/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "main/context.h" #include "main/teximage.h" #include "main/blend.h" #include "main/fbobject.h" #include "main/renderbuffer.h" #include "main/glformats.h" #include "brw_blorp.h" #include "brw_context.h" #include "brw_defines.h" #include "brw_meta_util.h" #include "brw_state.h" #include "intel_fbo.h" #include "intel_debug.h" #define FILE_DEBUG_FLAG DEBUG_BLORP static bool brw_blorp_lookup_shader(struct blorp_context *blorp, const void *key, uint32_t key_size, uint32_t *kernel_out, void *prog_data_out) { struct brw_context *brw = blorp->driver_ctx; return brw_search_cache(&brw->cache, BRW_CACHE_BLORP_PROG, key, key_size, kernel_out, prog_data_out); } static void brw_blorp_upload_shader(struct blorp_context *blorp, const void *key, uint32_t key_size, const void *kernel, uint32_t kernel_size, const void *prog_data, uint32_t prog_data_size, uint32_t *kernel_out, void *prog_data_out) { struct brw_context *brw = blorp->driver_ctx; brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_PROG, key, key_size, kernel, kernel_size, prog_data, prog_data_size, kernel_out, prog_data_out); } void brw_blorp_init(struct brw_context *brw) { blorp_init(&brw->blorp, brw, &brw->isl_dev); brw->blorp.compiler = brw->screen->compiler; switch (brw->gen) { case 6: brw->blorp.mocs.tex = 0; brw->blorp.mocs.rb = 0; brw->blorp.mocs.vb = 0; brw->blorp.exec = gen6_blorp_exec; break; case 7: brw->blorp.mocs.tex = GEN7_MOCS_L3; brw->blorp.mocs.rb = GEN7_MOCS_L3; brw->blorp.mocs.vb = GEN7_MOCS_L3; if (brw->is_haswell) { brw->blorp.exec = gen75_blorp_exec; } else { brw->blorp.exec = gen7_blorp_exec; } break; case 8: brw->blorp.mocs.tex = BDW_MOCS_WB; brw->blorp.mocs.rb = BDW_MOCS_PTE; brw->blorp.mocs.vb = BDW_MOCS_WB; brw->blorp.exec = gen8_blorp_exec; break; case 9: brw->blorp.mocs.tex = SKL_MOCS_WB; brw->blorp.mocs.rb = SKL_MOCS_PTE; brw->blorp.mocs.vb = SKL_MOCS_WB; brw->blorp.exec = gen9_blorp_exec; break; default: unreachable("Invalid gen"); } brw->blorp.lookup_shader = brw_blorp_lookup_shader; brw->blorp.upload_shader = brw_blorp_upload_shader; } static void apply_gen6_stencil_hiz_offset(struct isl_surf *surf, struct intel_mipmap_tree *mt, uint32_t lod, uint32_t *offset) { assert(mt->array_layout == ALL_SLICES_AT_EACH_LOD); if (mt->format == MESA_FORMAT_S_UINT8) { /* Note: we can't compute the stencil offset using * intel_miptree_get_aligned_offset(), because the miptree * claims that the region is untiled even though it's W tiled. */ *offset = mt->level[lod].level_y * mt->pitch + mt->level[lod].level_x * 64; } else { *offset = intel_miptree_get_aligned_offset(mt, mt->level[lod].level_x, mt->level[lod].level_y, false); } surf->logical_level0_px.width = minify(surf->logical_level0_px.width, lod); surf->logical_level0_px.height = minify(surf->logical_level0_px.height, lod); surf->phys_level0_sa.width = minify(surf->phys_level0_sa.width, lod); surf->phys_level0_sa.height = minify(surf->phys_level0_sa.height, lod); surf->levels = 1; surf->array_pitch_el_rows = ALIGN(surf->phys_level0_sa.height, surf->image_alignment_el.height); } static void blorp_surf_for_miptree(struct brw_context *brw, struct blorp_surf *surf, struct intel_mipmap_tree *mt, bool is_render_target, unsigned *level, struct isl_surf tmp_surfs[2]) { intel_miptree_get_isl_surf(brw, mt, &tmp_surfs[0]); surf->surf = &tmp_surfs[0]; surf->addr = (struct blorp_address) { .buffer = mt->bo, .offset = mt->offset, .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER : I915_GEM_DOMAIN_SAMPLER, .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0, }; if (brw->gen == 6 && mt->format == MESA_FORMAT_S_UINT8 && mt->array_layout == ALL_SLICES_AT_EACH_LOD) { /* Sandy bridge stencil and HiZ use this ALL_SLICES_AT_EACH_LOD hack in * order to allow for layered rendering. The hack makes each LOD of the * stencil or HiZ buffer a single tightly packed array surface at some * offset into the surface. Since ISL doesn't know how to deal with the * crazy ALL_SLICES_AT_EACH_LOD layout and since we have to do a manual * offset of it anyway, we might as well do the offset here and keep the * hacks inside the i965 driver. * * See also gen6_depth_stencil_state.c */ uint32_t offset; apply_gen6_stencil_hiz_offset(&tmp_surfs[0], mt, *level, &offset); surf->addr.offset += offset; *level = 0; } struct isl_surf *aux_surf = &tmp_surfs[1]; intel_miptree_get_aux_isl_surf(brw, mt, aux_surf, &surf->aux_usage); /* For textures that are in the RESOLVED state, we ignore the MCS */ if (mt->mcs_mt && !is_render_target && mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_RESOLVED) surf->aux_usage = ISL_AUX_USAGE_NONE; if (surf->aux_usage != ISL_AUX_USAGE_NONE) { /* We only really need a clear color if we also have an auxiliary * surface. Without one, it does nothing. */ surf->clear_color = intel_miptree_get_isl_clear_color(brw, mt); surf->aux_surf = aux_surf; surf->aux_addr = (struct blorp_address) { .read_domains = is_render_target ? I915_GEM_DOMAIN_RENDER : I915_GEM_DOMAIN_SAMPLER, .write_domain = is_render_target ? I915_GEM_DOMAIN_RENDER : 0, }; if (mt->mcs_mt) { surf->aux_addr.buffer = mt->mcs_mt->bo; surf->aux_addr.offset = mt->mcs_mt->offset; } else { assert(surf->aux_usage == ISL_AUX_USAGE_HIZ); struct intel_mipmap_tree *hiz_mt = mt->hiz_buf->mt; if (hiz_mt) { surf->aux_addr.buffer = hiz_mt->bo; if (brw->gen == 6 && hiz_mt->array_layout == ALL_SLICES_AT_EACH_LOD) { /* gen6 requires the HiZ buffer to be manually offset to the * right location. We could fixup the surf but it doesn't * matter since most of those fields don't matter. */ apply_gen6_stencil_hiz_offset(aux_surf, hiz_mt, *level, &surf->aux_addr.offset); } else { surf->aux_addr.offset = 0; } assert(hiz_mt->pitch == aux_surf->row_pitch); } else { surf->aux_addr.buffer = mt->hiz_buf->bo; surf->aux_addr.offset = 0; } } } else { surf->aux_addr = (struct blorp_address) { .buffer = NULL, }; memset(&surf->clear_color, 0, sizeof(surf->clear_color)); } assert((surf->aux_usage == ISL_AUX_USAGE_NONE) == (surf->aux_addr.buffer == NULL)); } static enum isl_format brw_blorp_to_isl_format(struct brw_context *brw, mesa_format format, bool is_render_target) { switch (format) { case MESA_FORMAT_NONE: return ISL_FORMAT_UNSUPPORTED; case MESA_FORMAT_S_UINT8: return ISL_FORMAT_R8_UINT; case MESA_FORMAT_Z24_UNORM_X8_UINT: return ISL_FORMAT_R24_UNORM_X8_TYPELESS; case MESA_FORMAT_Z_FLOAT32: return ISL_FORMAT_R32_FLOAT; case MESA_FORMAT_Z_UNORM16: return ISL_FORMAT_R16_UNORM; default: { if (is_render_target) { assert(brw->format_supported_as_render_target[format]); return brw->render_target_format[format]; } else { return brw_format_for_mesa_format(format); } break; } } } /** * Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+ * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are * * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE * 0 1 2 3 4 5 * 4 5 6 7 0 1 * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE * * which is simply adding 4 then modding by 8 (or anding with 7). * * We then may need to apply workarounds for textureGather hardware bugs. */ static enum isl_channel_select swizzle_to_scs(GLenum swizzle) { return (enum isl_channel_select)((swizzle + 4) & 7); } static unsigned physical_to_logical_layer(struct intel_mipmap_tree *mt, unsigned physical_layer) { if (mt->num_samples > 1 && (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS || mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS)) { assert(physical_layer % mt->num_samples == 0); return physical_layer / mt->num_samples; } else { return physical_layer; } } static void miptree_check_level_logical_layer(struct intel_mipmap_tree *mt, unsigned level, unsigned logical_layer) { if (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS || mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) { const unsigned num_samples = MAX2(1, mt->num_samples); for (unsigned s = 0; s < num_samples; s++) { const unsigned physical_layer = (logical_layer * num_samples) + s; intel_miptree_check_level_layer(mt, level, physical_layer); } } else { intel_miptree_check_level_layer(mt, level, logical_layer); } } /** * Note: if the src (or dst) is a 2D multisample array texture on Gen7+ using * INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, src_layer (dst_layer) is * the physical layer holding sample 0. So, for example, if * src_mt->num_samples == 4, then logical layer n corresponds to src_layer == * 4*n. */ void brw_blorp_blit_miptrees(struct brw_context *brw, struct intel_mipmap_tree *src_mt, unsigned src_level, unsigned src_layer, mesa_format src_format, int src_swizzle, struct intel_mipmap_tree *dst_mt, unsigned dst_level, unsigned dst_layer, mesa_format dst_format, float src_x0, float src_y0, float src_x1, float src_y1, float dst_x0, float dst_y0, float dst_x1, float dst_y1, GLenum filter, bool mirror_x, bool mirror_y, bool decode_srgb, bool encode_srgb) { /* Get ready to blit. This includes depth resolving the src and dst * buffers if necessary. Note: it's not necessary to do a color resolve on * the destination buffer because we use the standard render path to render * to destination color buffers, and the standard render path is * fast-color-aware. */ intel_miptree_resolve_color(brw, src_mt, INTEL_MIPTREE_IGNORE_CCS_E); intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer); intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer); DBG("%s from %dx %s mt %p %d %d (%f,%f) (%f,%f)" "to %dx %s mt %p %d %d (%f,%f) (%f,%f) (flip %d,%d)\n", __func__, src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt, src_level, src_layer, src_x0, src_y0, src_x1, src_y1, dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt, dst_level, dst_layer, dst_x0, dst_y0, dst_x1, dst_y1, mirror_x, mirror_y); if (!decode_srgb && _mesa_get_format_color_encoding(src_format) == GL_SRGB) src_format = _mesa_get_srgb_format_linear(src_format); if (!encode_srgb && _mesa_get_format_color_encoding(dst_format) == GL_SRGB) dst_format = _mesa_get_srgb_format_linear(dst_format); /* When doing a multisample resolve of a GL_LUMINANCE32F or GL_INTENSITY32F * texture, the above code configures the source format for L32_FLOAT or * I32_FLOAT, and the destination format for R32_FLOAT. On Sandy Bridge, * the SAMPLE message appears to handle multisampled L32_FLOAT and * I32_FLOAT textures incorrectly, resulting in blocky artifacts. So work * around the problem by using a source format of R32_FLOAT. This * shouldn't affect rendering correctness, since the destination format is * R32_FLOAT, so only the contents of the red channel matters. */ if (brw->gen == 6 && src_mt->num_samples > 1 && dst_mt->num_samples <= 1 && src_mt->format == dst_mt->format && (dst_format == MESA_FORMAT_L_FLOAT32 || dst_format == MESA_FORMAT_I_FLOAT32)) { src_format = dst_format = MESA_FORMAT_R_FLOAT32; } intel_miptree_check_level_layer(src_mt, src_level, src_layer); intel_miptree_check_level_layer(dst_mt, dst_level, dst_layer); intel_miptree_used_for_rendering(dst_mt); struct isl_surf tmp_surfs[4]; struct blorp_surf src_surf, dst_surf; blorp_surf_for_miptree(brw, &src_surf, src_mt, false, &src_level, &tmp_surfs[0]); blorp_surf_for_miptree(brw, &dst_surf, dst_mt, true, &dst_level, &tmp_surfs[2]); struct isl_swizzle src_isl_swizzle = { .r = swizzle_to_scs(GET_SWZ(src_swizzle, 0)), .g = swizzle_to_scs(GET_SWZ(src_swizzle, 1)), .b = swizzle_to_scs(GET_SWZ(src_swizzle, 2)), .a = swizzle_to_scs(GET_SWZ(src_swizzle, 3)), }; struct blorp_batch batch; blorp_batch_init(&brw->blorp, &batch, brw); blorp_blit(&batch, &src_surf, src_level, physical_to_logical_layer(src_mt, src_layer), brw_blorp_to_isl_format(brw, src_format, false), src_isl_swizzle, &dst_surf, dst_level, physical_to_logical_layer(dst_mt, dst_layer), brw_blorp_to_isl_format(brw, dst_format, true), ISL_SWIZZLE_IDENTITY, src_x0, src_y0, src_x1, src_y1, dst_x0, dst_y0, dst_x1, dst_y1, filter, mirror_x, mirror_y); blorp_batch_finish(&batch); intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer); if (intel_miptree_is_lossless_compressed(brw, dst_mt)) dst_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_UNRESOLVED; } void brw_blorp_copy_miptrees(struct brw_context *brw, struct intel_mipmap_tree *src_mt, unsigned src_level, unsigned src_layer, struct intel_mipmap_tree *dst_mt, unsigned dst_level, unsigned dst_layer, unsigned src_x, unsigned src_y, unsigned dst_x, unsigned dst_y, unsigned src_width, unsigned src_height) { /* Get ready to blit. This includes depth resolving the src and dst * buffers if necessary. Note: it's not necessary to do a color resolve on * the destination buffer because we use the standard render path to render * to destination color buffers, and the standard render path is * fast-color-aware. */ intel_miptree_resolve_color(brw, src_mt, INTEL_MIPTREE_IGNORE_CCS_E); intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_layer); intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_layer); DBG("%s from %dx %s mt %p %d %d (%d,%d) %dx%d" "to %dx %s mt %p %d %d (%d,%d)\n", __func__, src_mt->num_samples, _mesa_get_format_name(src_mt->format), src_mt, src_level, src_layer, src_x, src_y, src_width, src_height, dst_mt->num_samples, _mesa_get_format_name(dst_mt->format), dst_mt, dst_level, dst_layer, dst_x, dst_y); miptree_check_level_logical_layer(src_mt, src_level, src_layer); miptree_check_level_logical_layer(dst_mt, dst_level, dst_layer); intel_miptree_used_for_rendering(dst_mt); struct isl_surf tmp_surfs[4]; struct blorp_surf src_surf, dst_surf; blorp_surf_for_miptree(brw, &src_surf, src_mt, false, &src_level, &tmp_surfs[0]); blorp_surf_for_miptree(brw, &dst_surf, dst_mt, true, &dst_level, &tmp_surfs[2]); struct blorp_batch batch; blorp_batch_init(&brw->blorp, &batch, brw); blorp_copy(&batch, &src_surf, src_level, src_layer, &dst_surf, dst_level, dst_layer, src_x, src_y, dst_x, dst_y, src_width, src_height); blorp_batch_finish(&batch); intel_miptree_slice_set_needs_hiz_resolve(dst_mt, dst_level, dst_layer); if (intel_miptree_is_lossless_compressed(brw, dst_mt)) dst_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_UNRESOLVED; } static struct intel_mipmap_tree * find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb) { struct intel_mipmap_tree *mt = irb->mt; if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt) mt = mt->stencil_mt; return mt; } static int blorp_get_texture_swizzle(const struct intel_renderbuffer *irb) { return irb->Base.Base._BaseFormat == GL_RGB ? MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_ONE) : SWIZZLE_XYZW; } static void do_blorp_blit(struct brw_context *brw, GLbitfield buffer_bit, struct intel_renderbuffer *src_irb, mesa_format src_format, struct intel_renderbuffer *dst_irb, mesa_format dst_format, GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1, GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1, GLenum filter, bool mirror_x, bool mirror_y) { const struct gl_context *ctx = &brw->ctx; /* Find source/dst miptrees */ struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb); struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb); const bool do_srgb = ctx->Color.sRGBEnabled; /* Do the blit */ brw_blorp_blit_miptrees(brw, src_mt, src_irb->mt_level, src_irb->mt_layer, src_format, blorp_get_texture_swizzle(src_irb), dst_mt, dst_irb->mt_level, dst_irb->mt_layer, dst_format, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, filter, mirror_x, mirror_y, do_srgb, do_srgb); dst_irb->need_downsample = true; } static bool try_blorp_blit(struct brw_context *brw, const struct gl_framebuffer *read_fb, const struct gl_framebuffer *draw_fb, GLfloat srcX0, GLfloat srcY0, GLfloat srcX1, GLfloat srcY1, GLfloat dstX0, GLfloat dstY0, GLfloat dstX1, GLfloat dstY1, GLenum filter, GLbitfield buffer_bit) { struct gl_context *ctx = &brw->ctx; /* Sync up the state of window system buffers. We need to do this before * we go looking for the buffers. */ intel_prepare_render(brw); bool mirror_x, mirror_y; if (brw_meta_mirror_clip_and_scissor(ctx, read_fb, draw_fb, &srcX0, &srcY0, &srcX1, &srcY1, &dstX0, &dstY0, &dstX1, &dstY1, &mirror_x, &mirror_y)) return true; /* Find buffers */ struct intel_renderbuffer *src_irb; struct intel_renderbuffer *dst_irb; struct intel_mipmap_tree *src_mt; struct intel_mipmap_tree *dst_mt; switch (buffer_bit) { case GL_COLOR_BUFFER_BIT: src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer); for (unsigned i = 0; i < draw_fb->_NumColorDrawBuffers; ++i) { dst_irb = intel_renderbuffer(draw_fb->_ColorDrawBuffers[i]); if (dst_irb) do_blorp_blit(brw, buffer_bit, src_irb, src_irb->Base.Base.Format, dst_irb, dst_irb->Base.Base.Format, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, filter, mirror_x, mirror_y); } break; case GL_DEPTH_BUFFER_BIT: src_irb = intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer); dst_irb = intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer); src_mt = find_miptree(buffer_bit, src_irb); dst_mt = find_miptree(buffer_bit, dst_irb); /* We can't handle format conversions between Z24 and other formats * since we have to lie about the surface format. See the comments in * brw_blorp_surface_info::set(). */ if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) != (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) return false; do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE, dst_irb, MESA_FORMAT_NONE, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, filter, mirror_x, mirror_y); break; case GL_STENCIL_BUFFER_BIT: src_irb = intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer); dst_irb = intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer); do_blorp_blit(brw, buffer_bit, src_irb, MESA_FORMAT_NONE, dst_irb, MESA_FORMAT_NONE, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, filter, mirror_x, mirror_y); break; default: unreachable("not reached"); } return true; } bool brw_blorp_copytexsubimage(struct brw_context *brw, struct gl_renderbuffer *src_rb, struct gl_texture_image *dst_image, int slice, int srcX0, int srcY0, int dstX0, int dstY0, int width, int height) { struct gl_context *ctx = &brw->ctx; struct intel_renderbuffer *src_irb = intel_renderbuffer(src_rb); struct intel_texture_image *intel_image = intel_texture_image(dst_image); /* No pixel transfer operations (zoom, bias, mapping), just a blit */ if (brw->ctx._ImageTransferState) return false; /* Sync up the state of window system buffers. We need to do this before * we go looking at the src renderbuffer's miptree. */ intel_prepare_render(brw); struct intel_mipmap_tree *src_mt = src_irb->mt; struct intel_mipmap_tree *dst_mt = intel_image->mt; /* There is support for only up to eight samples. */ if (src_mt->num_samples > 8 || dst_mt->num_samples > 8) return false; /* BLORP is only supported from Gen6 onwards. */ if (brw->gen < 6) return false; if (_mesa_get_format_base_format(src_rb->Format) != _mesa_get_format_base_format(dst_image->TexFormat)) { return false; } /* We can't handle format conversions between Z24 and other formats since * we have to lie about the surface format. See the comments in * brw_blorp_surface_info::set(). */ if ((src_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT) != (dst_mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT)) { return false; } if (!brw->format_supported_as_render_target[dst_image->TexFormat]) return false; /* Source clipping shouldn't be necessary, since copytexsubimage (in * src/mesa/main/teximage.c) calls _mesa_clip_copytexsubimage() which * takes care of it. * * Destination clipping shouldn't be necessary since the restrictions on * glCopyTexSubImage prevent the user from specifying a destination rectangle * that falls outside the bounds of the destination texture. * See error_check_subtexture_dimensions(). */ int srcY1 = srcY0 + height; int srcX1 = srcX0 + width; int dstX1 = dstX0 + width; int dstY1 = dstY0 + height; /* Account for the fact that in the system framebuffer, the origin is at * the lower left. */ bool mirror_y = false; if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) { GLint tmp = src_rb->Height - srcY0; srcY0 = src_rb->Height - srcY1; srcY1 = tmp; mirror_y = true; } /* Account for face selection and texture view MinLayer */ int dst_slice = slice + dst_image->TexObject->MinLayer + dst_image->Face; int dst_level = dst_image->Level + dst_image->TexObject->MinLevel; brw_blorp_blit_miptrees(brw, src_mt, src_irb->mt_level, src_irb->mt_layer, src_rb->Format, blorp_get_texture_swizzle(src_irb), dst_mt, dst_level, dst_slice, dst_image->TexFormat, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, GL_NEAREST, false, mirror_y, false, false); /* If we're copying to a packed depth stencil texture and the source * framebuffer has separate stencil, we need to also copy the stencil data * over. */ src_rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer; if (_mesa_get_format_bits(dst_image->TexFormat, GL_STENCIL_BITS) > 0 && src_rb != NULL) { src_irb = intel_renderbuffer(src_rb); src_mt = src_irb->mt; if (src_mt->stencil_mt) src_mt = src_mt->stencil_mt; if (dst_mt->stencil_mt) dst_mt = dst_mt->stencil_mt; if (src_mt != dst_mt) { brw_blorp_blit_miptrees(brw, src_mt, src_irb->mt_level, src_irb->mt_layer, src_mt->format, blorp_get_texture_swizzle(src_irb), dst_mt, dst_level, dst_slice, dst_mt->format, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, GL_NEAREST, false, mirror_y, false, false); } } return true; } GLbitfield brw_blorp_framebuffer(struct brw_context *brw, struct gl_framebuffer *readFb, struct gl_framebuffer *drawFb, GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter) { /* BLORP is not supported before Gen6. */ if (brw->gen < 6) return mask; static GLbitfield buffer_bits[] = { GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, GL_STENCIL_BUFFER_BIT, }; for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) { if ((mask & buffer_bits[i]) && try_blorp_blit(brw, readFb, drawFb, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, filter, buffer_bits[i])) { mask &= ~buffer_bits[i]; } } return mask; } static bool set_write_disables(const struct intel_renderbuffer *irb, const GLubyte *color_mask, bool *color_write_disable) { /* Format information in the renderbuffer represents the requirements * given by the client. There are cases where the backing miptree uses, * for example, RGBA to represent RGBX. Since the client is only expecting * RGB we can treat alpha as not used and write whatever we like into it. */ const GLenum base_format = irb->Base.Base._BaseFormat; const int components = _mesa_base_format_component_count(base_format); bool disables = false; assert(components > 0); for (int i = 0; i < components; i++) { color_write_disable[i] = !color_mask[i]; disables = disables || !color_mask[i]; } return disables; } static unsigned irb_logical_mt_layer(struct intel_renderbuffer *irb) { return physical_to_logical_layer(irb->mt, irb->mt_layer); } static bool do_single_blorp_clear(struct brw_context *brw, struct gl_framebuffer *fb, struct gl_renderbuffer *rb, unsigned buf, bool partial_clear, bool encode_srgb) { struct gl_context *ctx = &brw->ctx; struct intel_renderbuffer *irb = intel_renderbuffer(rb); mesa_format format = irb->mt->format; uint32_t x0, x1, y0, y1; if (!encode_srgb && _mesa_get_format_color_encoding(format) == GL_SRGB) format = _mesa_get_srgb_format_linear(format); x0 = fb->_Xmin; x1 = fb->_Xmax; if (rb->Name != 0) { y0 = fb->_Ymin; y1 = fb->_Ymax; } else { y0 = rb->Height - fb->_Ymax; y1 = rb->Height - fb->_Ymin; } /* If the clear region is empty, just return. */ if (x0 == x1 || y0 == y1) return true; bool can_fast_clear = !partial_clear; bool color_write_disable[4] = { false, false, false, false }; if (set_write_disables(irb, ctx->Color.ColorMask[buf], color_write_disable)) can_fast_clear = false; if (irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_NO_MCS || !brw_is_color_fast_clear_compatible(brw, irb->mt, &ctx->Color.ClearColor)) can_fast_clear = false; const bool is_lossless_compressed = intel_miptree_is_lossless_compressed( brw, irb->mt); if (can_fast_clear) { /* Record the clear color in the miptree so that it will be * programmed in SURFACE_STATE by later rendering and resolve * operations. */ const bool color_updated = brw_meta_set_fast_clear_color( brw, irb->mt, &ctx->Color.ClearColor); /* If the buffer is already in INTEL_FAST_CLEAR_STATE_CLEAR, the clear * is redundant and can be skipped. */ if (!color_updated && irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR) return true; /* If the MCS buffer hasn't been allocated yet, we need to allocate * it now. */ if (!irb->mt->mcs_mt) { assert(!is_lossless_compressed); if (!intel_miptree_alloc_non_msrt_mcs(brw, irb->mt, false)) { /* MCS allocation failed--probably this will only happen in * out-of-memory conditions. But in any case, try to recover * by falling back to a non-blorp clear technique. */ return false; } } } intel_miptree_used_for_rendering(irb->mt); /* We can't setup the blorp_surf until we've allocated the MCS above */ struct isl_surf isl_tmp[2]; struct blorp_surf surf; unsigned level = irb->mt_level; blorp_surf_for_miptree(brw, &surf, irb->mt, true, &level, isl_tmp); const unsigned num_layers = fb->MaxNumLayers ? irb->layer_count : 1; if (can_fast_clear) { DBG("%s (fast) to mt %p level %d layers %d+%d\n", __FUNCTION__, irb->mt, irb->mt_level, irb->mt_layer, num_layers); struct blorp_batch batch; blorp_batch_init(&brw->blorp, &batch, brw); blorp_fast_clear(&batch, &surf, (enum isl_format)brw->render_target_format[format], level, irb_logical_mt_layer(irb), num_layers, x0, y0, x1, y1); blorp_batch_finish(&batch); /* Now that the fast clear has occurred, put the buffer in * INTEL_FAST_CLEAR_STATE_CLEAR so that we won't waste time doing * redundant clears. */ irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR; } else { DBG("%s (slow) to mt %p level %d layer %d+%d\n", __FUNCTION__, irb->mt, irb->mt_level, irb->mt_layer, num_layers); union isl_color_value clear_color; memcpy(clear_color.f32, ctx->Color.ClearColor.f, sizeof(float) * 4); struct blorp_batch batch; blorp_batch_init(&brw->blorp, &batch, brw); blorp_clear(&batch, &surf, (enum isl_format)brw->render_target_format[format], ISL_SWIZZLE_IDENTITY, level, irb_logical_mt_layer(irb), num_layers, x0, y0, x1, y1, clear_color, color_write_disable); blorp_batch_finish(&batch); if (is_lossless_compressed) { /* Compressed buffers can be cleared also using normal rep-clear. In * such case they behave such as if they were drawn using normal 3D * render pipeline, and we simply mark the mcs as dirty. */ irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_UNRESOLVED; } } return true; } bool brw_blorp_clear_color(struct brw_context *brw, struct gl_framebuffer *fb, GLbitfield mask, bool partial_clear, bool encode_srgb) { for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) { struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf]; struct intel_renderbuffer *irb = intel_renderbuffer(rb); /* Only clear the buffers present in the provided mask */ if (((1 << fb->_ColorDrawBufferIndexes[buf]) & mask) == 0) continue; /* If this is an ES2 context or GL_ARB_ES2_compatibility is supported, * the framebuffer can be complete with some attachments missing. In * this case the _ColorDrawBuffers pointer will be NULL. */ if (rb == NULL) continue; const unsigned num_layers = fb->MaxNumLayers ? irb->layer_count : 1; for (unsigned layer = 0; layer < num_layers; layer++) { intel_miptree_check_level_layer(irb->mt, irb->mt_level, layer); } if (!do_single_blorp_clear(brw, fb, rb, buf, partial_clear, encode_srgb)) { return false; } irb->need_downsample = true; } return true; } void brw_blorp_resolve_color(struct brw_context *brw, struct intel_mipmap_tree *mt) { DBG("%s to mt %p\n", __FUNCTION__, mt); const mesa_format format = _mesa_get_srgb_format_linear(mt->format); intel_miptree_check_level_layer(mt, 0 /* level */, 0 /* layer */); intel_miptree_used_for_rendering(mt); struct isl_surf isl_tmp[2]; struct blorp_surf surf; unsigned level = 0; blorp_surf_for_miptree(brw, &surf, mt, true, &level, isl_tmp); struct blorp_batch batch; blorp_batch_init(&brw->blorp, &batch, brw); blorp_ccs_resolve(&batch, &surf, brw_blorp_to_isl_format(brw, format, true)); blorp_batch_finish(&batch); mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED; } static void gen6_blorp_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt, unsigned int level, unsigned int layer, enum blorp_hiz_op op) { intel_miptree_check_level_layer(mt, level, layer); intel_miptree_used_for_rendering(mt); assert(intel_miptree_level_has_hiz(mt, level)); struct isl_surf isl_tmp[2]; struct blorp_surf surf; blorp_surf_for_miptree(brw, &surf, mt, true, &level, isl_tmp); struct blorp_batch batch; blorp_batch_init(&brw->blorp, &batch, brw); blorp_gen6_hiz_op(&batch, &surf, level, layer, op); blorp_batch_finish(&batch); } /** * Perform a HiZ or depth resolve operation. * * For an overview of HiZ ops, see the following sections of the Sandy Bridge * PRM, Volume 1, Part 2: * - 7.5.3.1 Depth Buffer Clear * - 7.5.3.2 Depth Buffer Resolve * - 7.5.3.3 Hierarchical Depth Buffer Resolve */ void intel_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt, unsigned int level, unsigned int layer, enum blorp_hiz_op op) { const char *opname = NULL; switch (op) { case BLORP_HIZ_OP_DEPTH_RESOLVE: opname = "depth resolve"; break; case BLORP_HIZ_OP_HIZ_RESOLVE: opname = "hiz ambiguate"; break; case BLORP_HIZ_OP_DEPTH_CLEAR: opname = "depth clear"; break; case BLORP_HIZ_OP_NONE: opname = "noop?"; break; } DBG("%s %s to mt %p level %d layer %d\n", __func__, opname, mt, level, layer); if (brw->gen >= 8) { gen8_hiz_exec(brw, mt, level, layer, op); } else { gen6_blorp_hiz_exec(brw, mt, level, layer, op); } }