/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include "intel_batchbuffer.h" #include "intel_fbo.h" #include "brw_blorp.h" #include "brw_defines.h" #include "brw_state.h" #include "gen6_blorp.h" #include "gen7_blorp.h" #define FILE_DEBUG_FLAG DEBUG_BLORP brw_blorp_mip_info::brw_blorp_mip_info() : mt(NULL), level(0), layer(0), width(0), height(0), x_offset(0), y_offset(0) { } brw_blorp_surface_info::brw_blorp_surface_info() : map_stencil_as_y_tiled(false), num_samples(0) { } void brw_blorp_mip_info::set(struct intel_mipmap_tree *mt, unsigned int level, unsigned int layer) { /* Layer is a physical layer, so if this is a 2D multisample array texture * using INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, then it had better * be a multiple of num_samples. */ if (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS || mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) { assert(layer % mt->num_samples == 0); } intel_miptree_check_level_layer(mt, level, layer); this->mt = mt; this->level = level; this->layer = layer; this->width = minify(mt->physical_width0, level - mt->first_level); this->height = minify(mt->physical_height0, level - mt->first_level); intel_miptree_get_image_offset(mt, level, layer, &x_offset, &y_offset); } void brw_blorp_surface_info::set(struct brw_context *brw, struct intel_mipmap_tree *mt, unsigned int level, unsigned int layer, mesa_format format, bool is_render_target) { brw_blorp_mip_info::set(mt, level, layer); this->num_samples = mt->num_samples; this->array_layout = mt->array_layout; this->map_stencil_as_y_tiled = false; this->msaa_layout = mt->msaa_layout; if (format == MESA_FORMAT_NONE) format = mt->format; switch (format) { case MESA_FORMAT_S_UINT8: /* The miptree is a W-tiled stencil buffer. Surface states can't be set * up for W tiling, so we'll need to use Y tiling and have the WM * program swizzle the coordinates. */ this->map_stencil_as_y_tiled = true; this->brw_surfaceformat = BRW_SURFACEFORMAT_R8_UNORM; break; case MESA_FORMAT_Z24_UNORM_X8_UINT: /* It would make sense to use BRW_SURFACEFORMAT_R24_UNORM_X8_TYPELESS * here, but unfortunately it isn't supported as a render target, which * would prevent us from blitting to 24-bit depth. * * The miptree consists of 32 bits per pixel, arranged as 24-bit depth * values interleaved with 8 "don't care" bits. Since depth values don't * require any blending, it doesn't matter how we interpret the bit * pattern as long as we copy the right amount of data, so just map it * as 8-bit BGRA. */ this->brw_surfaceformat = BRW_SURFACEFORMAT_B8G8R8A8_UNORM; break; case MESA_FORMAT_Z_FLOAT32: this->brw_surfaceformat = BRW_SURFACEFORMAT_R32_FLOAT; break; case MESA_FORMAT_Z_UNORM16: this->brw_surfaceformat = BRW_SURFACEFORMAT_R16_UNORM; break; default: { mesa_format linear_format = _mesa_get_srgb_format_linear(format); if (is_render_target) { assert(brw->format_supported_as_render_target[linear_format]); this->brw_surfaceformat = brw->render_target_format[linear_format]; } else { this->brw_surfaceformat = brw_format_for_mesa_format(linear_format); } break; } } } /** * Split x_offset and y_offset into a base offset (in bytes) and a remaining * x/y offset (in pixels). Note: we can't do this by calling * intel_renderbuffer_tile_offsets(), because the offsets may have been * adjusted to account for Y vs. W tiling differences. So we compute it * directly from the adjusted offsets. */ uint32_t brw_blorp_surface_info::compute_tile_offsets(uint32_t *tile_x, uint32_t *tile_y) const { uint32_t mask_x, mask_y; intel_miptree_get_tile_masks(mt, &mask_x, &mask_y, map_stencil_as_y_tiled); *tile_x = x_offset & mask_x; *tile_y = y_offset & mask_y; return intel_miptree_get_aligned_offset(mt, x_offset & ~mask_x, y_offset & ~mask_y, map_stencil_as_y_tiled); } brw_blorp_params::brw_blorp_params() : x0(0), y0(0), x1(0), y1(0), depth_format(0), hiz_op(GEN6_HIZ_OP_NONE), fast_clear_op(GEN7_FAST_CLEAR_OP_NONE), use_wm_prog(false) { color_write_disable[0] = false; color_write_disable[1] = false; color_write_disable[2] = false; color_write_disable[3] = false; } extern "C" { void intel_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt, unsigned int level, unsigned int layer, gen6_hiz_op op) { const char *opname = NULL; switch (op) { case GEN6_HIZ_OP_DEPTH_RESOLVE: opname = "depth resolve"; break; case GEN6_HIZ_OP_HIZ_RESOLVE: opname = "hiz ambiguate"; break; case GEN6_HIZ_OP_DEPTH_CLEAR: opname = "depth clear"; break; case GEN6_HIZ_OP_NONE: opname = "noop?"; break; } DBG("%s %s to mt %p level %d layer %d\n", __func__, opname, mt, level, layer); if (brw->gen >= 8) { gen8_hiz_exec(brw, mt, level, layer, op); } else { brw_hiz_op_params params(mt, level, layer, op); brw_blorp_exec(brw, ¶ms); } } } /* extern "C" */ void brw_blorp_exec(struct brw_context *brw, const brw_blorp_params *params) { struct gl_context *ctx = &brw->ctx; uint32_t estimated_max_batch_usage = 1500; bool check_aperture_failed_once = false; /* Flush the sampler and render caches. We definitely need to flush the * sampler cache so that we get updated contents from the render cache for * the glBlitFramebuffer() source. Also, we are sometimes warned in the * docs to flush the cache between reinterpretations of the same surface * data with different formats, which blorp does for stencil and depth * data. */ intel_batchbuffer_emit_mi_flush(brw); retry: intel_batchbuffer_require_space(brw, estimated_max_batch_usage, RENDER_RING); intel_batchbuffer_save_state(brw); drm_intel_bo *saved_bo = brw->batch.bo; uint32_t saved_used = brw->batch.used; uint32_t saved_state_batch_offset = brw->batch.state_batch_offset; switch (brw->gen) { case 6: gen6_blorp_exec(brw, params); break; case 7: gen7_blorp_exec(brw, params); break; default: /* BLORP is not supported before Gen6. */ unreachable("not reached"); } /* Make sure we didn't wrap the batch unintentionally, and make sure we * reserved enough space that a wrap will never happen. */ assert(brw->batch.bo == saved_bo); assert((brw->batch.used - saved_used) * 4 + (saved_state_batch_offset - brw->batch.state_batch_offset) < estimated_max_batch_usage); /* Shut up compiler warnings on release build */ (void)saved_bo; (void)saved_used; (void)saved_state_batch_offset; /* Check if the blorp op we just did would make our batch likely to fail to * map all the BOs into the GPU at batch exec time later. If so, flush the * batch and try again with nothing else in the batch. */ if (dri_bufmgr_check_aperture_space(&brw->batch.bo, 1)) { if (!check_aperture_failed_once) { check_aperture_failed_once = true; intel_batchbuffer_reset_to_saved(brw); intel_batchbuffer_flush(brw); goto retry; } else { int ret = intel_batchbuffer_flush(brw); WARN_ONCE(ret == -ENOSPC, "i965: blorp emit exceeded available aperture space\n"); } } if (unlikely(brw->always_flush_batch)) intel_batchbuffer_flush(brw); /* We've smashed all state compared to what the normal 3D pipeline * rendering tracks for GL. */ brw->ctx.NewDriverState = ~0ull; brw->no_depth_or_stencil = false; brw->ib.type = -1; /* Flush the sampler cache so any texturing from the destination is * coherent. */ intel_batchbuffer_emit_mi_flush(brw); } brw_hiz_op_params::brw_hiz_op_params(struct intel_mipmap_tree *mt, unsigned int level, unsigned int layer, gen6_hiz_op op) { this->hiz_op = op; depth.set(mt, level, layer); /* Align the rectangle primitive to 8x4 pixels. * * During fast depth clears, the emitted rectangle primitive must be * aligned to 8x4 pixels. From the Ivybridge PRM, Vol 2 Part 1 Section * 11.5.3.1 Depth Buffer Clear (and the matching section in the Sandybridge * PRM): * If Number of Multisamples is NUMSAMPLES_1, the rectangle must be * aligned to an 8x4 pixel block relative to the upper left corner * of the depth buffer [...] * * For hiz resolves, the rectangle must also be 8x4 aligned. Item * WaHizAmbiguate8x4Aligned from the Haswell workarounds page and the * Ivybridge simulator require the alignment. * * To be safe, let's just align the rect for all hiz operations and all * hardware generations. * * However, for some miptree slices of a Z24 texture, emitting an 8x4 * aligned rectangle that covers the slice may clobber adjacent slices if * we strictly adhered to the texture alignments specified in the PRM. The * Ivybridge PRM, Section "Alignment Unit Size", states that * SURFACE_STATE.Surface_Horizontal_Alignment should be 4 for Z24 surfaces, * not 8. But commit 1f112cc increased the alignment from 4 to 8, which * prevents the clobbering. */ depth.width = ALIGN(depth.width, 8); depth.height = ALIGN(depth.height, 4); x1 = depth.width; y1 = depth.height; assert(intel_miptree_level_has_hiz(mt, level)); switch (mt->format) { case MESA_FORMAT_Z_UNORM16: depth_format = BRW_DEPTHFORMAT_D16_UNORM; break; case MESA_FORMAT_Z_FLOAT32: depth_format = BRW_DEPTHFORMAT_D32_FLOAT; break; case MESA_FORMAT_Z24_UNORM_X8_UINT: depth_format = BRW_DEPTHFORMAT_D24_UNORM_X8_UINT; break; default: unreachable("not reached"); } } uint32_t brw_hiz_op_params::get_wm_prog(struct brw_context *brw, brw_blorp_prog_data **prog_data) const { return 0; }