/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "main/teximage.h" #include "main/fbobject.h" #include "main/renderbuffer.h" #include "intel_fbo.h" #include "brw_blorp.h" #include "brw_context.h" #include "brw_blorp_blit_eu.h" #include "brw_state.h" #include "brw_meta_util.h" #define FILE_DEBUG_FLAG DEBUG_BLORP static struct intel_mipmap_tree * find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb) { struct intel_mipmap_tree *mt = irb->mt; if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt) mt = mt->stencil_mt; return mt; } /** * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is * the physical layer holding sample 0. So, for example, if * src_mt->num_samples == 4, then logical layer n corresponds to src_layer == * 4*n. */ void brw_blorp_blit_miptrees(struct brw_context *brw, struct intel_mipmap_tree *src_mt, unsigned src_level, unsigned src_layer, struct intel_mipmap_tree *dst_mt, unsigned dst_level, unsigned dst_layer, float src_x0, float src_y0, float src_x1, float src_y1, float dst_x0, float dst_y0, float dst_x1, float dst_y1, GLenum filter, bool mirror_x, bool mirror_y) { /* Get ready to blit. This includes depth resolving the src and dst * buffers if necessary. Note: it's not necessary to do a color resolve on * the destination buffer because we use the standard render path to render * to destination color buffers, and the standard render path is * fast-color-aware. */ intel_miptree_resolve_color(brw, src_mt); intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer); intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer); DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)" "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n", __FUNCTION__, src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt, src_level, src_layer, src_x0, src_y0, src_x1, src_y1, dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt, dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1, mirror_x, mirror_y); brw_blorp_blit_params params(brw, src_mt, src_level, src_layer, dst_mt, dst_level, dst_layer, src_x0, src_y0, src_x1, src_y1, dst_x0, dst_y0, dst_x1, dst_y1, filter, mirror_x, mirror_y); brw_blorp_exec(brw, ¶ms); intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer); } static void do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit, struct intel_renderbuffer *src_irb, struct intel_renderbuffer *dst_irb, GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1, GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1, GLenum filter, bool mirror_x, bool mirror_y) { /* Find source/dst miptrees */ struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb); struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb); /* Do the blit */ brw_blorp_blit_miptrees(brw, src_mt, src_irb->mt_level, src_irb->mt_layer, dst_mt, dst_irb->mt_level, dst_irb->mt_layer, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, filter, mirror_x, mirror_y); dst_irb->need_downsample = true; } static bool format_is_rgba_or_rgbx_byte(mesa_format format) { switch (format) { case MESA_FORMAT_B8G8R8X8_UNORM: case MESA_FORMAT_B8G8R8A8_UNORM: case MESA_FORMAT_R8G8B8X8_UNORM: case MESA_FORMAT_R8G8B8A8_UNORM: return true; default: return false; } } static bool color_formats_match(mesa_format src_format, mesa_format dst_format) { mesa_format linear_src_format = _mesa_get_srgb_format_linear(src_format); mesa_format linear_dst_format = _mesa_get_srgb_format_linear(dst_format); /* Normally, we require the formats to be equal. However, we also support * blitting from ARGB to XRGB (discarding alpha), and from XRGB to ARGB * (overriding alpha to 1.0 via blending) as well as swizzling between BGR * and RGB. */ return (linear_src_format == linear_dst_format || (format_is_rgba_or_rgbx_byte(linear_src_format) && format_is_rgba_or_rgbx_byte(linear_dst_format))); } static bool formats_match(GLbitfield buffer_bit, struct intel_renderbuffer *src_irb, struct intel_renderbuffer *dst_irb) { /* Note: don't just check gl_renderbuffer::Format, because in some cases * multiple gl_formats resolve to the same native type in the miptree (for * example MESA_FORMAT_Z24_UNORM_X8_UINT and MESA_FORMAT_Z24_UNORM_S8_UINT), and we can blit * between those formats. */ mesa_format src_format = find_miptree(buffer_bit, src_irb)->format; mesa_format dst_format = find_miptree(buffer_bit, dst_irb)->format; return color_formats_match(src_format, dst_format); } static bool try_blorp_blit(struct brw_context *brw, GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1, GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1, GLenum filter, GLbitfield buffer_bit) { struct gl_context *ctx = &brw->ctx; /* Sync up the state of window system buffers. We need to do this before * we go looking for the buffers. */ intel_prepare_render(brw); const struct gl_framebuffer *read_fb = ctx->ReadBuffer; const struct gl_framebuffer *draw_fb = ctx->DrawBuffer; bool mirror_x, mirror_y; if (brw_meta_mirror_clip_and_scissor(ctx, &srcX0, &srcY0, &srcX1, &srcY1, &dstX0, &dstY0, &dstX1, &dstY1, &mirror_x, &mirror_y)) return true; /* Find buffers */ struct intel_renderbuffer *src_irb; struct intel_renderbuffer *dst_irb; switch (buffer_bit) { case GL_COLOR_BUFFER_BIT: src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer); for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) { dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]); if (dst_irb && !formats_match(buffer_bit, src_irb, dst_irb)) return false; } for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) { dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]); if (dst_irb) do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, filter, mirror_x, mirror_y); } break; case GL_DEPTH_BUFFER_BIT: src_irb = intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer); dst_irb = intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer); if (!formats_match(buffer_bit, src_irb, dst_irb)) return false; do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, filter, mirror_x, mirror_y); break; case GL_STENCIL_BUFFER_BIT: src_irb = intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer); dst_irb = intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer); if (!formats_match(buffer_bit, src_irb, dst_irb)) return false; do_blorp_blit(brw, buffer_bit, src_irb, dst_irb, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, filter, mirror_x, mirror_y); break; default: unreachable("not reached"); } return true; } bool brw_blorp_copytexsubimage(struct brw_context *brw, struct gl_renderbuffer *src_rb, struct gl_texture_image *dst_image, int slice, int srcX0, int srcY0, int dstX0, int dstY0, int width, int height) { struct gl_context *ctx = &brw->ctx; struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb); struct intel_texture_image *intel_image = intel_texture_image(dst_image); /* Sync up the state of window system buffers. We need to do this before * we go looking at the src renderbuffer's miptree. */ intel_prepare_render(brw); struct intel_mipmap_tree *src_mt = src_irb->mt; struct intel_mipmap_tree *dst_mt = intel_image->mt; /* BLORP is not supported before Gen6. */ if (brw->gen < 6 || brw->gen >= 8) return false; if (_mesa_get_format_base_format(src_mt->format) != _mesa_get_format_base_format(dst_mt->format)) { return false; } /* We can't handle format conversions between Z24 and other formats since * we have to lie about the surface format. See the comments in * brw_blorp_surface_info::set(). */ if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) != (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) { return false; } if (!brw->format_supported_as_render_target[dst_mt->format]) return false; /* Source clipping shouldn't be necessary, since copytexsubimage (in * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which * takes care of it. * * Destination clipping shouldn't be necessary since the restrictions on * glCopyTexSubImage prevent the user from specifying a destination rectangle * that falls outside the bounds of the destination texture. * See error_check_subtexture_dimensions(). */ int srcY1 = srcY0 + height; int srcX1 = srcX0 + width; int dstX1 = dstX0 + width; int dstY1 = dstY0 + height; /* Account for the fact that in the system framebuffer, the origin is at * the lower left. */ bool mirror_y = false; if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) { GLint tmp = src_rb->Height - srcY0; srcY0 = src_rb->Height - srcY1; srcY1 = tmp; mirror_y = true; } /* Account for face selection and texture view MinLayer */ int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face; int dst_level = dst_image->Level + dst_image->TexObject->MinLevel; brw_blorp_blit_miptrees(brw, src_mt, src_irb->mt_level, src_irb->mt_layer, dst_mt, dst_level, dst_slice, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, GL_NEAREST, false, mirror_y); /* If we're copying to a packed depth stencil texture and the source * framebuffer has separate stencil, we need to also copy the stencil data * over. */ src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer; if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 && src_rb != NULL) { src_irb = intel_renderbuffer(src_rb); src_mt = src_irb->mt; if (src_mt->stencil_mt) src_mt = src_mt->stencil_mt; if (dst_mt->stencil_mt) dst_mt = dst_mt->stencil_mt; if (src_mt != dst_mt) { brw_blorp_blit_miptrees(brw, src_mt, src_irb->mt_level, src_irb->mt_layer, dst_mt, dst_level, dst_slice, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, GL_NEAREST, false, mirror_y); } } return true; } GLbitfield brw_blorp_framebuffer(struct brw_context *brw, GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter) { /* BLORP is not supported before Gen6. */ if (brw->gen < 6 || brw->gen >= 8) return mask; static GLbitfield buffer_bits[] = { GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, GL_STENCIL_BUFFER_BIT, }; for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) { if ((mask & buffer_bits[i]) && try_blorp_blit(brw, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, filter, buffer_bits[i])) { mask &= ~buffer_bits[i]; } } return mask; } /** * Enum to specify the order of arguments in a sampler message */ enum sampler_message_arg { SAMPLER_MESSAGE_ARG_U_FLOAT, SAMPLER_MESSAGE_ARG_V_FLOAT, SAMPLER_MESSAGE_ARG_U_INT, SAMPLER_MESSAGE_ARG_V_INT, SAMPLER_MESSAGE_ARG_SI_INT, SAMPLER_MESSAGE_ARG_MCS_INT, SAMPLER_MESSAGE_ARG_ZERO_INT, }; /** * Generator for WM programs used in BLORP blits. * * The bulk of the work done by the WM program is to wrap and unwrap the * coordinate transformations used by the hardware to store surfaces in * memory. The hardware transforms a pixel location (X, Y, S) (where S is the * sample index for a multisampled surface) to a memory offset by the * following formulas: * * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S)) * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset)) * * For a single-sampled surface, or for a multisampled surface using * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity * function: * * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0) * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0) * encode_msaa(n, UMS, X, Y, S) = (X, Y, S) * decode_msaa(n, UMS, X, Y, S) = (X, Y, S) * * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa() * embeds the sample number into bit 1 of the X and Y coordinates: * * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0) * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1) * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1) * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S) * where X' = (X & ~0b11) >> 1 | (X & 0b1) * Y' = (Y & ~0b11) >> 1 | (Y & 0b1) * S = (Y & 0b10) | (X & 0b10) >> 1 * * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa() * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of * the Y coordinate: * * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0) * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1) * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1) * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S) * where X' = (X & ~0b111) >> 2 | (X & 0b1) * Y' = (Y & ~0b11) >> 1 | (Y & 0b1) * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1 * * For X tiling, tile() combines together the low-order bits of the X and Y * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512 * bytes wide and 8 rows high: * * tile(x_tiled, X, Y, S) = A * where A = tile_num << 12 | offset * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9) * offset = (Y' & 0b111) << 9 * | (X & 0b111111111) * X' = X * cpp * Y' = Y + S * qpitch * detile(x_tiled, A) = (X, Y, S) * where X = X' / cpp * Y = Y' % qpitch * S = Y' / qpitch * Y' = (tile_num / tile_pitch) << 3 * | (A & 0b111000000000) >> 9 * X' = (tile_num % tile_pitch) << 9 * | (A & 0b111111111) * * (In all tiling formulas, cpp is the number of bytes occupied by a single * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required * to fill the width of the surface, and qpitch is the spacing (in rows) * between array slices). * * For Y tiling, tile() combines together the low-order bits of the X and Y * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128 * bytes wide and 32 rows high: * * tile(y_tiled, X, Y, S) = A * where A = tile_num << 12 | offset * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7) * offset = (X' & 0b1110000) << 5 * | (Y' & 0b11111) << 4 * | (X' & 0b1111) * X' = X * cpp * Y' = Y + S * qpitch * detile(y_tiled, A) = (X, Y, S) * where X = X' / cpp * Y = Y' % qpitch * S = Y' / qpitch * Y' = (tile_num / tile_pitch) << 5 * | (A & 0b111110000) >> 4 * X' = (tile_num % tile_pitch) << 7 * | (A & 0b111000000000) >> 5 * | (A & 0b1111) * * For W tiling, tile() combines together the low-order bits of the X and Y * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64 * bytes wide and 64 rows high (note that W tiling is only used for stencil * buffers, which always have cpp = 1 and S=0): * * tile(w_tiled, X, Y, S) = A * where A = tile_num << 12 | offset * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6) * offset = (X' & 0b111000) << 6 * | (Y' & 0b111100) << 3 * | (X' & 0b100) << 2 * | (Y' & 0b10) << 2 * | (X' & 0b10) << 1 * | (Y' & 0b1) << 1 * | (X' & 0b1) * X' = X * cpp = X * Y' = Y + S * qpitch * detile(w_tiled, A) = (X, Y, S) * where X = X' / cpp = X' * Y = Y' % qpitch = Y' * S = Y / qpitch = 0 * Y' = (tile_num / tile_pitch) << 6 * | (A & 0b111100000) >> 3 * | (A & 0b1000) >> 2 * | (A & 0b10) >> 1 * X' = (tile_num % tile_pitch) << 6 * | (A & 0b111000000000) >> 6 * | (A & 0b10000) >> 2 * | (A & 0b100) >> 1 * | (A & 0b1) * * Finally, for a non-tiled surface, tile() simply combines together the X and * Y coordinates in the natural way: * * tile(untiled, X, Y, S) = A * where A = Y * pitch + X' * X' = X * cpp * Y' = Y + S * qpitch * detile(untiled, A) = (X, Y, S) * where X = X' / cpp * Y = Y' % qpitch * S = Y' / qpitch * X' = A % pitch * Y' = A / pitch * * (In these formulas, pitch is the number of bytes occupied by a single row * of samples). */ class brw_blorp_blit_program : public brw_blorp_eu_emitter { public: brw_blorp_blit_program(struct brw_context *brw, const brw_blorp_blit_prog_key *key, bool debug_flag); const GLuint *compile(struct brw_context *brw, GLuint *program_size); brw_blorp_prog_data prog_data; private: void alloc_regs(); void alloc_push_const_regs(int base_reg); void compute_frag_coords(); void translate_tiling(bool old_tiled_w, bool new_tiled_w); void encode_msaa(unsigned num_samples, intel_msaa_layout layout); void decode_msaa(unsigned num_samples, intel_msaa_layout layout); void translate_dst_to_src(); void clamp_tex_coords(struct brw_reg regX, struct brw_reg regY, struct brw_reg clampX0, struct brw_reg clampY0, struct brw_reg clampX1, struct brw_reg clampY1); void single_to_blend(); void manual_blend_average(unsigned num_samples); void manual_blend_bilinear(unsigned num_samples); void sample(struct brw_reg dst); void texel_fetch(struct brw_reg dst); void mcs_fetch(); void texture_lookup(struct brw_reg dst, enum opcode op, const sampler_message_arg *args, int num_args); void render_target_write(); /** * Base-2 logarithm of the maximum number of samples that can be blended. */ static const unsigned LOG2_MAX_BLEND_SAMPLES = 3; struct brw_context *brw; const brw_blorp_blit_prog_key *key; /* Thread dispatch header */ struct brw_reg R0; /* Pixel X/Y coordinates (always in R1). */ struct brw_reg R1; /* Push constants */ struct brw_reg dst_x0; struct brw_reg dst_x1; struct brw_reg dst_y0; struct brw_reg dst_y1; /* Top right coordinates of the rectangular grid used for scaled blitting */ struct brw_reg rect_grid_x1; struct brw_reg rect_grid_y1; struct { struct brw_reg multiplier; struct brw_reg offset; } x_transform, y_transform; /* Data read from texture (4 vec16's per array element) */ struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1]; /* Auxiliary storage for the contents of the MCS surface. * * Since the sampler always returns 8 registers worth of data, this is 8 * registers wide, even though we only use the first 2 registers of it. */ struct brw_reg mcs_data; /* X coordinates. We have two of them so that we can perform coordinate * transformations easily. */ struct brw_reg x_coords[2]; /* Y coordinates. We have two of them so that we can perform coordinate * transformations easily. */ struct brw_reg y_coords[2]; /* X, Y coordinates of the pixel from which we need to fetch the specific * sample. These are used for multisample scaled blitting. */ struct brw_reg x_sample_coords; struct brw_reg y_sample_coords; /* Fractional parts of the x and y coordinates, used as bilinear interpolation coefficients */ struct brw_reg x_frac; struct brw_reg y_frac; /* Which element of x_coords and y_coords is currently in use. */ int xy_coord_index; /* True if, at the point in the program currently being compiled, the * sample index is known to be zero. */ bool s_is_zero; /* Register storing the sample index when s_is_zero is false. */ struct brw_reg sample_index; /* Temporaries */ struct brw_reg t1; struct brw_reg t2; /* MRF used for sampling and render target writes */ GLuint base_mrf; }; brw_blorp_blit_program::brw_blorp_blit_program( struct brw_context *brw, const brw_blorp_blit_prog_key *key, bool debug_flag) : brw_blorp_eu_emitter(brw, debug_flag), brw(brw), key(key) { } const GLuint * brw_blorp_blit_program::compile(struct brw_context *brw, GLuint *program_size) { /* Sanity checks */ if (key->dst_tiled_w && key->rt_samples > 0) { /* If the destination image is W tiled and multisampled, then the thread * must be dispatched once per sample, not once per pixel. This is * necessary because after conversion between W and Y tiling, there's no * guarantee that all samples corresponding to a single pixel will still * be together. */ assert(key->persample_msaa_dispatch); } if (key->blend) { /* We are blending, which means we won't have an opportunity to * translate the tiling and sample count for the texture surface. So * the surface state for the texture must be configured with the correct * tiling and sample count. */ assert(!key->src_tiled_w); assert(key->tex_samples == key->src_samples); assert(key->tex_layout == key->src_layout); assert(key->tex_samples > 0); } if (key->persample_msaa_dispatch) { /* It only makes sense to do persample dispatch if the render target is * configured as multisampled. */ assert(key->rt_samples > 0); } /* Make sure layout is consistent with sample count */ assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) == (key->tex_samples == 0)); assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) == (key->rt_samples == 0)); assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) == (key->src_samples == 0)); assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) == (key->dst_samples == 0)); /* Set up prog_data */ memset(&prog_data, 0, sizeof(prog_data)); prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch; alloc_regs(); compute_frag_coords(); /* Render target and texture hardware don't support W tiling. */ const bool rt_tiled_w = false; const bool tex_tiled_w = false; /* The address that data will be written to is determined by the * coordinates supplied to the WM thread and the tiling and sample count of * the render target, according to the formula: * * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset)) * * If the actual tiling and sample count of the destination surface are not * the same as the configuration of the render target, then these * coordinates are wrong and we have to adjust them to compensate for the * difference. */ if (rt_tiled_w != key->dst_tiled_w || key->rt_samples != key->dst_samples || key->rt_layout != key->dst_layout) { encode_msaa(key->rt_samples, key->rt_layout); /* Now (X, Y, S) = detile(rt_tiling, offset) */ translate_tiling(rt_tiled_w, key->dst_tiled_w); /* Now (X, Y, S) = detile(dst_tiling, offset) */ decode_msaa(key->dst_samples, key->dst_layout); } /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)). * * That is: X, Y and S now contain the true coordinates and sample index of * the data that the WM thread should output. * * If we need to kill pixels that are outside the destination rectangle, * now is the time to do it. */ if (key->use_kill) emit_kill_if_outside_rect(x_coords[xy_coord_index], y_coords[xy_coord_index], dst_x0, dst_x1, dst_y0, dst_y1); /* Next, apply a translation to obtain coordinates in the source image. */ translate_dst_to_src(); /* If the source image is not multisampled, then we want to fetch sample * number 0, because that's the only sample there is. */ if (key->src_samples == 0) s_is_zero = true; /* X, Y, and S are now the coordinates of the pixel in the source image * that we want to texture from. Exception: if we are blending, then S is * irrelevant, because we are going to fetch all samples. */ if (key->blend && !key->blit_scaled) { if (brw->gen == 6) { /* Gen6 hardware an automatically blend using the SAMPLE message */ single_to_blend(); sample(texture_data[0]); } else { /* Gen7+ hardware doesn't automaticaly blend. */ manual_blend_average(key->src_samples); } } else if(key->blend && key->blit_scaled) { manual_blend_bilinear(key->src_samples); } else { /* We aren't blending, which means we just want to fetch a single sample * from the source surface. The address that we want to fetch from is * related to the X, Y and S values according to the formula: * * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)). * * If the actual tiling and sample count of the source surface are not * the same as the configuration of the texture, then we need to adjust * the coordinates to compensate for the difference. */ if ((tex_tiled_w != key->src_tiled_w || key->tex_samples != key->src_samples || key->tex_layout != key->src_layout) && !key->bilinear_filter) { encode_msaa(key->src_samples, key->src_layout); /* Now (X, Y, S) = detile(src_tiling, offset) */ translate_tiling(key->src_tiled_w, tex_tiled_w); /* Now (X, Y, S) = detile(tex_tiling, offset) */ decode_msaa(key->tex_samples, key->tex_layout); } if (key->bilinear_filter) { sample(texture_data[0]); } else { /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)). * * In other words: X, Y, and S now contain values which, when passed to * the texturing unit, will cause data to be read from the correct * memory location. So we can fetch the texel now. */ if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS) mcs_fetch(); texel_fetch(texture_data[0]); } } /* Finally, write the fetched (or blended) value to the render target and * terminate the thread. */ render_target_write(); return get_program(program_size); } void brw_blorp_blit_program::alloc_push_const_regs(int base_reg) { #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name) #define ALLOC_REG(name, type) \ this->name = \ retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, \ base_reg + CONST_LOC(name) / 32, \ (CONST_LOC(name) % 32) / 4), type) ALLOC_REG(dst_x0, BRW_REGISTER_TYPE_UD); ALLOC_REG(dst_x1, BRW_REGISTER_TYPE_UD); ALLOC_REG(dst_y0, BRW_REGISTER_TYPE_UD); ALLOC_REG(dst_y1, BRW_REGISTER_TYPE_UD); ALLOC_REG(rect_grid_x1, BRW_REGISTER_TYPE_F); ALLOC_REG(rect_grid_y1, BRW_REGISTER_TYPE_F); ALLOC_REG(x_transform.multiplier, BRW_REGISTER_TYPE_F); ALLOC_REG(x_transform.offset, BRW_REGISTER_TYPE_F); ALLOC_REG(y_transform.multiplier, BRW_REGISTER_TYPE_F); ALLOC_REG(y_transform.offset, BRW_REGISTER_TYPE_F); #undef CONST_LOC #undef ALLOC_REG } void brw_blorp_blit_program::alloc_regs() { int reg = 0; this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW); this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW); prog_data.first_curbe_grf = reg; alloc_push_const_regs(reg); reg += BRW_BLORP_NUM_PUSH_CONST_REGS; for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) { this->texture_data[i] = retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type); reg += 8; } this->mcs_data = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8; for (int i = 0; i < 2; ++i) { this->x_coords[i] = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 2; this->y_coords[i] = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 2; } if (key->blit_scaled && key->blend) { this->x_sample_coords = brw_vec8_grf(reg, 0); reg += 2; this->y_sample_coords = brw_vec8_grf(reg, 0); reg += 2; this->x_frac = brw_vec8_grf(reg, 0); reg += 2; this->y_frac = brw_vec8_grf(reg, 0); reg += 2; } this->xy_coord_index = 0; this->sample_index = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 2; this->t1 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 2; this->t2 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 2; /* Make sure we didn't run out of registers */ assert(reg <= GEN7_MRF_HACK_START); int mrf = 2; this->base_mrf = mrf; } /* In the code that follows, X and Y can be used to quickly refer to the * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y * prime") to the inactive elements. * * S can be used to quickly refer to sample_index. */ #define X x_coords[xy_coord_index] #define Y y_coords[xy_coord_index] #define Xp x_coords[!xy_coord_index] #define Yp y_coords[!xy_coord_index] #define S sample_index /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation. */ #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index; /** * Emit code to compute the X and Y coordinates of the pixels being rendered * by this WM invocation. * * Assuming the render target is set up for Y tiling, these (X, Y) values are * related to the address offset where outputs will be written by the formula: * * (X, Y, S) = decode_msaa(detile(offset)). * * (See brw_blorp_blit_program). */ void brw_blorp_blit_program::compute_frag_coords() { /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0) * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4) * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8) * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12) * * Pixels within a subspan are laid out in this arrangement: * 0 1 * 2 3 * * So, to compute the coordinates of each pixel, we need to read every 2nd * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4). * In other words, the data we want to access is R1.4<2;4,0>UW. * * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the * result, since pixels n+1 and n+3 are in the right half of the subspan. */ emit_add(vec16(retype(X, BRW_REGISTER_TYPE_UW)), stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010)); /* Similarly, Y coordinates for subspans come from R1.2[31:16] through * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of * R1.4<2;4,0>UW). * * And we need to add the repeating sequence (0, 0, 1, 1, ...), since * pixels n+2 and n+3 are in the bottom half of the subspan. */ emit_add(vec16(retype(Y, BRW_REGISTER_TYPE_UW)), stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100)); /* Move the coordinates to UD registers. */ emit_mov(vec16(Xp), retype(X, BRW_REGISTER_TYPE_UW)); emit_mov(vec16(Yp), retype(Y, BRW_REGISTER_TYPE_UW)); SWAP_XY_AND_XPYP(); if (key->persample_msaa_dispatch) { switch (key->rt_samples) { case 4: { /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4. * Therefore, subspan 0 will represent sample 0, subspan 1 will * represent sample 1, and so on. * * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1, * 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to * populate a temporary variable with the sequence (0, 1, 2, 3), and * then copy from it using vstride=1, width=4, hstride=0. */ struct brw_reg t1_uw1 = retype(t1, BRW_REGISTER_TYPE_UW); emit_mov(vec16(t1_uw1), brw_imm_v(0x3210)); /* Move to UD sample_index register. */ emit_mov_8(S, stride(t1_uw1, 1, 4, 0)); emit_mov_8(offset(S, 1), suboffset(stride(t1_uw1, 1, 4, 0), 2)); break; } case 8: { /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8. * Therefore, subspan 0 will represent sample N (where N is 0 or 4), * subspan 1 will represent sample 1, and so on. We can find the * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair * Index") and multiplying by two (since samples are always delivered * in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & * 0xc0) >> 5. * * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary * variable with the sequence (0, 1, 2, 3), and then reading from it * using vstride=1, width=4, hstride=0. */ struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD)); struct brw_reg t2_uw1 = retype(t2, BRW_REGISTER_TYPE_UW); struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD)); emit_and(t1_ud1, r0_ud1, brw_imm_ud(0xc0)); emit_shr(t1_ud1, t1_ud1, brw_imm_ud(5)); emit_mov(vec16(t2_uw1), brw_imm_v(0x3210)); emit_add(vec16(S), retype(t1_ud1, BRW_REGISTER_TYPE_UW), stride(t2_uw1, 1, 4, 0)); emit_add_8(offset(S, 1), retype(t1_ud1, BRW_REGISTER_TYPE_UW), suboffset(stride(t2_uw1, 1, 4, 0), 2)); break; } default: unreachable("Unrecognized sample count in " "brw_blorp_blit_program::compute_frag_coords()"); } s_is_zero = false; } else { /* Either the destination surface is single-sampled, or the WM will be * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch * per pixel). In either case, it's not meaningful to compute a sample * value. Just set it to 0. */ s_is_zero = true; } } /** * Emit code to compensate for the difference between Y and W tiling. * * This code modifies the X and Y coordinates according to the formula: * * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S)) * * (See brw_blorp_blit_program). * * It can only translate between W and Y tiling, so new_tiling and old_tiling * are booleans where true represents W tiling and false represents Y tiling. */ void brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w) { if (old_tiled_w == new_tiled_w) return; /* In the code that follows, we can safely assume that S = 0, because W * tiling formats always use IMS layout. */ assert(s_is_zero); if (new_tiled_w) { /* Given X and Y coordinates that describe an address using Y tiling, * translate to the X and Y coordinates that describe the same address * using W tiling. * * If we break down the low order bits of X and Y, using a * single letter to represent each low-order bit: * * X = A << 7 | 0bBCDEFGH * Y = J << 5 | 0bKLMNP (1) * * Then we can apply the Y tiling formula to see the memory offset being * addressed: * * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2) * * If we apply the W detiling formula to this memory location, that the * corresponding X' and Y' coordinates are: * * X' = A << 6 | 0bBCDPFH (3) * Y' = J << 6 | 0bKLMNEG * * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'), * we need to make the following computation: * * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4) * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1 */ emit_and(t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */ emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */ emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */ emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */ emit_or(t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */ emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */ emit_or(Xp, t1, t2); emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */ emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */ emit_and(t2, X, brw_imm_uw(8)); /* X & 0b1000 */ emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */ emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */ emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */ emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */ emit_or(Yp, t1, t2); SWAP_XY_AND_XPYP(); } else { /* Applying the same logic as above, but in reverse, we obtain the * formulas: * * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2 */ emit_and(t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */ emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */ emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */ emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */ emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */ emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */ emit_shl(t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */ emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 */ emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */ emit_or(Xp, t1, t2); emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */ emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */ emit_and(t2, X, brw_imm_uw(4)); /* X & 0b100 */ emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */ emit_or(Yp, t1, t2); SWAP_XY_AND_XPYP(); } } /** * Emit code to compensate for the difference between MSAA and non-MSAA * surfaces. * * This code modifies the X and Y coordinates according to the formula: * * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S) * * (See brw_blorp_blit_program). */ void brw_blorp_blit_program::encode_msaa(unsigned num_samples, intel_msaa_layout layout) { switch (layout) { case INTEL_MSAA_LAYOUT_NONE: /* No translation necessary, and S should already be zero. */ assert(s_is_zero); break; case INTEL_MSAA_LAYOUT_CMS: /* We can't compensate for compressed layout since at this point in the * program we haven't read from the MCS buffer. */ unreachable("Bad layout in encode_msaa"); case INTEL_MSAA_LAYOUT_UMS: /* No translation necessary. */ break; case INTEL_MSAA_LAYOUT_IMS: switch (num_samples) { case 4: /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0) * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1) * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1) */ emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */ if (!s_is_zero) { emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */ emit_or(t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */ } emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1 | (S & 0b1) << 1 */ emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */ emit_or(Xp, t1, t2); emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */ emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */ if (!s_is_zero) { emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */ emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */ } emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */ emit_or(Yp, t1, t2); break; case 8: /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0) * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 * | (X & 0b1) * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1) */ emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */ emit_shl(t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */ if (!s_is_zero) { emit_and(t2, S, brw_imm_uw(4)); /* S & 0b100 */ emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */ emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */ emit_shl(t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */ emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 */ } emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */ emit_or(Xp, t1, t2); emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */ emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */ if (!s_is_zero) { emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */ emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */ } emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */ emit_or(Yp, t1, t2); break; } SWAP_XY_AND_XPYP(); s_is_zero = true; break; } } /** * Emit code to compensate for the difference between MSAA and non-MSAA * surfaces. * * This code modifies the X and Y coordinates according to the formula: * * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S) * * (See brw_blorp_blit_program). */ void brw_blorp_blit_program::decode_msaa(unsigned num_samples, intel_msaa_layout layout) { switch (layout) { case INTEL_MSAA_LAYOUT_NONE: /* No translation necessary, and S should already be zero. */ assert(s_is_zero); break; case INTEL_MSAA_LAYOUT_CMS: /* We can't compensate for compressed layout since at this point in the * program we don't have access to the MCS buffer. */ unreachable("Bad layout in encode_msaa"); case INTEL_MSAA_LAYOUT_UMS: /* No translation necessary. */ break; case INTEL_MSAA_LAYOUT_IMS: assert(s_is_zero); switch (num_samples) { case 4: /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S) * where X' = (X & ~0b11) >> 1 | (X & 0b1) * Y' = (Y & ~0b11) >> 1 | (Y & 0b1) * S = (Y & 0b10) | (X & 0b10) >> 1 */ emit_and(t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */ emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */ emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */ emit_or(Xp, t1, t2); emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */ emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */ emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */ emit_or(Yp, t1, t2); emit_and(t1, Y, brw_imm_uw(2)); /* Y & 0b10 */ emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */ emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */ emit_or(S, t1, t2); break; case 8: /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S) * where X' = (X & ~0b111) >> 2 | (X & 0b1) * Y' = (Y & ~0b11) >> 1 | (Y & 0b1) * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1 */ emit_and(t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */ emit_shr(t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */ emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */ emit_or(Xp, t1, t2); emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */ emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */ emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */ emit_or(Yp, t1, t2); emit_and(t1, X, brw_imm_uw(4)); /* X & 0b100 */ emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */ emit_or(t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */ emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */ emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */ emit_or(S, t1, t2); break; } s_is_zero = false; SWAP_XY_AND_XPYP(); break; } } /** * Emit code to translate from destination (X, Y) coordinates to source (X, Y) * coordinates. */ void brw_blorp_blit_program::translate_dst_to_src() { struct brw_reg X_f = retype(X, BRW_REGISTER_TYPE_F); struct brw_reg Y_f = retype(Y, BRW_REGISTER_TYPE_F); struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F); struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F); /* Move the UD coordinates to float registers. */ emit_mov(Xp_f, X); emit_mov(Yp_f, Y); /* Scale and offset */ emit_mul(X_f, Xp_f, x_transform.multiplier); emit_mul(Y_f, Yp_f, y_transform.multiplier); emit_add(X_f, X_f, x_transform.offset); emit_add(Y_f, Y_f, y_transform.offset); if (key->blit_scaled && key->blend) { /* Translate coordinates to lay out the samples in a rectangular grid * roughly corresponding to sample locations. */ emit_mul(X_f, X_f, brw_imm_f(key->x_scale)); emit_mul(Y_f, Y_f, brw_imm_f(key->y_scale)); /* Adjust coordinates so that integers represent pixel centers rather * than pixel edges. */ emit_add(X_f, X_f, brw_imm_f(-0.5)); emit_add(Y_f, Y_f, brw_imm_f(-0.5)); /* Clamp the X, Y texture coordinates to properly handle the sampling of * texels on texture edges. */ clamp_tex_coords(X_f, Y_f, brw_imm_f(0.0), brw_imm_f(0.0), rect_grid_x1, rect_grid_y1); /* Store the fractional parts to be used as bilinear interpolation * coefficients. */ emit_frc(x_frac, X_f); emit_frc(y_frac, Y_f); /* Round the float coordinates down to nearest integer */ emit_rndd(Xp_f, X_f); emit_rndd(Yp_f, Y_f); emit_mul(X_f, Xp_f, brw_imm_f(1 / key->x_scale)); emit_mul(Y_f, Yp_f, brw_imm_f(1 / key->y_scale)); SWAP_XY_AND_XPYP(); } else if (!key->bilinear_filter) { /* Round the float coordinates down to nearest integer by moving to * UD registers. */ emit_mov(Xp, X_f); emit_mov(Yp, Y_f); SWAP_XY_AND_XPYP(); } } void brw_blorp_blit_program::clamp_tex_coords(struct brw_reg regX, struct brw_reg regY, struct brw_reg clampX0, struct brw_reg clampY0, struct brw_reg clampX1, struct brw_reg clampY1) { emit_cond_mov(regX, clampX0, BRW_CONDITIONAL_L, regX, clampX0); emit_cond_mov(regX, clampX1, BRW_CONDITIONAL_G, regX, clampX1); emit_cond_mov(regY, clampY0, BRW_CONDITIONAL_L, regY, clampY0); emit_cond_mov(regY, clampY1, BRW_CONDITIONAL_G, regY, clampY1); } /** * Emit code to transform the X and Y coordinates as needed for blending * together the different samples in an MSAA texture. */ void brw_blorp_blit_program::single_to_blend() { /* When looking up samples in an MSAA texture using the SAMPLE message, * Gen6 requires the texture coordinates to be odd integers (so that they * correspond to the center of a 2x2 block representing the four samples * that maxe up a pixel). So we need to multiply our X and Y coordinates * each by 2 and then add 1. */ emit_shl(t1, X, brw_imm_w(1)); emit_shl(t2, Y, brw_imm_w(1)); emit_add(Xp, t1, brw_imm_w(1)); emit_add(Yp, t2, brw_imm_w(1)); SWAP_XY_AND_XPYP(); } /** * Count the number of trailing 1 bits in the given value. For example: * * count_trailing_one_bits(0) == 0 * count_trailing_one_bits(7) == 3 * count_trailing_one_bits(11) == 2 */ inline int count_trailing_one_bits(unsigned value) { #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ return __builtin_ctz(~value); #else return _mesa_bitcount(value & ~(value + 1)); #endif } void brw_blorp_blit_program::manual_blend_average(unsigned num_samples) { if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS) mcs_fetch(); /* We add together samples using a binary tree structure, e.g. for 4x MSAA: * * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4 * * This ensures that when all samples have the same value, no numerical * precision is lost, since each addition operation always adds two equal * values, and summing two equal floating point values does not lose * precision. * * We perform this computation by treating the texture_data array as a * stack and performing the following operations: * * - push sample 0 onto stack * - push sample 1 onto stack * - add top two stack entries * - push sample 2 onto stack * - push sample 3 onto stack * - add top two stack entries * - add top two stack entries * - divide top stack entry by 4 * * Note that after pushing sample i onto the stack, the number of add * operations we do is equal to the number of trailing 1 bits in i. This * works provided the total number of samples is a power of two, which it * always is for i965. * * For integer formats, we replace the add operations with average * operations and skip the final division. */ unsigned stack_depth = 0; for (unsigned i = 0; i < num_samples; ++i) { assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */ /* Push sample i onto the stack */ assert(stack_depth < ARRAY_SIZE(texture_data)); if (i == 0) { s_is_zero = true; } else { s_is_zero = false; emit_mov(vec16(S), brw_imm_ud(i)); } texel_fetch(texture_data[stack_depth++]); if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) { /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface) * suggests an optimization: * * "A simple optimization with probable large return in * performance is to compare the MCS value to zero (indicating * all samples are on sample slice 0), and sample only from * sample slice 0 using ld2dss if MCS is zero." * * Note that in the case where the MCS value is zero, sampling from * sample slice 0 using ld2dss and sampling from sample 0 using * ld2dms are equivalent (since all samples are on sample slice 0). * Since we have already sampled from sample 0, all we need to do is * skip the remaining fetches and averaging if MCS is zero. */ emit_cmp_if(BRW_CONDITIONAL_NZ, mcs_data, brw_imm_ud(0)); } /* Do count_trailing_one_bits(i) times */ for (int j = count_trailing_one_bits(i); j-- > 0; ) { assert(stack_depth >= 2); --stack_depth; /* TODO: should use a smaller loop bound for non_RGBA formats */ for (int k = 0; k < 4; ++k) { emit_combine(key->texture_data_type == BRW_REGISTER_TYPE_F ? BRW_OPCODE_ADD : BRW_OPCODE_AVG, offset(texture_data[stack_depth - 1], 2*k), offset(vec8(texture_data[stack_depth - 1]), 2*k), offset(vec8(texture_data[stack_depth]), 2*k)); } } } /* We should have just 1 sample on the stack now. */ assert(stack_depth == 1); if (key->texture_data_type == BRW_REGISTER_TYPE_F) { /* Scale the result down by a factor of num_samples */ /* TODO: should use a smaller loop bound for non-RGBA formats */ for (int j = 0; j < 4; ++j) { emit_mul(offset(texture_data[0], 2*j), offset(vec8(texture_data[0]), 2*j), brw_imm_f(1.0/num_samples)); } } if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS) emit_endif(); } void brw_blorp_blit_program::manual_blend_bilinear(unsigned num_samples) { /* We do this computation by performing the following operations: * * In case of 4x, 8x MSAA: * - Compute the pixel coordinates and sample numbers (a, b, c, d) * which are later used for interpolation * - linearly interpolate samples a and b in X * - linearly interpolate samples c and d in X * - linearly interpolate the results of last two operations in Y * * result = lrp(lrp(a + b) + lrp(c + d)) */ struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F); struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F); struct brw_reg t1_f = retype(t1, BRW_REGISTER_TYPE_F); struct brw_reg t2_f = retype(t2, BRW_REGISTER_TYPE_F); for (unsigned i = 0; i < 4; ++i) { assert(i < ARRAY_SIZE(texture_data)); s_is_zero = false; /* Compute pixel coordinates */ emit_add(vec16(x_sample_coords), Xp_f, brw_imm_f((float)(i & 0x1) * (1.0 / key->x_scale))); emit_add(vec16(y_sample_coords), Yp_f, brw_imm_f((float)((i >> 1) & 0x1) * (1.0 / key->y_scale))); emit_mov(vec16(X), x_sample_coords); emit_mov(vec16(Y), y_sample_coords); /* The MCS value we fetch has to match up with the pixel that we're * sampling from. Since we sample from different pixels in each * iteration of this "for" loop, the call to mcs_fetch() should be * here inside the loop after computing the pixel coordinates. */ if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS) mcs_fetch(); /* Compute sample index and map the sample index to a sample number. * Sample index layout shows the numbering of slots in a rectangular * grid of samples with in a pixel. Sample number layout shows the * rectangular grid of samples roughly corresponding to the real sample * locations with in a pixel. * In case of 4x MSAA, layout of sample indices matches the layout of * sample numbers: * --------- * | 0 | 1 | * --------- * | 2 | 3 | * --------- * * In case of 8x MSAA the two layouts don't match. * sample index layout : --------- sample number layout : --------- * | 0 | 1 | | 5 | 2 | * --------- --------- * | 2 | 3 | | 4 | 6 | * --------- --------- * | 4 | 5 | | 0 | 3 | * --------- --------- * | 6 | 7 | | 7 | 1 | * --------- --------- */ emit_frc(vec16(t1_f), x_sample_coords); emit_frc(vec16(t2_f), y_sample_coords); emit_mul(vec16(t1_f), t1_f, brw_imm_f(key->x_scale)); emit_mul(vec16(t2_f), t2_f, brw_imm_f(key->x_scale * key->y_scale)); emit_add(vec16(t1_f), t1_f, t2_f); emit_mov(vec16(S), t1_f); if (num_samples == 8) { /* Map the sample index to a sample number */ emit_cmp_if(BRW_CONDITIONAL_L, S, brw_imm_d(4)); { emit_mov(vec16(t2), brw_imm_d(5)); emit_if_eq_mov(S, 1, vec16(t2), 2); emit_if_eq_mov(S, 2, vec16(t2), 4); emit_if_eq_mov(S, 3, vec16(t2), 6); } emit_else(); { emit_mov(vec16(t2), brw_imm_d(0)); emit_if_eq_mov(S, 5, vec16(t2), 3); emit_if_eq_mov(S, 6, vec16(t2), 7); emit_if_eq_mov(S, 7, vec16(t2), 1); } emit_endif(); emit_mov(vec16(S), t2); } texel_fetch(texture_data[i]); } #define SAMPLE(x, y) offset(texture_data[x], y) for (int index = 3; index > 0; ) { /* Since we're doing SIMD16, 4 color channels fits in to 8 registers. * Counter value of 8 in 'for' loop below is used to interpolate all * the color components. */ for (int k = 0; k < 8; k += 2) emit_lrp(vec8(SAMPLE(index - 1, k)), x_frac, vec8(SAMPLE(index, k)), vec8(SAMPLE(index - 1, k))); index -= 2; } for (int k = 0; k < 8; k += 2) emit_lrp(vec8(SAMPLE(0, k)), y_frac, vec8(SAMPLE(2, k)), vec8(SAMPLE(0, k))); #undef SAMPLE } /** * Emit code to look up a value in the texture using the SAMPLE message (which * does blending of MSAA surfaces). */ void brw_blorp_blit_program::sample(struct brw_reg dst) { static const sampler_message_arg args[2] = { SAMPLER_MESSAGE_ARG_U_FLOAT, SAMPLER_MESSAGE_ARG_V_FLOAT }; texture_lookup(dst, SHADER_OPCODE_TEX, args, ARRAY_SIZE(args)); } /** * Emit code to look up a value in the texture using the SAMPLE_LD message * (which does a simple texel fetch). */ void brw_blorp_blit_program::texel_fetch(struct brw_reg dst) { static const sampler_message_arg gen6_args[5] = { SAMPLER_MESSAGE_ARG_U_INT, SAMPLER_MESSAGE_ARG_V_INT, SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */ SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */ SAMPLER_MESSAGE_ARG_SI_INT }; static const sampler_message_arg gen7_ld_args[3] = { SAMPLER_MESSAGE_ARG_U_INT, SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */ SAMPLER_MESSAGE_ARG_V_INT }; static const sampler_message_arg gen7_ld2dss_args[3] = { SAMPLER_MESSAGE_ARG_SI_INT, SAMPLER_MESSAGE_ARG_U_INT, SAMPLER_MESSAGE_ARG_V_INT }; static const sampler_message_arg gen7_ld2dms_args[4] = { SAMPLER_MESSAGE_ARG_SI_INT, SAMPLER_MESSAGE_ARG_MCS_INT, SAMPLER_MESSAGE_ARG_U_INT, SAMPLER_MESSAGE_ARG_V_INT }; switch (brw->gen) { case 6: texture_lookup(dst, SHADER_OPCODE_TXF, gen6_args, s_is_zero ? 2 : 5); break; case 7: switch (key->tex_layout) { case INTEL_MSAA_LAYOUT_IMS: /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage * Format): * * If this field is MSFMT_DEPTH_STENCIL * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine * messages allowed are "ld2dms", "resinfo", and "sampleinfo". * * So fall through to emit the same message as we use for * INTEL_MSAA_LAYOUT_CMS. */ case INTEL_MSAA_LAYOUT_CMS: texture_lookup(dst, SHADER_OPCODE_TXF_CMS, gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args)); break; case INTEL_MSAA_LAYOUT_UMS: texture_lookup(dst, SHADER_OPCODE_TXF_UMS, gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args)); break; case INTEL_MSAA_LAYOUT_NONE: assert(s_is_zero); texture_lookup(dst, SHADER_OPCODE_TXF, gen7_ld_args, ARRAY_SIZE(gen7_ld_args)); break; } break; default: unreachable("Should not get here."); }; } void brw_blorp_blit_program::mcs_fetch() { static const sampler_message_arg gen7_ld_mcs_args[2] = { SAMPLER_MESSAGE_ARG_U_INT, SAMPLER_MESSAGE_ARG_V_INT }; texture_lookup(vec16(mcs_data), SHADER_OPCODE_TXF_MCS, gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args)); } void brw_blorp_blit_program::texture_lookup(struct brw_reg dst, enum opcode op, const sampler_message_arg *args, int num_args) { struct brw_reg mrf = retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD); for (int arg = 0; arg < num_args; ++arg) { switch (args[arg]) { case SAMPLER_MESSAGE_ARG_U_FLOAT: if (key->bilinear_filter) emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), retype(X, BRW_REGISTER_TYPE_F)); else emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), X); break; case SAMPLER_MESSAGE_ARG_V_FLOAT: if (key->bilinear_filter) emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), retype(Y, BRW_REGISTER_TYPE_F)); else emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), Y); break; case SAMPLER_MESSAGE_ARG_U_INT: emit_mov(mrf, X); break; case SAMPLER_MESSAGE_ARG_V_INT: emit_mov(mrf, Y); break; case SAMPLER_MESSAGE_ARG_SI_INT: /* Note: on Gen7, this code may be reached with s_is_zero==true * because in Gen7's ld2dss message, the sample index is the first * argument. When this happens, we need to move a 0 into the * appropriate message register. */ if (s_is_zero) emit_mov(mrf, brw_imm_ud(0)); else emit_mov(mrf, S); break; case SAMPLER_MESSAGE_ARG_MCS_INT: switch (key->tex_layout) { case INTEL_MSAA_LAYOUT_CMS: emit_mov(mrf, mcs_data); break; case INTEL_MSAA_LAYOUT_IMS: /* When sampling from an IMS surface, MCS data is not relevant, * and the hardware ignores it. So don't bother populating it. */ break; default: /* We shouldn't be trying to send MCS data with any other * layouts. */ assert (!"Unsupported layout for MCS data"); break; } break; case SAMPLER_MESSAGE_ARG_ZERO_INT: emit_mov(mrf, brw_imm_ud(0)); break; } mrf.nr += 2; } emit_texture_lookup(retype(dst, BRW_REGISTER_TYPE_UW) /* dest */, op, base_mrf, mrf.nr - base_mrf /* msg_length */); } #undef X #undef Y #undef U #undef V #undef S #undef SWAP_XY_AND_XPYP void brw_blorp_blit_program::render_target_write() { struct brw_reg mrf_rt_write = retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type); int mrf_offset = 0; /* If we may have killed pixels, then we need to send R0 and R1 in a header * so that the render target knows which pixels we killed. */ bool use_header = key->use_kill; if (use_header) { /* Copy R0/1 to MRF */ emit_mov(retype(mrf_rt_write, BRW_REGISTER_TYPE_UD), retype(R0, BRW_REGISTER_TYPE_UD)); mrf_offset += 2; } /* Copy texture data to MRFs */ for (int i = 0; i < 4; ++i) { /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */ emit_mov(offset(mrf_rt_write, mrf_offset), offset(vec8(texture_data[0]), 2*i)); mrf_offset += 2; } /* Now write to the render target and terminate the thread */ emit_render_target_write( mrf_rt_write, base_mrf, mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */, use_header); } void brw_blorp_coord_transform_params::setup(GLfloat src0, GLfloat src1, GLfloat dst0, GLfloat dst1, bool mirror) { float scale = (src1 - src0) / (dst1 - dst0); if (!mirror) { /* When not mirroring a coordinate (say, X), we need: * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale * Therefore: * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale * * blorp program uses "round toward zero" to convert the * transformed floating point coordinates to integer coordinates, * whereas the behaviour we actually want is "round to nearest", * so 0.5 provides the necessary correction. */ multiplier = scale; offset = src0 + (-dst0 + 0.5) * scale; } else { /* When mirroring X we need: * src_x - src_x0 = dst_x1 - dst_x - 0.5 * Therefore: * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale */ multiplier = -scale; offset = src0 + (dst1 - 0.5) * scale; } } /** * Determine which MSAA layout the GPU pipeline should be configured for, * based on the chip generation, the number of samples, and the true layout of * the image in memory. */ inline intel_msaa_layout compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples, intel_msaa_layout true_layout) { if (num_samples <= 1) { /* When configuring the GPU for non-MSAA, we can still accommodate IMS * format buffers, by transforming coordinates appropriately. */ assert(true_layout == INTEL_MSAA_LAYOUT_NONE || true_layout == INTEL_MSAA_LAYOUT_IMS); return INTEL_MSAA_LAYOUT_NONE; } else { assert(true_layout != INTEL_MSAA_LAYOUT_NONE); } /* Prior to Gen7, all MSAA surfaces use IMS layout. */ if (brw->gen == 6) { assert(true_layout == INTEL_MSAA_LAYOUT_IMS); } return true_layout; } brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw, struct intel_mipmap_tree *src_mt, unsigned src_level, unsigned src_layer, struct intel_mipmap_tree *dst_mt, unsigned dst_level, unsigned dst_layer, GLfloat src_x0, GLfloat src_y0, GLfloat src_x1, GLfloat src_y1, GLfloat dst_x0, GLfloat dst_y0, GLfloat dst_x1, GLfloat dst_y1, GLenum filter, bool mirror_x, bool mirror_y) { src.set(brw, src_mt, src_level, src_layer, false); dst.set(brw, dst_mt, dst_level, dst_layer, true); /* Even though we do multisample resolves at the time of the blit, OpenGL * specification defines them as if they happen at the time of rendering, * which means that the type of averaging we do during the resolve should * only depend on the source format; the destination format should be * ignored. But, specification doesn't seem to be strict about it. * * It has been observed that mulitisample resolves produce slightly better * looking images when averaging is done using destination format. NVIDIA's * proprietary OpenGL driver also follow this approach. So, we choose to * follow it in our driver. * * When multisampling, if the source and destination formats are equal * (aside from the color space), we choose to blit in sRGB space to get * this higher quality image. */ if (src.num_samples > 1 && _mesa_get_format_color_encoding(dst_mt->format) == GL_SRGB && _mesa_get_srgb_format_linear(src_mt->format) == _mesa_get_srgb_format_linear(dst_mt->format)) { dst.brw_surfaceformat = brw_format_for_mesa_format(dst_mt->format); src.brw_surfaceformat = dst.brw_surfaceformat; } /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F * texture, the above code configures the source format for L32_FLOAT or * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge, * the SAMPLE message appears to handle multisampled L32_FLOAT and * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work * around the problem by using a source format of R32_FLOAT. This * shouldn't affect rendering correctness, since the destination format is * R32_FLOAT, so only the contents of the red channel matters. */ if (brw->gen == 6 && src.num_samples > 1 && dst.num_samples <= 1 && src_mt->format == dst_mt->format && dst.brw_surfaceformat == BRW_SURFACEFORMAT_R32_FLOAT) { src.brw_surfaceformat = dst.brw_surfaceformat; } use_wm_prog = true; memset(&wm_prog_key, 0, sizeof(wm_prog_key)); /* texture_data_type indicates the register type that should be used to * manipulate texture data. */ switch (_mesa_get_format_datatype(src_mt->format)) { case GL_UNSIGNED_NORMALIZED: case GL_SIGNED_NORMALIZED: case GL_FLOAT: wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F; break; case GL_UNSIGNED_INT: if (src_mt->format == MESA_FORMAT_S_UINT8) { /* We process stencil as though it's an unsigned normalized color */ wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F; } else { wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD; } break; case GL_INT: wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D; break; default: unreachable("Unrecognized blorp format"); } if (brw->gen > 6) { /* Gen7's rendering hardware only supports the IMS layout for depth and * stencil render targets. Blorp always maps its destination surface as * a color render target (even if it's actually a depth or stencil * buffer). So if the destination is IMS, we'll have to map it as a * single-sampled texture and interleave the samples ourselves. */ if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) dst.num_samples = 0; } if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) { /* If the destination surface is a W-tiled multisampled stencil buffer * that we're mapping as Y tiled, then we need to arrange for the WM * program to run once per sample rather than once per pixel, because * the memory layout of related samples doesn't match between W and Y * tiling. */ wm_prog_key.persample_msaa_dispatch = true; } if (src.num_samples > 0 && dst.num_samples > 1) { /* We are blitting from a multisample buffer to a multisample buffer, so * we must preserve samples within a pixel. This means we have to * arrange for the WM program to run once per sample rather than once * per pixel. */ wm_prog_key.persample_msaa_dispatch = true; } /* Scaled blitting or not. */ wm_prog_key.blit_scaled = ((dst_x1 - dst_x0) == (src_x1 - src_x0) && (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true; /* Scaling factors used for bilinear filtering in multisample scaled * blits. */ wm_prog_key.x_scale = 2.0; wm_prog_key.y_scale = src_mt->num_samples / 2.0; if (filter == GL_LINEAR && src.num_samples <= 1 && dst.num_samples <= 1) wm_prog_key.bilinear_filter = true; GLenum base_format = _mesa_get_format_base_format(src_mt->format); if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */ base_format != GL_STENCIL_INDEX && src_mt->num_samples > 1 && dst_mt->num_samples <= 1) { /* We are downsampling a color buffer, so blend. */ wm_prog_key.blend = true; } /* src_samples and dst_samples are the true sample counts */ wm_prog_key.src_samples = src_mt->num_samples; wm_prog_key.dst_samples = dst_mt->num_samples; /* tex_samples and rt_samples are the sample counts that are set up in * SURFACE_STATE. */ wm_prog_key.tex_samples = src.num_samples; wm_prog_key.rt_samples = dst.num_samples; /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will * use to access the source and destination surfaces. */ wm_prog_key.tex_layout = compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout); wm_prog_key.rt_layout = compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout); /* src_layout and dst_layout indicate the true MSAA layout used by src and * dst. */ wm_prog_key.src_layout = src_mt->msaa_layout; wm_prog_key.dst_layout = dst_mt->msaa_layout; wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled; wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled; x0 = wm_push_consts.dst_x0 = dst_x0; y0 = wm_push_consts.dst_y0 = dst_y0; x1 = wm_push_consts.dst_x1 = dst_x1; y1 = wm_push_consts.dst_y1 = dst_y1; wm_push_consts.rect_grid_x1 = (minify(src_mt->logical_width0, src_level) * wm_prog_key.x_scale - 1.0); wm_push_consts.rect_grid_y1 = (minify(src_mt->logical_height0, src_level) * wm_prog_key.y_scale - 1.0); wm_push_consts.x_transform.setup(src_x0, src_x1, dst_x0, dst_x1, mirror_x); wm_push_consts.y_transform.setup(src_y0, src_y1, dst_y0, dst_y1, mirror_y); if (dst.num_samples <= 1 && dst_mt->num_samples > 1) { /* We must expand the rectangle we send through the rendering pipeline, * to account for the fact that we are mapping the destination region as * single-sampled when it is in fact multisampled. We must also align * it to a multiple of the multisampling pattern, because the * differences between multisampled and single-sampled surface formats * will mean that pixels are scrambled within the multisampling pattern. * TODO: what if this makes the coordinates too large? * * Note: this only works if the destination surface uses the IMS layout. * If it's UMS, then we have no choice but to set up the rendering * pipeline as multisampled. */ assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS); switch (dst_mt->num_samples) { case 4: x0 = ROUND_DOWN_TO(x0 * 2, 4); y0 = ROUND_DOWN_TO(y0 * 2, 4); x1 = ALIGN(x1 * 2, 4); y1 = ALIGN(y1 * 2, 4); break; case 8: x0 = ROUND_DOWN_TO(x0 * 4, 8); y0 = ROUND_DOWN_TO(y0 * 2, 4); x1 = ALIGN(x1 * 4, 8); y1 = ALIGN(y1 * 2, 4); break; default: unreachable("Unrecognized sample count in brw_blorp_blit_params ctor"); } wm_prog_key.use_kill = true; } if (dst.map_stencil_as_y_tiled) { /* We must modify the rectangle we send through the rendering pipeline * (and the size and x/y offset of the destination surface), to account * for the fact that we are mapping it as Y-tiled when it is in fact * W-tiled. * * Both Y tiling and W tiling can be understood as organizations of * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels * is different, but the layout of the 32-byte sub-tiles within the 4k * tile is the same (8 sub-tiles across by 16 sub-tiles down, in * column-major order). In Y tiling, the sub-tiles are 16 bytes wide * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high. * * Therefore, to account for the layout differences within the 32-byte * sub-tiles, we must expand the rectangle so the X coordinates of its * edges are multiples of 8 (the W sub-tile width), and its Y * coordinates of its edges are multiples of 4 (the W sub-tile height). * Then we need to scale the X and Y coordinates of the rectangle to * account for the differences in aspect ratio between the Y and W * sub-tiles. We need to modify the layer width and height similarly. * * A correction needs to be applied when MSAA is in use: since * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4, * we need to align the Y coordinates to multiples of 8, so that when * they are divided by two they are still multiples of 4. * * Note: Since the x/y offset of the surface will be applied using the * SURFACE_STATE command packet, it will be invisible to the swizzling * code in the shader; therefore it needs to be in a multiple of the * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil * buffer), and the miplevel alignment used for stencil buffers is 8 * pixels horizontally and either 4 or 8 pixels vertically (see * intel_horizontal_texture_alignment_unit() and * intel_vertical_texture_alignment_unit()). * * Note: Also, since the SURFACE_STATE command packet can only apply * offsets that are multiples of 4 pixels horizontally and 2 pixels * vertically, it is important that the offsets will be multiples of * these sizes after they are converted into Y-tiled coordinates. * Fortunately they will be, since we know from above that the offsets * are a multiple of the 32-byte sub-tile size, and in Y-tiled * coordinates the sub-tile is 16 pixels wide and 2 pixels high. * * TODO: what if this makes the coordinates (or the texture size) too * large? */ const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4; x0 = ROUND_DOWN_TO(x0, x_align) * 2; y0 = ROUND_DOWN_TO(y0, y_align) / 2; x1 = ALIGN(x1, x_align) * 2; y1 = ALIGN(y1, y_align) / 2; dst.width = ALIGN(dst.width, x_align) * 2; dst.height = ALIGN(dst.height, y_align) / 2; dst.x_offset *= 2; dst.y_offset /= 2; wm_prog_key.use_kill = true; } if (src.map_stencil_as_y_tiled) { /* We must modify the size and x/y offset of the source surface to * account for the fact that we are mapping it as Y-tiled when it is in * fact W tiled. * * See the comments above concerning x/y offset alignment for the * destination surface. * * TODO: what if this makes the texture size too large? */ const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4; src.width = ALIGN(src.width, x_align) * 2; src.height = ALIGN(src.height, y_align) / 2; src.x_offset *= 2; src.y_offset /= 2; } } uint32_t brw_blorp_blit_params::get_wm_prog(struct brw_context *brw, brw_blorp_prog_data **prog_data) const { uint32_t prog_offset = 0; if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG, &this->wm_prog_key, sizeof(this->wm_prog_key), &prog_offset, prog_data)) { brw_blorp_blit_program prog(brw, &this->wm_prog_key, INTEL_DEBUG & DEBUG_BLORP); GLuint program_size; const GLuint *program = prog.compile(brw, &program_size); brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG, &this->wm_prog_key, sizeof(this->wm_prog_key), program, program_size, &prog.prog_data, sizeof(prog.prog_data), &prog_offset, prog_data); } return prog_offset; }