw_sf_emit.c, where * subsequent writes are used to build up a single urb * entry. Each of these writes instantiates a seperate * urb entry - (I think... what about 'allocate'?) */ brw_urb_WRITE(p, allocate ? c->reg.R0 : retype(brw_null_reg(), BRW_REGISTER_TYPE_UD), 0, c->reg.R0, allocate, 1, /* used */ c->nr_regs + 1, /* msg length */ allocate ? 1 : 0, /* response_length */ eot, /* eot */ 1, /* writes_complete */ 0, /* urb offset */ BRW_URB_SWIZZLE_NONE); } void brw_clip_kill_thread(struct brw_clip_compile *c) { struct brw_compile *p = &c->func; brw_clip_ff_sync(c); /* Send an empty message to kill the thread and release any * allocated urb entry: */ brw_urb_WRITE(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD), 0, c->reg.R0, 0, /* allocate */ 0, /* used */ 1, /* msg len */ 0, /* response len */ 1, /* eot */ 1, /* writes complete */ 0, BRW_URB_SWIZZLE_NONE); } struct brw_reg brw_clip_plane0_address( struct brw_clip_compile *c ) { return brw_address(c->reg.fixed_planes); } struct brw_reg brw_clip_plane_stride( struct brw_clip_compile *c ) { if (c->key.nr_userclip) { return brw_imm_uw(16); } else { return brw_imm_uw(4); } } /* If flatshading, distribute color from provoking vertex prior to * clipping. */ void brw_clip_copy_colors( struct brw_clip_compile *c, GLuint to, GLuint from ) { struct brw_compile *p = &c->func; if (brw_clip_have_varying(c, VARYING_SLOT_COL0)) brw_MOV(p, byte_offset(c->reg.vertex[to], brw_varying_to_offset(&c->vue_map, VARYING_SLOT_COL0)), byte_offset(c->reg.vertex[from], brw_varying_to_offset(&c->vue_map, VARYING_SLOT_COL0))); if (brw_clip_have_varying(c, VARYING_SLOT_COL1)) brw_MOV(p, byte_offset(c->reg.vertex[to], brw_varying_to_offset(&c->vue_map, VARYING_SLOT_COL1)), byte_offset(c->reg.vertex[from], brw_varying_to_offset(&c->vue_map, VARYING_SLOT_COL1))); if (brw_clip_have_varying(c, VARYING_SLOT_BFC0)) brw_MOV(p, byte_offset(c->reg.vertex[to], brw_varying_to_offset(&c->vue_map, VARYING_SLOT_BFC0)), byte_offset(c->reg.vertex[from], brw_varying_to_offset(&c->vue_map, VARYING_SLOT_BFC0))); if (brw_clip_have_varying(c, VARYING_SLOT_BFC1)) brw_MOV(p, byte_offset(c->reg.vertex[to], brw_varying_to_offset(&c->vue_map, VARYING_SLOT_BFC1)), byte_offset(c->reg.vertex[from], brw_varying_to_offset(&c->vue_map, VARYING_SLOT_BFC1))); } void brw_clip_init_clipmask( struct brw_clip_compile *c ) { struct brw_compile *p = &c->func; struct brw_reg incoming = get_element_ud(c->reg.R0, 2); /* Shift so that lowest outcode bit is rightmost: */ brw_SHR(p, c->reg.planemask, incoming, brw_imm_ud(26)); if (c->key.nr_userclip) { struct brw_reg tmp = retype(vec1(get_tmp(c)), BRW_REGISTER_TYPE_UD); /* Rearrange userclip outcodes so that they come directly after * the fixed plane bits. */ brw_AND(p, tmp, incoming, brw_imm_ud(0x3f<<14)); brw_SHR(p, tmp, tmp, brw_imm_ud(8)); brw_OR(p, c->reg.planemask, c->reg.planemask, tmp); release_tmp(c, tmp); } } void brw_clip_ff_sync(struct brw_clip_compile *c) { struct intel_context *intel = &c->func.brw->intel; if (intel->gen == 5) { struct brw_compile *p = &c->func; brw_set_conditionalmod(p, BRW_CONDITIONAL_Z); brw_AND(p, brw_null_reg(), c->reg.ff_sync, brw_imm_ud(0x1)); brw_IF(p, BRW_EXECUTE_1); { brw_OR(p, c->reg.ff_sync, c->reg.ff_sync, brw_imm_ud(0x1)); brw_ff_sync(p, c->reg.R0, 0, c->reg.R0, 1, /* allocate */ 1, /* response length */ 0 /* eot */); } brw_ENDIF(p); brw_set_predicate_control(p, BRW_PREDICATE_NONE); } } void brw_clip_init_ff_sync(struct brw_clip_compile *c) { struct intel_context *intel = &c->func.brw->intel; if (intel->gen == 5) { struct brw_compile *p = &c->func; brw_MOV(p, c->reg.ff_sync, brw_imm_ud(0)); } }