/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "brw_cfg.h" /** @file brw_cfg.cpp * * Walks the shader instructions generated and creates a set of basic * blocks with successor/predecessor edges connecting them. */ static bblock_t * pop_stack(exec_list *list) { bblock_link *link = (bblock_link *)list->get_tail(); bblock_t *block = link->block; link->remove(); return block; } bblock_t::bblock_t() : start_ip(0), end_ip(0), block_num(0) { start = NULL; end = NULL; parents.make_empty(); children.make_empty(); if_inst = NULL; else_inst = NULL; endif_inst = NULL; } void bblock_t::add_successor(void *mem_ctx, bblock_t *successor) { successor->parents.push_tail(new(mem_ctx) bblock_link(this)); children.push_tail(new(mem_ctx) bblock_link(successor)); } void bblock_t::dump(backend_visitor *v) { int ip = this->start_ip; for (backend_instruction *inst = (backend_instruction *)this->start; inst != this->end->next; inst = (backend_instruction *) inst->next) { fprintf(stderr, "%5d: ", ip); v->dump_instruction(inst); ip++; } } cfg_t::cfg_t(exec_list *instructions) { mem_ctx = ralloc_context(NULL); block_list.make_empty(); blocks = NULL; num_blocks = 0; bblock_t *cur = NULL; int ip = 0; bblock_t *entry = new_block(); bblock_t *cur_if = NULL; /**< BB ending with IF. */ bblock_t *cur_else = NULL; /**< BB ending with ELSE. */ bblock_t *cur_endif = NULL; /**< BB starting with ENDIF. */ bblock_t *cur_do = NULL; /**< BB ending with DO. */ bblock_t *cur_while = NULL; /**< BB immediately following WHILE. */ exec_list if_stack, else_stack, do_stack, while_stack; bblock_t *next; set_next_block(&cur, entry, ip); entry->start = (backend_instruction *) instructions->get_head(); foreach_list(node, instructions) { backend_instruction *inst = (backend_instruction *)node; cur->end = inst; /* set_next_block wants the post-incremented ip */ ip++; switch (inst->opcode) { case BRW_OPCODE_IF: /* Push our information onto a stack so we can recover from * nested ifs. */ if_stack.push_tail(new(mem_ctx) bblock_link(cur_if)); else_stack.push_tail(new(mem_ctx) bblock_link(cur_else)); cur_if = cur; cur_else = NULL; cur_endif = NULL; /* Set up our immediately following block, full of "then" * instructions. */ next = new_block(); next->start = (backend_instruction *)inst->next; cur_if->add_successor(mem_ctx, next); set_next_block(&cur, next, ip); break; case BRW_OPCODE_ELSE: cur_else = cur; next = new_block(); next->start = (backend_instruction *)inst->next; cur_if->add_successor(mem_ctx, next); set_next_block(&cur, next, ip); break; case BRW_OPCODE_ENDIF: { if (cur->start == inst) { /* New block was just created; use it. */ cur_endif = cur; } else { cur_endif = new_block(); cur_endif->start = inst; cur->end = (backend_instruction *)inst->prev; cur->add_successor(mem_ctx, cur_endif); set_next_block(&cur, cur_endif, ip - 1); } backend_instruction *else_inst = NULL; if (cur_else) { else_inst = (backend_instruction *)cur_else->end; cur_else->add_successor(mem_ctx, cur_endif); } else { cur_if->add_successor(mem_ctx, cur_endif); } assert(cur_if->end->opcode == BRW_OPCODE_IF); assert(!else_inst || else_inst->opcode == BRW_OPCODE_ELSE); assert(inst->opcode == BRW_OPCODE_ENDIF); cur_if->if_inst = cur_if->end; cur_if->else_inst = else_inst; cur_if->endif_inst = inst; if (cur_else) { cur_else->if_inst = cur_if->end; cur_else->else_inst = else_inst; cur_else->endif_inst = inst; } cur->if_inst = cur_if->end; cur->else_inst = else_inst; cur->endif_inst = inst; /* Pop the stack so we're in the previous if/else/endif */ cur_if = pop_stack(&if_stack); cur_else = pop_stack(&else_stack); break; } case BRW_OPCODE_DO: /* Push our information onto a stack so we can recover from * nested loops. */ do_stack.push_tail(new(mem_ctx) bblock_link(cur_do)); while_stack.push_tail(new(mem_ctx) bblock_link(cur_while)); /* Set up the block just after the while. Don't know when exactly * it will start, yet. */ cur_while = new_block(); /* Set up our immediately following block, full of "then" * instructions. */ next = new_block(); next->start = (backend_instruction *)inst->next; cur->add_successor(mem_ctx, next); cur_do = next; set_next_block(&cur, next, ip); break; case BRW_OPCODE_CONTINUE: cur->add_successor(mem_ctx, cur_do); next = new_block(); next->start = (backend_instruction *)inst->next; if (inst->predicate) cur->add_successor(mem_ctx, next); set_next_block(&cur, next, ip); break; case BRW_OPCODE_BREAK: cur->add_successor(mem_ctx, cur_while); next = new_block(); next->start = (backend_instruction *)inst->next; if (inst->predicate) cur->add_successor(mem_ctx, next); set_next_block(&cur, next, ip); break; case BRW_OPCODE_WHILE: cur_while->start = (backend_instruction *)inst->next; cur->add_successor(mem_ctx, cur_do); set_next_block(&cur, cur_while, ip); /* Pop the stack so we're in the previous loop */ cur_do = pop_stack(&do_stack); cur_while = pop_stack(&while_stack); break; default: break; } } cur->end_ip = ip; make_block_array(); } cfg_t::~cfg_t() { ralloc_free(mem_ctx); } bblock_t * cfg_t::new_block() { bblock_t *block = new(mem_ctx) bblock_t(); return block; } void cfg_t::set_next_block(bblock_t **cur, bblock_t *block, int ip) { if (*cur) { assert((*cur)->end->next == block->start); (*cur)->end_ip = ip - 1; } block->start_ip = ip; block->block_num = num_blocks++; block_list.push_tail(new(mem_ctx) bblock_link(block)); *cur = block; } void cfg_t::make_block_array() { blocks = ralloc_array(mem_ctx, bblock_t *, num_blocks); int i = 0; foreach_list(block_node, &block_list) { bblock_link *link = (bblock_link *)block_node; blocks[i++] = link->block; } assert(i == num_blocks); } void cfg_t::dump(backend_visitor *v) { for (int b = 0; b < this->num_blocks; b++) { bblock_t *block = this->blocks[b]; fprintf(stderr, "START B%d", b); foreach_list(node, &block->parents) { bblock_link *link = (bblock_link *)node; fprintf(stderr, " <-B%d", link->block->block_num); } fprintf(stderr, "\n"); block->dump(v); fprintf(stderr, "END B%d", b); foreach_list(node, &block->children) { bblock_link *link = (bblock_link *)node; fprintf(stderr, " ->B%d", link->block->block_num); } fprintf(stderr, "\n"); } }