/* * Copyright © 2007 Red Hat Inc. * Copyright © 2007-2017 Intel Corporation * Copyright © 2006 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /* * Authors: Thomas Hellström * Keith Whitwell * Eric Anholt * Dave Airlie */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "errno.h" #ifndef ETIME #define ETIME ETIMEDOUT #endif #include "common/gen_clflush.h" #include "dev/gen_debug.h" #include "common/gen_gem.h" #include "dev/gen_device_info.h" #include "libdrm_macros.h" #include "main/macros.h" #include "util/macros.h" #include "util/hash_table.h" #include "util/list.h" #include "util/u_dynarray.h" #include "util/vma.h" #include "brw_bufmgr.h" #include "brw_context.h" #include "string.h" #include "drm-uapi/i915_drm.h" #ifdef HAVE_VALGRIND #include #include #define VG(x) x #else #define VG(x) #endif /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is * leaked. All because it does not call VG(cli_free) from its * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like * and allocation, we mark it available for use upon mmapping and remove * it upon unmapping. */ #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size)) #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size)) #define PAGE_SIZE 4096 #define FILE_DEBUG_FLAG DEBUG_BUFMGR static inline int atomic_add_unless(int *v, int add, int unless) { int c, old; c = p_atomic_read(v); while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c) c = old; return c == unless; } /** * i965 fixed-size bucketing VMA allocator. * * The BO cache maintains "cache buckets" for buffers of various sizes. * All buffers in a given bucket are identically sized - when allocating, * we always round up to the bucket size. This means that virtually all * allocations are fixed-size; only buffers which are too large to fit in * a bucket can be variably-sized. * * We create an allocator for each bucket. Each contains a free-list, where * each node contains a pair. Each bit * represents a bucket-sized block of memory. (At the first level, each * bit corresponds to a page. For the second bucket, bits correspond to * two pages, and so on.) 1 means a block is free, and 0 means it's in-use. * The lowest bit in the bitmap is for the first block. * * This makes allocations cheap - any bit of any node will do. We can pick * the head of the list and use ffs() to find a free block. If there are * none, we allocate 64 blocks from a larger allocator - either a bigger * bucketing allocator, or a fallback top-level allocator for large objects. */ struct vma_bucket_node { uint64_t start_address; uint64_t bitmap; }; struct bo_cache_bucket { /** List of cached BOs. */ struct list_head head; /** Size of this bucket, in bytes. */ uint64_t size; /** List of vma_bucket_nodes. */ struct util_dynarray vma_list[BRW_MEMZONE_COUNT]; }; struct brw_bufmgr { int fd; mtx_t lock; /** Array of lists of cached gem objects of power-of-two sizes */ struct bo_cache_bucket cache_bucket[14 * 4]; int num_buckets; time_t time; struct hash_table *name_table; struct hash_table *handle_table; struct util_vma_heap vma_allocator[BRW_MEMZONE_COUNT]; bool has_llc:1; bool has_mmap_wc:1; bool bo_reuse:1; uint64_t initial_kflags; }; static int bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode, uint32_t stride); static void bo_free(struct brw_bo *bo); static uint64_t vma_alloc(struct brw_bufmgr *bufmgr, enum brw_memory_zone memzone, uint64_t size, uint64_t alignment); static uint32_t key_hash_uint(const void *key) { return _mesa_hash_data(key, 4); } static bool key_uint_equal(const void *a, const void *b) { return *((unsigned *) a) == *((unsigned *) b); } static struct brw_bo * hash_find_bo(struct hash_table *ht, unsigned int key) { struct hash_entry *entry = _mesa_hash_table_search(ht, &key); return entry ? (struct brw_bo *) entry->data : NULL; } static uint64_t bo_tile_size(struct brw_bufmgr *bufmgr, uint64_t size, uint32_t tiling) { if (tiling == I915_TILING_NONE) return size; /* 965+ just need multiples of page size for tiling */ return ALIGN(size, PAGE_SIZE); } /* * Round a given pitch up to the minimum required for X tiling on a * given chip. We use 512 as the minimum to allow for a later tiling * change. */ static uint32_t bo_tile_pitch(struct brw_bufmgr *bufmgr, uint32_t pitch, uint32_t tiling) { unsigned long tile_width; /* If untiled, then just align it so that we can do rendering * to it with the 3D engine. */ if (tiling == I915_TILING_NONE) return ALIGN(pitch, 64); if (tiling == I915_TILING_X) tile_width = 512; else tile_width = 128; /* 965 is flexible */ return ALIGN(pitch, tile_width); } /** * This function finds the correct bucket fit for the input size. * The function works with O(1) complexity when the requested size * was queried instead of iterating the size through all the buckets. */ static struct bo_cache_bucket * bucket_for_size(struct brw_bufmgr *bufmgr, uint64_t size) { /* Calculating the pages and rounding up to the page size. */ const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; /* Row Bucket sizes clz((x-1) | 3) Row Column * in pages stride size * 0: 1 2 3 4 -> 30 30 30 30 4 1 * 1: 5 6 7 8 -> 29 29 29 29 4 1 * 2: 10 12 14 16 -> 28 28 28 28 8 2 * 3: 20 24 28 32 -> 27 27 27 27 16 4 */ const unsigned row = 30 - __builtin_clz((pages - 1) | 3); const unsigned row_max_pages = 4 << row; /* The '& ~2' is the special case for row 1. In row 1, max pages / * 2 is 2, but the previous row maximum is zero (because there is * no previous row). All row maximum sizes are power of 2, so that * is the only case where that bit will be set. */ const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2; int col_size_log2 = row - 1; col_size_log2 += (col_size_log2 < 0); const unsigned col = (pages - prev_row_max_pages + ((1 << col_size_log2) - 1)) >> col_size_log2; /* Calculating the index based on the row and column. */ const unsigned index = (row * 4) + (col - 1); return (index < bufmgr->num_buckets) ? &bufmgr->cache_bucket[index] : NULL; } static enum brw_memory_zone memzone_for_address(uint64_t address) { const uint64_t _4GB = 1ull << 32; if (address >= _4GB) return BRW_MEMZONE_OTHER; return BRW_MEMZONE_LOW_4G; } static uint64_t bucket_vma_alloc(struct brw_bufmgr *bufmgr, struct bo_cache_bucket *bucket, enum brw_memory_zone memzone) { struct util_dynarray *vma_list = &bucket->vma_list[memzone]; struct vma_bucket_node *node; if (vma_list->size == 0) { /* This bucket allocator is out of space - allocate a new block of * memory for 64 blocks from a larger allocator (either a larger * bucket or util_vma). * * We align the address to the node size (64 blocks) so that * bucket_vma_free can easily compute the starting address of this * block by rounding any address we return down to the node size. * * Set the first bit used, and return the start address. */ uint64_t node_size = 64ull * bucket->size; node = util_dynarray_grow(vma_list, struct vma_bucket_node, 1); if (unlikely(!node)) return 0ull; uint64_t addr = vma_alloc(bufmgr, memzone, node_size, node_size); node->start_address = gen_48b_address(addr); node->bitmap = ~1ull; return node->start_address; } /* Pick any bit from any node - they're all the right size and free. */ node = util_dynarray_top_ptr(vma_list, struct vma_bucket_node); int bit = ffsll(node->bitmap) - 1; assert(bit >= 0 && bit <= 63); /* Reserve the memory by clearing the bit. */ assert((node->bitmap & (1ull << bit)) != 0ull); node->bitmap &= ~(1ull << bit); uint64_t addr = node->start_address + bit * bucket->size; /* If this node is now completely full, remove it from the free list. */ if (node->bitmap == 0ull) { (void) util_dynarray_pop(vma_list, struct vma_bucket_node); } return addr; } static void bucket_vma_free(struct bo_cache_bucket *bucket, uint64_t address) { enum brw_memory_zone memzone = memzone_for_address(address); struct util_dynarray *vma_list = &bucket->vma_list[memzone]; const uint64_t node_bytes = 64ull * bucket->size; struct vma_bucket_node *node = NULL; /* bucket_vma_alloc allocates 64 blocks at a time, and aligns it to * that 64 block size. So, we can round down to get the starting address. */ uint64_t start = (address / node_bytes) * node_bytes; /* Dividing the offset from start by bucket size gives us the bit index. */ int bit = (address - start) / bucket->size; assert(start + bit * bucket->size == address); util_dynarray_foreach(vma_list, struct vma_bucket_node, cur) { if (cur->start_address == start) { node = cur; break; } } if (!node) { /* No node - the whole group of 64 blocks must have been in-use. */ node = util_dynarray_grow(vma_list, struct vma_bucket_node, 1); if (unlikely(!node)) return; /* bogus, leaks some GPU VMA, but nothing we can do... */ node->start_address = start; node->bitmap = 0ull; } /* Set the bit to return the memory. */ assert((node->bitmap & (1ull << bit)) == 0ull); node->bitmap |= 1ull << bit; /* The block might be entirely free now, and if so, we could return it * to the larger allocator. But we may as well hang on to it, in case * we get more allocations at this block size. */ } static struct bo_cache_bucket * get_bucket_allocator(struct brw_bufmgr *bufmgr, uint64_t size) { /* Skip using the bucket allocator for very large sizes, as it allocates * 64 of them and this can balloon rather quickly. */ if (size > 1024 * PAGE_SIZE) return NULL; struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size); if (bucket && bucket->size == size) return bucket; return NULL; } /** * Allocate a section of virtual memory for a buffer, assigning an address. * * This uses either the bucket allocator for the given size, or the large * object allocator (util_vma). */ static uint64_t vma_alloc(struct brw_bufmgr *bufmgr, enum brw_memory_zone memzone, uint64_t size, uint64_t alignment) { /* Without softpin support, we let the kernel assign addresses. */ assert(brw_using_softpin(bufmgr)); alignment = ALIGN(alignment, PAGE_SIZE); struct bo_cache_bucket *bucket = get_bucket_allocator(bufmgr, size); uint64_t addr; if (bucket) { addr = bucket_vma_alloc(bufmgr, bucket, memzone); } else { addr = util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size, alignment); } assert((addr >> 48ull) == 0); assert((addr % alignment) == 0); return gen_canonical_address(addr); } /** * Free a virtual memory area, allowing the address to be reused. */ static void vma_free(struct brw_bufmgr *bufmgr, uint64_t address, uint64_t size) { assert(brw_using_softpin(bufmgr)); /* Un-canonicalize the address. */ address = gen_48b_address(address); if (address == 0ull) return; struct bo_cache_bucket *bucket = get_bucket_allocator(bufmgr, size); if (bucket) { bucket_vma_free(bucket, address); } else { enum brw_memory_zone memzone = memzone_for_address(address); util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size); } } int brw_bo_busy(struct brw_bo *bo) { struct brw_bufmgr *bufmgr = bo->bufmgr; struct drm_i915_gem_busy busy = { .handle = bo->gem_handle }; int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy); if (ret == 0) { bo->idle = !busy.busy; return busy.busy; } return false; } int brw_bo_madvise(struct brw_bo *bo, int state) { struct drm_i915_gem_madvise madv = { .handle = bo->gem_handle, .madv = state, .retained = 1, }; drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv); return madv.retained; } /* drop the oldest entries that have been purged by the kernel */ static void brw_bo_cache_purge_bucket(struct brw_bufmgr *bufmgr, struct bo_cache_bucket *bucket) { list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) { if (brw_bo_madvise(bo, I915_MADV_DONTNEED)) break; list_del(&bo->head); bo_free(bo); } } static struct brw_bo * bo_alloc_internal(struct brw_bufmgr *bufmgr, const char *name, uint64_t size, enum brw_memory_zone memzone, unsigned flags, uint32_t tiling_mode, uint32_t stride) { struct brw_bo *bo; int ret; struct bo_cache_bucket *bucket; bool alloc_from_cache; uint64_t bo_size; bool busy = false; bool zeroed = false; if (flags & BO_ALLOC_BUSY) busy = true; if (flags & BO_ALLOC_ZEROED) zeroed = true; /* BUSY does doesn't really jive with ZEROED as we have to wait for it to * be idle before we can memset. Just disallow that combination. */ assert(!(busy && zeroed)); /* Round the allocated size up to a power of two number of pages. */ bucket = bucket_for_size(bufmgr, size); /* If we don't have caching at this size, don't actually round the * allocation up. */ if (bucket == NULL) { unsigned int page_size = getpagesize(); bo_size = size == 0 ? page_size : ALIGN(size, page_size); } else { bo_size = bucket->size; } assert(bo_size); mtx_lock(&bufmgr->lock); /* Get a buffer out of the cache if available */ retry: alloc_from_cache = false; if (bucket != NULL && !list_empty(&bucket->head)) { if (busy && !zeroed) { /* Allocate new render-target BOs from the tail (MRU) * of the list, as it will likely be hot in the GPU * cache and in the aperture for us. If the caller * asked us to zero the buffer, we don't want this * because we are going to mmap it. */ bo = LIST_ENTRY(struct brw_bo, bucket->head.prev, head); list_del(&bo->head); alloc_from_cache = true; } else { /* For non-render-target BOs (where we're probably * going to map it first thing in order to fill it * with data), check if the last BO in the cache is * unbusy, and only reuse in that case. Otherwise, * allocating a new buffer is probably faster than * waiting for the GPU to finish. */ bo = LIST_ENTRY(struct brw_bo, bucket->head.next, head); if (!brw_bo_busy(bo)) { alloc_from_cache = true; list_del(&bo->head); } } if (alloc_from_cache) { if (!brw_bo_madvise(bo, I915_MADV_WILLNEED)) { bo_free(bo); brw_bo_cache_purge_bucket(bufmgr, bucket); goto retry; } if (bo_set_tiling_internal(bo, tiling_mode, stride)) { bo_free(bo); goto retry; } if (zeroed) { void *map = brw_bo_map(NULL, bo, MAP_WRITE | MAP_RAW); if (!map) { bo_free(bo); goto retry; } memset(map, 0, bo_size); } } } if (alloc_from_cache) { /* If the cache BO isn't in the right memory zone, free the old * memory and assign it a new address. */ if ((bo->kflags & EXEC_OBJECT_PINNED) && memzone != memzone_for_address(bo->gtt_offset)) { vma_free(bufmgr, bo->gtt_offset, bo->size); bo->gtt_offset = 0ull; } } else { bo = calloc(1, sizeof(*bo)); if (!bo) goto err; bo->size = bo_size; bo->idle = true; struct drm_i915_gem_create create = { .size = bo_size }; /* All new BOs we get from the kernel are zeroed, so we don't need to * worry about that here. */ ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create); if (ret != 0) { free(bo); goto err; } bo->gem_handle = create.handle; bo->bufmgr = bufmgr; bo->tiling_mode = I915_TILING_NONE; bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; bo->stride = 0; if (bo_set_tiling_internal(bo, tiling_mode, stride)) goto err_free; /* Calling set_domain() will allocate pages for the BO outside of the * struct mutex lock in the kernel, which is more efficient than waiting * to create them during the first execbuf that uses the BO. */ struct drm_i915_gem_set_domain sd = { .handle = bo->gem_handle, .read_domains = I915_GEM_DOMAIN_CPU, .write_domain = 0, }; if (drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0) goto err_free; } bo->name = name; p_atomic_set(&bo->refcount, 1); bo->reusable = true; bo->cache_coherent = bufmgr->has_llc; bo->index = -1; bo->kflags = bufmgr->initial_kflags; if ((bo->kflags & EXEC_OBJECT_PINNED) && bo->gtt_offset == 0ull) { bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, 1); if (bo->gtt_offset == 0ull) goto err_free; } mtx_unlock(&bufmgr->lock); DBG("bo_create: buf %d (%s) %llub\n", bo->gem_handle, bo->name, (unsigned long long) size); return bo; err_free: bo_free(bo); err: mtx_unlock(&bufmgr->lock); return NULL; } struct brw_bo * brw_bo_alloc(struct brw_bufmgr *bufmgr, const char *name, uint64_t size, enum brw_memory_zone memzone) { return bo_alloc_internal(bufmgr, name, size, memzone, 0, I915_TILING_NONE, 0); } struct brw_bo * brw_bo_alloc_tiled(struct brw_bufmgr *bufmgr, const char *name, uint64_t size, enum brw_memory_zone memzone, uint32_t tiling_mode, uint32_t pitch, unsigned flags) { return bo_alloc_internal(bufmgr, name, size, memzone, flags, tiling_mode, pitch); } struct brw_bo * brw_bo_alloc_tiled_2d(struct brw_bufmgr *bufmgr, const char *name, int x, int y, int cpp, enum brw_memory_zone memzone, uint32_t tiling, uint32_t *pitch, unsigned flags) { uint64_t size; uint32_t stride; unsigned long aligned_y, height_alignment; /* If we're tiled, our allocations are in 8 or 32-row blocks, * so failure to align our height means that we won't allocate * enough pages. * * If we're untiled, we still have to align to 2 rows high * because the data port accesses 2x2 blocks even if the * bottom row isn't to be rendered, so failure to align means * we could walk off the end of the GTT and fault. This is * documented on 965, and may be the case on older chipsets * too so we try to be careful. */ aligned_y = y; height_alignment = 2; if (tiling == I915_TILING_X) height_alignment = 8; else if (tiling == I915_TILING_Y) height_alignment = 32; aligned_y = ALIGN(y, height_alignment); stride = x * cpp; stride = bo_tile_pitch(bufmgr, stride, tiling); size = stride * aligned_y; size = bo_tile_size(bufmgr, size, tiling); *pitch = stride; if (tiling == I915_TILING_NONE) stride = 0; return bo_alloc_internal(bufmgr, name, size, memzone, flags, tiling, stride); } /** * Returns a brw_bo wrapping the given buffer object handle. * * This can be used when one application needs to pass a buffer object * to another. */ struct brw_bo * brw_bo_gem_create_from_name(struct brw_bufmgr *bufmgr, const char *name, unsigned int handle) { struct brw_bo *bo; /* At the moment most applications only have a few named bo. * For instance, in a DRI client only the render buffers passed * between X and the client are named. And since X returns the * alternating names for the front/back buffer a linear search * provides a sufficiently fast match. */ mtx_lock(&bufmgr->lock); bo = hash_find_bo(bufmgr->name_table, handle); if (bo) { brw_bo_reference(bo); goto out; } struct drm_gem_open open_arg = { .name = handle }; int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg); if (ret != 0) { DBG("Couldn't reference %s handle 0x%08x: %s\n", name, handle, strerror(errno)); bo = NULL; goto out; } /* Now see if someone has used a prime handle to get this * object from the kernel before by looking through the list * again for a matching gem_handle */ bo = hash_find_bo(bufmgr->handle_table, open_arg.handle); if (bo) { brw_bo_reference(bo); goto out; } bo = calloc(1, sizeof(*bo)); if (!bo) goto out; p_atomic_set(&bo->refcount, 1); bo->size = open_arg.size; bo->gtt_offset = 0; bo->bufmgr = bufmgr; bo->gem_handle = open_arg.handle; bo->name = name; bo->global_name = handle; bo->reusable = false; bo->external = true; bo->kflags = bufmgr->initial_kflags; if (bo->kflags & EXEC_OBJECT_PINNED) bo->gtt_offset = vma_alloc(bufmgr, BRW_MEMZONE_OTHER, bo->size, 1); _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo); _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo); struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle }; ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling); if (ret != 0) goto err_unref; bo->tiling_mode = get_tiling.tiling_mode; bo->swizzle_mode = get_tiling.swizzle_mode; /* XXX stride is unknown */ DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name); out: mtx_unlock(&bufmgr->lock); return bo; err_unref: bo_free(bo); mtx_unlock(&bufmgr->lock); return NULL; } static void bo_free(struct brw_bo *bo) { struct brw_bufmgr *bufmgr = bo->bufmgr; if (bo->map_cpu) { VG_NOACCESS(bo->map_cpu, bo->size); drm_munmap(bo->map_cpu, bo->size); } if (bo->map_wc) { VG_NOACCESS(bo->map_wc, bo->size); drm_munmap(bo->map_wc, bo->size); } if (bo->map_gtt) { VG_NOACCESS(bo->map_gtt, bo->size); drm_munmap(bo->map_gtt, bo->size); } if (bo->external) { struct hash_entry *entry; if (bo->global_name) { entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name); _mesa_hash_table_remove(bufmgr->name_table, entry); } entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle); _mesa_hash_table_remove(bufmgr->handle_table, entry); } /* Close this object */ struct drm_gem_close close = { .handle = bo->gem_handle }; int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close); if (ret != 0) { DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n", bo->gem_handle, bo->name, strerror(errno)); } if (bo->kflags & EXEC_OBJECT_PINNED) vma_free(bo->bufmgr, bo->gtt_offset, bo->size); free(bo); } /** Frees all cached buffers significantly older than @time. */ static void cleanup_bo_cache(struct brw_bufmgr *bufmgr, time_t time) { int i; if (bufmgr->time == time) return; for (i = 0; i < bufmgr->num_buckets; i++) { struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i]; list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) { if (time - bo->free_time <= 1) break; list_del(&bo->head); bo_free(bo); } } bufmgr->time = time; } static void bo_unreference_final(struct brw_bo *bo, time_t time) { struct brw_bufmgr *bufmgr = bo->bufmgr; struct bo_cache_bucket *bucket; DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name); bucket = bucket_for_size(bufmgr, bo->size); /* Put the buffer into our internal cache for reuse if we can. */ if (bufmgr->bo_reuse && bo->reusable && bucket != NULL && brw_bo_madvise(bo, I915_MADV_DONTNEED)) { bo->free_time = time; bo->name = NULL; list_addtail(&bo->head, &bucket->head); } else { bo_free(bo); } } void brw_bo_unreference(struct brw_bo *bo) { if (bo == NULL) return; assert(p_atomic_read(&bo->refcount) > 0); if (atomic_add_unless(&bo->refcount, -1, 1)) { struct brw_bufmgr *bufmgr = bo->bufmgr; struct timespec time; clock_gettime(CLOCK_MONOTONIC, &time); mtx_lock(&bufmgr->lock); if (p_atomic_dec_zero(&bo->refcount)) { bo_unreference_final(bo, time.tv_sec); cleanup_bo_cache(bufmgr, time.tv_sec); } mtx_unlock(&bufmgr->lock); } } static void bo_wait_with_stall_warning(struct brw_context *brw, struct brw_bo *bo, const char *action) { bool busy = brw && brw->perf_debug && !bo->idle; double elapsed = unlikely(busy) ? -get_time() : 0.0; brw_bo_wait_rendering(bo); if (unlikely(busy)) { elapsed += get_time(); if (elapsed > 1e-5) /* 0.01ms */ perf_debug("%s a busy \"%s\" BO stalled and took %.03f ms.\n", action, bo->name, elapsed * 1000); } } static void print_flags(unsigned flags) { if (flags & MAP_READ) DBG("READ "); if (flags & MAP_WRITE) DBG("WRITE "); if (flags & MAP_ASYNC) DBG("ASYNC "); if (flags & MAP_PERSISTENT) DBG("PERSISTENT "); if (flags & MAP_COHERENT) DBG("COHERENT "); if (flags & MAP_RAW) DBG("RAW "); DBG("\n"); } static void * brw_bo_map_cpu(struct brw_context *brw, struct brw_bo *bo, unsigned flags) { struct brw_bufmgr *bufmgr = bo->bufmgr; /* We disallow CPU maps for writing to non-coherent buffers, as the * CPU map can become invalidated when a batch is flushed out, which * can happen at unpredictable times. You should use WC maps instead. */ assert(bo->cache_coherent || !(flags & MAP_WRITE)); if (!bo->map_cpu) { DBG("brw_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name); struct drm_i915_gem_mmap mmap_arg = { .handle = bo->gem_handle, .size = bo->size, }; int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } void *map = (void *) (uintptr_t) mmap_arg.addr_ptr; VG_DEFINED(map, bo->size); if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) { VG_NOACCESS(map, bo->size); drm_munmap(map, bo->size); } } assert(bo->map_cpu); DBG("brw_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_cpu); print_flags(flags); if (!(flags & MAP_ASYNC)) { bo_wait_with_stall_warning(brw, bo, "CPU mapping"); } if (!bo->cache_coherent && !bo->bufmgr->has_llc) { /* If we're reusing an existing CPU mapping, the CPU caches may * contain stale data from the last time we read from that mapping. * (With the BO cache, it might even be data from a previous buffer!) * Even if it's a brand new mapping, the kernel may have zeroed the * buffer via CPU writes. * * We need to invalidate those cachelines so that we see the latest * contents, and so long as we only read from the CPU mmap we do not * need to write those cachelines back afterwards. * * On LLC, the emprical evidence suggests that writes from the GPU * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU * cachelines. (Other reads, such as the display engine, bypass the * LLC entirely requiring us to keep dirty pixels for the scanout * out of any cache.) */ gen_invalidate_range(bo->map_cpu, bo->size); } return bo->map_cpu; } static void * brw_bo_map_wc(struct brw_context *brw, struct brw_bo *bo, unsigned flags) { struct brw_bufmgr *bufmgr = bo->bufmgr; if (!bufmgr->has_mmap_wc) return NULL; if (!bo->map_wc) { DBG("brw_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name); struct drm_i915_gem_mmap mmap_arg = { .handle = bo->gem_handle, .size = bo->size, .flags = I915_MMAP_WC, }; int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } void *map = (void *) (uintptr_t) mmap_arg.addr_ptr; VG_DEFINED(map, bo->size); if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) { VG_NOACCESS(map, bo->size); drm_munmap(map, bo->size); } } assert(bo->map_wc); DBG("brw_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc); print_flags(flags); if (!(flags & MAP_ASYNC)) { bo_wait_with_stall_warning(brw, bo, "WC mapping"); } return bo->map_wc; } /** * Perform an uncached mapping via the GTT. * * Write access through the GTT is not quite fully coherent. On low power * systems especially, like modern Atoms, we can observe reads from RAM before * the write via GTT has landed. A write memory barrier that flushes the Write * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later * read after the write as the GTT write suffers a small delay through the GTT * indirection. The kernel uses an uncached mmio read to ensure the GTT write * is ordered with reads (either by the GPU, WB or WC) and unconditionally * flushes prior to execbuf submission. However, if we are not informing the * kernel about our GTT writes, it will not flush before earlier access, such * as when using the cmdparser. Similarly, we need to be careful if we should * ever issue a CPU read immediately following a GTT write. * * Telling the kernel about write access also has one more important * side-effect. Upon receiving notification about the write, it cancels any * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by * either SW_FINISH or DIRTYFB. The presumption is that we never write to the * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR * tracking is handled on the buffer exchange instead. */ static void * brw_bo_map_gtt(struct brw_context *brw, struct brw_bo *bo, unsigned flags) { struct brw_bufmgr *bufmgr = bo->bufmgr; /* Get a mapping of the buffer if we haven't before. */ if (bo->map_gtt == NULL) { DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name); struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle }; /* Get the fake offset back... */ int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } /* and mmap it. */ void *map = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED, bufmgr->fd, mmap_arg.offset); if (map == MAP_FAILED) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will * already intercept this mmap call. However, for consistency between * all the mmap paths, we mark the pointer as defined now and mark it * as inaccessible afterwards. */ VG_DEFINED(map, bo->size); if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) { VG_NOACCESS(map, bo->size); drm_munmap(map, bo->size); } } assert(bo->map_gtt); DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt); print_flags(flags); if (!(flags & MAP_ASYNC)) { bo_wait_with_stall_warning(brw, bo, "GTT mapping"); } return bo->map_gtt; } static bool can_map_cpu(struct brw_bo *bo, unsigned flags) { if (bo->cache_coherent) return true; /* Even if the buffer itself is not cache-coherent (such as a scanout), on * an LLC platform reads always are coherent (as they are performed via the * central system agent). It is just the writes that we need to take special * care to ensure that land in main memory and not stick in the CPU cache. */ if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc) return true; /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid * across batch flushes where the kernel will change cache domains of the * bo, invalidating continued access to the CPU mmap on non-LLC device. * * Similarly, ASYNC typically means that the buffer will be accessed via * both the CPU and the GPU simultaneously. Batches may be executed that * use the BO even while it is mapped. While OpenGL technically disallows * most drawing while non-persistent mappings are active, we may still use * the GPU for blits or other operations, causing batches to happen at * inconvenient times. */ if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC)) return false; return !(flags & MAP_WRITE); } void * brw_bo_map(struct brw_context *brw, struct brw_bo *bo, unsigned flags) { if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW)) return brw_bo_map_gtt(brw, bo, flags); void *map; if (can_map_cpu(bo, flags)) map = brw_bo_map_cpu(brw, bo, flags); else map = brw_bo_map_wc(brw, bo, flags); /* Allow the attempt to fail by falling back to the GTT where necessary. * * Not every buffer can be mmaped directly using the CPU (or WC), for * example buffers that wrap stolen memory or are imported from other * devices. For those, we have little choice but to use a GTT mmapping. * However, if we use a slow GTT mmapping for reads where we expected fast * access, that order of magnitude difference in throughput will be clearly * expressed by angry users. * * We skip MAP_RAW because we want to avoid map_gtt's fence detiling. */ if (!map && !(flags & MAP_RAW)) { if (brw) { perf_debug("Fallback GTT mapping for %s with access flags %x\n", bo->name, flags); } map = brw_bo_map_gtt(brw, bo, flags); } return map; } int brw_bo_subdata(struct brw_bo *bo, uint64_t offset, uint64_t size, const void *data) { struct brw_bufmgr *bufmgr = bo->bufmgr; struct drm_i915_gem_pwrite pwrite = { .handle = bo->gem_handle, .offset = offset, .size = size, .data_ptr = (uint64_t) (uintptr_t) data, }; int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite); if (ret != 0) { ret = -errno; DBG("%s:%d: Error writing data to buffer %d: " "(%"PRIu64" %"PRIu64") %s .\n", __FILE__, __LINE__, bo->gem_handle, offset, size, strerror(errno)); } return ret; } /** Waits for all GPU rendering with the object to have completed. */ void brw_bo_wait_rendering(struct brw_bo *bo) { /* We require a kernel recent enough for WAIT_IOCTL support. * See intel_init_bufmgr() */ brw_bo_wait(bo, -1); } /** * Waits on a BO for the given amount of time. * * @bo: buffer object to wait for * @timeout_ns: amount of time to wait in nanoseconds. * If value is less than 0, an infinite wait will occur. * * Returns 0 if the wait was successful ie. the last batch referencing the * object has completed within the allotted time. Otherwise some negative return * value describes the error. Of particular interest is -ETIME when the wait has * failed to yield the desired result. * * Similar to brw_bo_wait_rendering except a timeout parameter allows * the operation to give up after a certain amount of time. Another subtle * difference is the internal locking semantics are different (this variant does * not hold the lock for the duration of the wait). This makes the wait subject * to a larger userspace race window. * * The implementation shall wait until the object is no longer actively * referenced within a batch buffer at the time of the call. The wait will * not guarantee that the buffer is re-issued via another thread, or an flinked * handle. Userspace must make sure this race does not occur if such precision * is important. * * Note that some kernels have broken the inifite wait for negative values * promise, upgrade to latest stable kernels if this is the case. */ int brw_bo_wait(struct brw_bo *bo, int64_t timeout_ns) { struct brw_bufmgr *bufmgr = bo->bufmgr; /* If we know it's idle, don't bother with the kernel round trip */ if (bo->idle && !bo->external) return 0; struct drm_i915_gem_wait wait = { .bo_handle = bo->gem_handle, .timeout_ns = timeout_ns, }; int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait); if (ret != 0) return -errno; bo->idle = true; return ret; } void brw_bufmgr_destroy(struct brw_bufmgr *bufmgr) { mtx_destroy(&bufmgr->lock); /* Free any cached buffer objects we were going to reuse */ for (int i = 0; i < bufmgr->num_buckets; i++) { struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i]; list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) { list_del(&bo->head); bo_free(bo); } if (brw_using_softpin(bufmgr)) { for (int z = 0; z < BRW_MEMZONE_COUNT; z++) { util_dynarray_fini(&bucket->vma_list[z]); } } } _mesa_hash_table_destroy(bufmgr->name_table, NULL); _mesa_hash_table_destroy(bufmgr->handle_table, NULL); if (brw_using_softpin(bufmgr)) { for (int z = 0; z < BRW_MEMZONE_COUNT; z++) { util_vma_heap_finish(&bufmgr->vma_allocator[z]); } } free(bufmgr); } static int bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode, uint32_t stride) { struct brw_bufmgr *bufmgr = bo->bufmgr; struct drm_i915_gem_set_tiling set_tiling; int ret; if (bo->global_name == 0 && tiling_mode == bo->tiling_mode && stride == bo->stride) return 0; memset(&set_tiling, 0, sizeof(set_tiling)); do { /* set_tiling is slightly broken and overwrites the * input on the error path, so we have to open code * rmIoctl. */ set_tiling.handle = bo->gem_handle; set_tiling.tiling_mode = tiling_mode; set_tiling.stride = stride; ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling); } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); if (ret == -1) return -errno; bo->tiling_mode = set_tiling.tiling_mode; bo->swizzle_mode = set_tiling.swizzle_mode; bo->stride = set_tiling.stride; return 0; } int brw_bo_get_tiling(struct brw_bo *bo, uint32_t *tiling_mode, uint32_t *swizzle_mode) { *tiling_mode = bo->tiling_mode; *swizzle_mode = bo->swizzle_mode; return 0; } static struct brw_bo * brw_bo_gem_create_from_prime_internal(struct brw_bufmgr *bufmgr, int prime_fd, int tiling_mode, uint32_t stride) { uint32_t handle; struct brw_bo *bo; mtx_lock(&bufmgr->lock); int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle); if (ret) { DBG("create_from_prime: failed to obtain handle from fd: %s\n", strerror(errno)); mtx_unlock(&bufmgr->lock); return NULL; } /* * See if the kernel has already returned this buffer to us. Just as * for named buffers, we must not create two bo's pointing at the same * kernel object */ bo = hash_find_bo(bufmgr->handle_table, handle); if (bo) { brw_bo_reference(bo); goto out; } bo = calloc(1, sizeof(*bo)); if (!bo) goto out; p_atomic_set(&bo->refcount, 1); /* Determine size of bo. The fd-to-handle ioctl really should * return the size, but it doesn't. If we have kernel 3.12 or * later, we can lseek on the prime fd to get the size. Older * kernels will just fail, in which case we fall back to the * provided (estimated or guess size). */ ret = lseek(prime_fd, 0, SEEK_END); if (ret != -1) bo->size = ret; bo->bufmgr = bufmgr; bo->gem_handle = handle; _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo); bo->name = "prime"; bo->reusable = false; bo->external = true; bo->kflags = bufmgr->initial_kflags; if (bo->kflags & EXEC_OBJECT_PINNED) { assert(bo->size > 0); bo->gtt_offset = vma_alloc(bufmgr, BRW_MEMZONE_OTHER, bo->size, 1); } if (tiling_mode < 0) { struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle }; if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling)) goto err; bo->tiling_mode = get_tiling.tiling_mode; bo->swizzle_mode = get_tiling.swizzle_mode; /* XXX stride is unknown */ } else { bo_set_tiling_internal(bo, tiling_mode, stride); } out: mtx_unlock(&bufmgr->lock); return bo; err: bo_free(bo); mtx_unlock(&bufmgr->lock); return NULL; } struct brw_bo * brw_bo_gem_create_from_prime(struct brw_bufmgr *bufmgr, int prime_fd) { return brw_bo_gem_create_from_prime_internal(bufmgr, prime_fd, -1, 0); } struct brw_bo * brw_bo_gem_create_from_prime_tiled(struct brw_bufmgr *bufmgr, int prime_fd, uint32_t tiling_mode, uint32_t stride) { assert(tiling_mode == I915_TILING_NONE || tiling_mode == I915_TILING_X || tiling_mode == I915_TILING_Y); return brw_bo_gem_create_from_prime_internal(bufmgr, prime_fd, tiling_mode, stride); } static void brw_bo_make_external(struct brw_bo *bo) { struct brw_bufmgr *bufmgr = bo->bufmgr; if (!bo->external) { mtx_lock(&bufmgr->lock); if (!bo->external) { _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo); bo->external = true; } mtx_unlock(&bufmgr->lock); } } int brw_bo_gem_export_to_prime(struct brw_bo *bo, int *prime_fd) { struct brw_bufmgr *bufmgr = bo->bufmgr; brw_bo_make_external(bo); if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle, DRM_CLOEXEC, prime_fd) != 0) return -errno; bo->reusable = false; return 0; } uint32_t brw_bo_export_gem_handle(struct brw_bo *bo) { brw_bo_make_external(bo); return bo->gem_handle; } int brw_bo_flink(struct brw_bo *bo, uint32_t *name) { struct brw_bufmgr *bufmgr = bo->bufmgr; if (!bo->global_name) { struct drm_gem_flink flink = { .handle = bo->gem_handle }; if (drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink)) return -errno; brw_bo_make_external(bo); mtx_lock(&bufmgr->lock); if (!bo->global_name) { bo->global_name = flink.name; _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo); } mtx_unlock(&bufmgr->lock); bo->reusable = false; } *name = bo->global_name; return 0; } /** * Enables unlimited caching of buffer objects for reuse. * * This is potentially very memory expensive, as the cache at each bucket * size is only bounded by how many buffers of that size we've managed to have * in flight at once. */ void brw_bufmgr_enable_reuse(struct brw_bufmgr *bufmgr) { bufmgr->bo_reuse = true; } static void add_bucket(struct brw_bufmgr *bufmgr, int size) { unsigned int i = bufmgr->num_buckets; assert(i < ARRAY_SIZE(bufmgr->cache_bucket)); list_inithead(&bufmgr->cache_bucket[i].head); if (brw_using_softpin(bufmgr)) { for (int z = 0; z < BRW_MEMZONE_COUNT; z++) util_dynarray_init(&bufmgr->cache_bucket[i].vma_list[z], NULL); } bufmgr->cache_bucket[i].size = size; bufmgr->num_buckets++; assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]); assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]); assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]); } static void init_cache_buckets(struct brw_bufmgr *bufmgr) { uint64_t size, cache_max_size = 64 * 1024 * 1024; /* OK, so power of two buckets was too wasteful of memory. * Give 3 other sizes between each power of two, to hopefully * cover things accurately enough. (The alternative is * probably to just go for exact matching of sizes, and assume * that for things like composited window resize the tiled * width/height alignment and rounding of sizes to pages will * get us useful cache hit rates anyway) */ add_bucket(bufmgr, PAGE_SIZE); add_bucket(bufmgr, PAGE_SIZE * 2); add_bucket(bufmgr, PAGE_SIZE * 3); /* Initialize the linked lists for BO reuse cache. */ for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) { add_bucket(bufmgr, size); add_bucket(bufmgr, size + size * 1 / 4); add_bucket(bufmgr, size + size * 2 / 4); add_bucket(bufmgr, size + size * 3 / 4); } } uint32_t brw_create_hw_context(struct brw_bufmgr *bufmgr) { struct drm_i915_gem_context_create create = { }; int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create); if (ret != 0) { DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno)); return 0; } return create.ctx_id; } int brw_hw_context_set_priority(struct brw_bufmgr *bufmgr, uint32_t ctx_id, int priority) { struct drm_i915_gem_context_param p = { .ctx_id = ctx_id, .param = I915_CONTEXT_PARAM_PRIORITY, .value = priority, }; int err; err = 0; if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p)) err = -errno; return err; } void brw_destroy_hw_context(struct brw_bufmgr *bufmgr, uint32_t ctx_id) { struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id }; if (ctx_id != 0 && drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) { fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n", strerror(errno)); } } int brw_reg_read(struct brw_bufmgr *bufmgr, uint32_t offset, uint64_t *result) { struct drm_i915_reg_read reg_read = { .offset = offset }; int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, ®_read); *result = reg_read.val; return ret; } static int gem_param(int fd, int name) { int v = -1; /* No param uses (yet) the sign bit, reserve it for errors */ struct drm_i915_getparam gp = { .param = name, .value = &v }; if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp)) return -1; return v; } static int gem_context_getparam(int fd, uint32_t context, uint64_t param, uint64_t *value) { struct drm_i915_gem_context_param gp = { .ctx_id = context, .param = param, }; if (drmIoctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &gp)) return -1; *value = gp.value; return 0; } bool brw_using_softpin(struct brw_bufmgr *bufmgr) { return bufmgr->initial_kflags & EXEC_OBJECT_PINNED; } /** * Initializes the GEM buffer manager, which uses the kernel to allocate, map, * and manage map buffer objections. * * \param fd File descriptor of the opened DRM device. */ struct brw_bufmgr * brw_bufmgr_init(struct gen_device_info *devinfo, int fd) { struct brw_bufmgr *bufmgr; bufmgr = calloc(1, sizeof(*bufmgr)); if (bufmgr == NULL) return NULL; /* Handles to buffer objects belong to the device fd and are not * reference counted by the kernel. If the same fd is used by * multiple parties (threads sharing the same screen bufmgr, or * even worse the same device fd passed to multiple libraries) * ownership of those handles is shared by those independent parties. * * Don't do this! Ensure that each library/bufmgr has its own device * fd so that its namespace does not clash with another. */ bufmgr->fd = fd; if (mtx_init(&bufmgr->lock, mtx_plain) != 0) { free(bufmgr); return NULL; } uint64_t gtt_size; if (gem_context_getparam(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE, >t_size)) gtt_size = 0; bufmgr->has_llc = devinfo->has_llc; bufmgr->has_mmap_wc = gem_param(fd, I915_PARAM_MMAP_VERSION) > 0; const uint64_t _4GB = 4ull << 30; /* The STATE_BASE_ADDRESS size field can only hold 1 page shy of 4GB */ const uint64_t _4GB_minus_1 = _4GB - PAGE_SIZE; if (devinfo->gen >= 8 && gtt_size > _4GB) { bufmgr->initial_kflags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS; /* Allocate VMA in userspace if we have softpin and full PPGTT. */ if (gem_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN) > 0 && gem_param(fd, I915_PARAM_HAS_ALIASING_PPGTT) > 1) { bufmgr->initial_kflags |= EXEC_OBJECT_PINNED; util_vma_heap_init(&bufmgr->vma_allocator[BRW_MEMZONE_LOW_4G], PAGE_SIZE, _4GB_minus_1); /* Leave the last 4GB out of the high vma range, so that no state * base address + size can overflow 48 bits. */ util_vma_heap_init(&bufmgr->vma_allocator[BRW_MEMZONE_OTHER], 1 * _4GB, gtt_size - 2 * _4GB); } else if (devinfo->gen >= 10) { /* Softpin landed in 4.5, but GVT used an aliasing PPGTT until * kernel commit 6b3816d69628becb7ff35978aa0751798b4a940a in * 4.14. Gen10+ GVT hasn't landed yet, so it's not actually a * problem - but extending this requirement back to earlier gens * might actually mean requiring 4.14. */ fprintf(stderr, "i965 requires softpin (Kernel 4.5) on Gen10+."); free(bufmgr); return NULL; } } init_cache_buckets(bufmgr); bufmgr->name_table = _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal); bufmgr->handle_table = _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal); return bufmgr; }