/************************************************************************** * * Copyright 2003 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "main/glheader.h" #include "main/macros.h" #include "main/enums.h" #include "program/prog_instruction.h" #include "program/prog_parameter.h" #include "program/program.h" #include "program/programopt.h" #include "program/prog_print.h" #include "tnl/tnl.h" #include "tnl/t_context.h" #include "intel_batchbuffer.h" #include "i915_reg.h" #include "i915_context.h" #include "i915_program.h" static const GLfloat sin_quad_constants[2][4] = { { 2.0, -1.0, .5, .75 }, { 4.0, -4.0, 1.0 / (2.0 * M_PI), .2225 } }; static const GLfloat sin_constants[4] = { 1.0, -1.0 / (3 * 2 * 1), 1.0 / (5 * 4 * 3 * 2 * 1), -1.0 / (7 * 6 * 5 * 4 * 3 * 2 * 1) }; /* 1, -1/2!, 1/4!, -1/6! */ static const GLfloat cos_constants[4] = { 1.0, -1.0 / (2 * 1), 1.0 / (4 * 3 * 2 * 1), -1.0 / (6 * 5 * 4 * 3 * 2 * 1) }; /* texcoord_mapping[unit] = index | TEXCOORD_{TEX,VAR} */ #define TEXCOORD_TEX (0<<7) #define TEXCOORD_VAR (1<<7) static unsigned get_texcoord_mapping(struct i915_fragment_program *p, uint8_t texcoord) { for (unsigned i = 0; i < p->ctx->Const.MaxTextureCoordUnits; i++) { if (p->texcoord_mapping[i] == texcoord) return i; } /* blah */ return p->ctx->Const.MaxTextureCoordUnits - 1; } /** * Retrieve a ureg for the given source register. Will emit * constants, apply swizzling and negation as needed. */ static GLuint src_vector(struct i915_fragment_program *p, const struct prog_src_register *source, const struct gl_program *program) { GLuint src; unsigned unit; switch (source->File) { /* Registers: */ case PROGRAM_TEMPORARY: if (source->Index >= I915_MAX_TEMPORARY) { i915_program_error(p, "Exceeded max temporary reg: %d/%d", source->Index, I915_MAX_TEMPORARY); return 0; } src = UREG(REG_TYPE_R, source->Index); break; case PROGRAM_INPUT: switch (source->Index) { case VARYING_SLOT_POS: src = i915_emit_decl(p, REG_TYPE_T, p->wpos_tex, D0_CHANNEL_ALL); break; case VARYING_SLOT_COL0: src = i915_emit_decl(p, REG_TYPE_T, T_DIFFUSE, D0_CHANNEL_ALL); break; case VARYING_SLOT_COL1: src = i915_emit_decl(p, REG_TYPE_T, T_SPECULAR, D0_CHANNEL_XYZ); src = swizzle(src, X, Y, Z, ONE); break; case VARYING_SLOT_FOGC: src = i915_emit_decl(p, REG_TYPE_T, T_FOG_W, D0_CHANNEL_W); src = swizzle(src, W, ZERO, ZERO, ONE); break; case VARYING_SLOT_TEX0: case VARYING_SLOT_TEX1: case VARYING_SLOT_TEX2: case VARYING_SLOT_TEX3: case VARYING_SLOT_TEX4: case VARYING_SLOT_TEX5: case VARYING_SLOT_TEX6: case VARYING_SLOT_TEX7: unit = get_texcoord_mapping(p, (source->Index - VARYING_SLOT_TEX0) | TEXCOORD_TEX); src = i915_emit_decl(p, REG_TYPE_T, T_TEX0 + unit, D0_CHANNEL_ALL); break; case VARYING_SLOT_VAR0: case VARYING_SLOT_VAR0 + 1: case VARYING_SLOT_VAR0 + 2: case VARYING_SLOT_VAR0 + 3: case VARYING_SLOT_VAR0 + 4: case VARYING_SLOT_VAR0 + 5: case VARYING_SLOT_VAR0 + 6: case VARYING_SLOT_VAR0 + 7: unit = get_texcoord_mapping(p, (source->Index - VARYING_SLOT_VAR0) | TEXCOORD_VAR); src = i915_emit_decl(p, REG_TYPE_T, T_TEX0 + unit, D0_CHANNEL_ALL); break; default: i915_program_error(p, "Bad source->Index: %d", source->Index); return 0; } break; case PROGRAM_OUTPUT: switch (source->Index) { case FRAG_RESULT_COLOR: case FRAG_RESULT_DATA0: src = UREG(REG_TYPE_OC, 0); break; case FRAG_RESULT_DEPTH: src = UREG(REG_TYPE_OD, 0); break; default: i915_program_error(p, "Bad source->Index: %d", source->Index); return 0; } break; /* Various paramters and env values. All emitted to * hardware as program constants. */ case PROGRAM_CONSTANT: case PROGRAM_STATE_VAR: case PROGRAM_UNIFORM: src = i915_emit_param4fv(p, &program->Parameters->ParameterValues[source->Index][0].f); break; default: i915_program_error(p, "Bad source->File: %d", source->File); return 0; } src = swizzle(src, GET_SWZ(source->Swizzle, 0), GET_SWZ(source->Swizzle, 1), GET_SWZ(source->Swizzle, 2), GET_SWZ(source->Swizzle, 3)); if (source->Negate) src = negate(src, GET_BIT(source->Negate, 0), GET_BIT(source->Negate, 1), GET_BIT(source->Negate, 2), GET_BIT(source->Negate, 3)); return src; } static GLuint get_result_vector(struct i915_fragment_program *p, const struct prog_instruction *inst) { switch (inst->DstReg.File) { case PROGRAM_OUTPUT: switch (inst->DstReg.Index) { case FRAG_RESULT_COLOR: case FRAG_RESULT_DATA0: return UREG(REG_TYPE_OC, 0); case FRAG_RESULT_DEPTH: p->depth_written = 1; return UREG(REG_TYPE_OD, 0); default: i915_program_error(p, "Bad inst->DstReg.Index: %d", inst->DstReg.Index); return 0; } case PROGRAM_TEMPORARY: return UREG(REG_TYPE_R, inst->DstReg.Index); default: i915_program_error(p, "Bad inst->DstReg.File: %d", inst->DstReg.File); return 0; } } static GLuint get_result_flags(const struct prog_instruction *inst) { GLuint flags = 0; if (inst->Saturate) flags |= A0_DEST_SATURATE; if (inst->DstReg.WriteMask & WRITEMASK_X) flags |= A0_DEST_CHANNEL_X; if (inst->DstReg.WriteMask & WRITEMASK_Y) flags |= A0_DEST_CHANNEL_Y; if (inst->DstReg.WriteMask & WRITEMASK_Z) flags |= A0_DEST_CHANNEL_Z; if (inst->DstReg.WriteMask & WRITEMASK_W) flags |= A0_DEST_CHANNEL_W; return flags; } static GLuint translate_tex_src_target(struct i915_fragment_program *p, GLubyte bit) { switch (bit) { case TEXTURE_1D_INDEX: return D0_SAMPLE_TYPE_2D; case TEXTURE_2D_INDEX: return D0_SAMPLE_TYPE_2D; case TEXTURE_RECT_INDEX: return D0_SAMPLE_TYPE_2D; case TEXTURE_3D_INDEX: return D0_SAMPLE_TYPE_VOLUME; case TEXTURE_CUBE_INDEX: return D0_SAMPLE_TYPE_CUBE; default: i915_program_error(p, "TexSrcBit: %d", bit); return 0; } } #define EMIT_TEX( OP ) \ do { \ GLuint dim = translate_tex_src_target( p, inst->TexSrcTarget ); \ const struct gl_program *program = &p->FragProg; \ GLuint unit = program->SamplerUnits[inst->TexSrcUnit]; \ GLuint sampler = i915_emit_decl(p, REG_TYPE_S, \ unit, dim); \ GLuint coord = src_vector( p, &inst->SrcReg[0], program); \ /* Texel lookup */ \ \ i915_emit_texld( p, get_live_regs(p, inst), \ get_result_vector( p, inst ), \ get_result_flags( inst ), \ sampler, \ coord, \ OP); \ } while (0) #define EMIT_ARITH( OP, N ) \ do { \ i915_emit_arith( p, \ OP, \ get_result_vector( p, inst ), \ get_result_flags( inst ), 0, \ (N<1)?0:src_vector( p, &inst->SrcReg[0], program), \ (N<2)?0:src_vector( p, &inst->SrcReg[1], program), \ (N<3)?0:src_vector( p, &inst->SrcReg[2], program)); \ } while (0) #define EMIT_1ARG_ARITH( OP ) EMIT_ARITH( OP, 1 ) #define EMIT_2ARG_ARITH( OP ) EMIT_ARITH( OP, 2 ) #define EMIT_3ARG_ARITH( OP ) EMIT_ARITH( OP, 3 ) /* * TODO: consider moving this into core */ static bool calc_live_regs( struct i915_fragment_program *p ) { const struct gl_program *program = &p->FragProg; GLuint regsUsed = ~((1 << I915_MAX_TEMPORARY) - 1); uint8_t live_components[I915_MAX_TEMPORARY] = { 0, }; GLint i; for (i = program->arb.NumInstructions - 1; i >= 0; i--) { struct prog_instruction *inst = &program->arb.Instructions[i]; int opArgs = _mesa_num_inst_src_regs(inst->Opcode); int a; /* Register is written to: unmark as live for this and preceeding ops */ if (inst->DstReg.File == PROGRAM_TEMPORARY) { if (inst->DstReg.Index >= I915_MAX_TEMPORARY) return false; live_components[inst->DstReg.Index] &= ~inst->DstReg.WriteMask; if (live_components[inst->DstReg.Index] == 0) regsUsed &= ~(1 << inst->DstReg.Index); } for (a = 0; a < opArgs; a++) { /* Register is read from: mark as live for this and preceeding ops */ if (inst->SrcReg[a].File == PROGRAM_TEMPORARY) { unsigned c; if (inst->SrcReg[a].Index >= I915_MAX_TEMPORARY) return false; regsUsed |= 1 << inst->SrcReg[a].Index; for (c = 0; c < 4; c++) { const unsigned field = GET_SWZ(inst->SrcReg[a].Swizzle, c); if (field <= SWIZZLE_W) live_components[inst->SrcReg[a].Index] |= (1U << field); } } } p->usedRegs[i] = regsUsed; } return true; } static GLuint get_live_regs( struct i915_fragment_program *p, const struct prog_instruction *inst ) { const struct gl_program *program = &p->FragProg; GLuint nr = inst - program->arb.Instructions; return p->usedRegs[nr]; } /* Possible concerns: * * SIN, COS -- could use another taylor step? * LIT -- results seem a little different to sw mesa * LOG -- different to mesa on negative numbers, but this is conformant. * * Parse failures -- Mesa doesn't currently give a good indication * internally whether a particular program string parsed or not. This * can lead to confusion -- hopefully we cope with it ok now. * */ static void upload_program(struct i915_fragment_program *p) { const struct gl_program *program = &p->FragProg; const struct prog_instruction *inst = program->arb.Instructions; if (INTEL_DEBUG & DEBUG_WM) _mesa_print_program(program); /* Is this a parse-failed program? Ensure a valid program is * loaded, as the flagging of an error isn't sufficient to stop * this being uploaded to hardware. */ if (inst[0].Opcode == OPCODE_END) { GLuint tmp = i915_get_utemp(p); i915_emit_arith(p, A0_MOV, UREG(REG_TYPE_OC, 0), A0_DEST_CHANNEL_ALL, 0, swizzle(tmp, ONE, ZERO, ONE, ONE), 0, 0); return; } if (program->arb.NumInstructions > I915_MAX_INSN) { i915_program_error(p, "Exceeded max instructions (%d out of %d)", program->arb.NumInstructions, I915_MAX_INSN); return; } /* Not always needed: */ if (!calc_live_regs(p)) { i915_program_error(p, "Could not allocate registers"); return; } while (1) { GLuint src0, src1, src2, flags; GLuint tmp = 0, dst, consts0 = 0, consts1 = 0; switch (inst->Opcode) { case OPCODE_ABS: src0 = src_vector(p, &inst->SrcReg[0], program); i915_emit_arith(p, A0_MAX, get_result_vector(p, inst), get_result_flags(inst), 0, src0, negate(src0, 1, 1, 1, 1), 0); break; case OPCODE_ADD: EMIT_2ARG_ARITH(A0_ADD); break; case OPCODE_CMP: src0 = src_vector(p, &inst->SrcReg[0], program); src1 = src_vector(p, &inst->SrcReg[1], program); src2 = src_vector(p, &inst->SrcReg[2], program); i915_emit_arith(p, A0_CMP, get_result_vector(p, inst), get_result_flags(inst), 0, src0, src2, src1); /* NOTE: order of src2, src1 */ break; case OPCODE_COS: src0 = src_vector(p, &inst->SrcReg[0], program); tmp = i915_get_utemp(p); consts0 = i915_emit_const4fv(p, sin_quad_constants[0]); consts1 = i915_emit_const4fv(p, sin_quad_constants[1]); /* Reduce range from repeating about [-pi,pi] to [-1,1] */ i915_emit_arith(p, A0_MAD, tmp, A0_DEST_CHANNEL_X, 0, src0, swizzle(consts1, Z, ZERO, ZERO, ZERO), /* 1/(2pi) */ swizzle(consts0, W, ZERO, ZERO, ZERO)); /* .75 */ i915_emit_arith(p, A0_FRC, tmp, A0_DEST_CHANNEL_X, 0, tmp, 0, 0); i915_emit_arith(p, A0_MAD, tmp, A0_DEST_CHANNEL_X, 0, tmp, swizzle(consts0, X, ZERO, ZERO, ZERO), /* 2 */ swizzle(consts0, Y, ZERO, ZERO, ZERO)); /* -1 */ /* Compute COS with the same calculation used for SIN, but a * different source range has been mapped to [-1,1] this time. */ /* tmp.y = abs(tmp.x); {x, abs(x), 0, 0} */ i915_emit_arith(p, A0_MAX, tmp, A0_DEST_CHANNEL_Y, 0, swizzle(tmp, ZERO, X, ZERO, ZERO), negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0), 0); /* tmp.y = tmp.y * tmp.x; {x, x * abs(x), 0, 0} */ i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_Y, 0, swizzle(tmp, ZERO, X, ZERO, ZERO), tmp, 0); /* tmp.x = tmp.xy DP sin_quad_constants[2].xy */ i915_emit_arith(p, A0_DP3, tmp, A0_DEST_CHANNEL_X, 0, tmp, swizzle(consts1, X, Y, ZERO, ZERO), 0); /* tmp.x now contains a first approximation (y). Now, weight it * against tmp.y**2 to get closer. */ i915_emit_arith(p, A0_MAX, tmp, A0_DEST_CHANNEL_Y, 0, swizzle(tmp, ZERO, X, ZERO, ZERO), negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0), 0); /* tmp.y = tmp.x * tmp.y - tmp.x; {y, y * abs(y) - y, 0, 0} */ i915_emit_arith(p, A0_MAD, tmp, A0_DEST_CHANNEL_Y, 0, swizzle(tmp, ZERO, X, ZERO, ZERO), swizzle(tmp, ZERO, Y, ZERO, ZERO), negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0)); /* result = .2225 * tmp.y + tmp.x =.2225(y * abs(y) - y) + y= */ i915_emit_arith(p, A0_MAD, get_result_vector(p, inst), get_result_flags(inst), 0, swizzle(consts1, W, W, W, W), swizzle(tmp, Y, Y, Y, Y), swizzle(tmp, X, X, X, X)); break; case OPCODE_DP2: src0 = src_vector(p, &inst->SrcReg[0], program); src1 = src_vector(p, &inst->SrcReg[1], program); i915_emit_arith(p, A0_DP3, get_result_vector(p, inst), get_result_flags(inst), 0, swizzle(src0, X, Y, ZERO, ZERO), swizzle(src1, X, Y, ZERO, ZERO), 0); break; case OPCODE_DP3: EMIT_2ARG_ARITH(A0_DP3); break; case OPCODE_DP4: EMIT_2ARG_ARITH(A0_DP4); break; case OPCODE_DPH: src0 = src_vector(p, &inst->SrcReg[0], program); src1 = src_vector(p, &inst->SrcReg[1], program); i915_emit_arith(p, A0_DP4, get_result_vector(p, inst), get_result_flags(inst), 0, swizzle(src0, X, Y, Z, ONE), src1, 0); break; case OPCODE_DST: src0 = src_vector(p, &inst->SrcReg[0], program); src1 = src_vector(p, &inst->SrcReg[1], program); /* result[0] = 1 * 1; * result[1] = a[1] * b[1]; * result[2] = a[2] * 1; * result[3] = 1 * b[3]; */ i915_emit_arith(p, A0_MUL, get_result_vector(p, inst), get_result_flags(inst), 0, swizzle(src0, ONE, Y, Z, ONE), swizzle(src1, ONE, Y, ONE, W), 0); break; case OPCODE_EX2: src0 = src_vector(p, &inst->SrcReg[0], program); i915_emit_arith(p, A0_EXP, get_result_vector(p, inst), get_result_flags(inst), 0, swizzle(src0, X, X, X, X), 0, 0); break; case OPCODE_FLR: EMIT_1ARG_ARITH(A0_FLR); break; case OPCODE_TRUNC: EMIT_1ARG_ARITH(A0_TRC); break; case OPCODE_FRC: EMIT_1ARG_ARITH(A0_FRC); break; case OPCODE_KIL: src0 = src_vector(p, &inst->SrcReg[0], program); tmp = i915_get_utemp(p); i915_emit_texld(p, get_live_regs(p, inst), tmp, A0_DEST_CHANNEL_ALL, /* use a dummy dest reg */ 0, src0, T0_TEXKILL); break; case OPCODE_LG2: src0 = src_vector(p, &inst->SrcReg[0], program); i915_emit_arith(p, A0_LOG, get_result_vector(p, inst), get_result_flags(inst), 0, swizzle(src0, X, X, X, X), 0, 0); break; case OPCODE_LIT: src0 = src_vector(p, &inst->SrcReg[0], program); tmp = i915_get_utemp(p); /* tmp = max( a.xyzw, a.00zw ) * XXX: Clamp tmp.w to -128..128 * tmp.y = log(tmp.y) * tmp.y = tmp.w * tmp.y * tmp.y = exp(tmp.y) * result = cmp (a.11-x1, a.1x01, a.1xy1 ) */ i915_emit_arith(p, A0_MAX, tmp, A0_DEST_CHANNEL_ALL, 0, src0, swizzle(src0, ZERO, ZERO, Z, W), 0); i915_emit_arith(p, A0_LOG, tmp, A0_DEST_CHANNEL_Y, 0, swizzle(tmp, Y, Y, Y, Y), 0, 0); i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_Y, 0, swizzle(tmp, ZERO, Y, ZERO, ZERO), swizzle(tmp, ZERO, W, ZERO, ZERO), 0); i915_emit_arith(p, A0_EXP, tmp, A0_DEST_CHANNEL_Y, 0, swizzle(tmp, Y, Y, Y, Y), 0, 0); i915_emit_arith(p, A0_CMP, get_result_vector(p, inst), get_result_flags(inst), 0, negate(swizzle(tmp, ONE, ONE, X, ONE), 0, 0, 1, 0), swizzle(tmp, ONE, X, ZERO, ONE), swizzle(tmp, ONE, X, Y, ONE)); break; case OPCODE_LRP: src0 = src_vector(p, &inst->SrcReg[0], program); src1 = src_vector(p, &inst->SrcReg[1], program); src2 = src_vector(p, &inst->SrcReg[2], program); flags = get_result_flags(inst); tmp = i915_get_utemp(p); /* b*a + c*(1-a) * * b*a + c - ca * * tmp = b*a + c, * result = (-c)*a + tmp */ i915_emit_arith(p, A0_MAD, tmp, flags & A0_DEST_CHANNEL_ALL, 0, src1, src0, src2); i915_emit_arith(p, A0_MAD, get_result_vector(p, inst), flags, 0, negate(src2, 1, 1, 1, 1), src0, tmp); break; case OPCODE_MAD: EMIT_3ARG_ARITH(A0_MAD); break; case OPCODE_MAX: EMIT_2ARG_ARITH(A0_MAX); break; case OPCODE_MIN: EMIT_2ARG_ARITH(A0_MIN); break; case OPCODE_MOV: EMIT_1ARG_ARITH(A0_MOV); break; case OPCODE_MUL: EMIT_2ARG_ARITH(A0_MUL); break; case OPCODE_POW: src0 = src_vector(p, &inst->SrcReg[0], program); src1 = src_vector(p, &inst->SrcReg[1], program); tmp = i915_get_utemp(p); flags = get_result_flags(inst); /* XXX: masking on intermediate values, here and elsewhere. */ i915_emit_arith(p, A0_LOG, tmp, A0_DEST_CHANNEL_X, 0, swizzle(src0, X, X, X, X), 0, 0); i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_X, 0, tmp, src1, 0); i915_emit_arith(p, A0_EXP, get_result_vector(p, inst), flags, 0, swizzle(tmp, X, X, X, X), 0, 0); break; case OPCODE_RCP: src0 = src_vector(p, &inst->SrcReg[0], program); i915_emit_arith(p, A0_RCP, get_result_vector(p, inst), get_result_flags(inst), 0, swizzle(src0, X, X, X, X), 0, 0); break; case OPCODE_RSQ: src0 = src_vector(p, &inst->SrcReg[0], program); i915_emit_arith(p, A0_RSQ, get_result_vector(p, inst), get_result_flags(inst), 0, swizzle(src0, X, X, X, X), 0, 0); break; case OPCODE_SCS: src0 = src_vector(p, &inst->SrcReg[0], program); tmp = i915_get_utemp(p); /* * t0.xy = MUL x.xx11, x.x1111 ; x^2, x, 1, 1 * t0 = MUL t0.xyxy t0.xx11 ; x^4, x^3, x^2, x * t1 = MUL t0.xyyw t0.yz11 ; x^7 x^5 x^3 x * scs.x = DP4 t1, sin_constants * t1 = MUL t0.xxz1 t0.z111 ; x^6 x^4 x^2 1 * scs.y = DP4 t1, cos_constants */ i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_XY, 0, swizzle(src0, X, X, ONE, ONE), swizzle(src0, X, ONE, ONE, ONE), 0); i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_ALL, 0, swizzle(tmp, X, Y, X, Y), swizzle(tmp, X, X, ONE, ONE), 0); if (inst->DstReg.WriteMask & WRITEMASK_Y) { GLuint tmp1; if (inst->DstReg.WriteMask & WRITEMASK_X) tmp1 = i915_get_utemp(p); else tmp1 = tmp; i915_emit_arith(p, A0_MUL, tmp1, A0_DEST_CHANNEL_ALL, 0, swizzle(tmp, X, Y, Y, W), swizzle(tmp, X, Z, ONE, ONE), 0); i915_emit_arith(p, A0_DP4, get_result_vector(p, inst), A0_DEST_CHANNEL_Y, 0, swizzle(tmp1, W, Z, Y, X), i915_emit_const4fv(p, sin_constants), 0); } if (inst->DstReg.WriteMask & WRITEMASK_X) { i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_XYZ, 0, swizzle(tmp, X, X, Z, ONE), swizzle(tmp, Z, ONE, ONE, ONE), 0); i915_emit_arith(p, A0_DP4, get_result_vector(p, inst), A0_DEST_CHANNEL_X, 0, swizzle(tmp, ONE, Z, Y, X), i915_emit_const4fv(p, cos_constants), 0); } break; case OPCODE_SIN: src0 = src_vector(p, &inst->SrcReg[0], program); tmp = i915_get_utemp(p); consts0 = i915_emit_const4fv(p, sin_quad_constants[0]); consts1 = i915_emit_const4fv(p, sin_quad_constants[1]); /* Reduce range from repeating about [-pi,pi] to [-1,1] */ i915_emit_arith(p, A0_MAD, tmp, A0_DEST_CHANNEL_X, 0, src0, swizzle(consts1, Z, ZERO, ZERO, ZERO), /* 1/(2pi) */ swizzle(consts0, Z, ZERO, ZERO, ZERO)); /* .5 */ i915_emit_arith(p, A0_FRC, tmp, A0_DEST_CHANNEL_X, 0, tmp, 0, 0); i915_emit_arith(p, A0_MAD, tmp, A0_DEST_CHANNEL_X, 0, tmp, swizzle(consts0, X, ZERO, ZERO, ZERO), /* 2 */ swizzle(consts0, Y, ZERO, ZERO, ZERO)); /* -1 */ /* Compute sin using a quadratic and quartic. It gives continuity * that repeating the Taylor series lacks every 2*pi, and has * reduced error. * * The idea was described at: * http://www.devmaster.net/forums/showthread.php?t=5784 */ /* tmp.y = abs(tmp.x); {x, abs(x), 0, 0} */ i915_emit_arith(p, A0_MAX, tmp, A0_DEST_CHANNEL_Y, 0, swizzle(tmp, ZERO, X, ZERO, ZERO), negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0), 0); /* tmp.y = tmp.y * tmp.x; {x, x * abs(x), 0, 0} */ i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_Y, 0, swizzle(tmp, ZERO, X, ZERO, ZERO), tmp, 0); /* tmp.x = tmp.xy DP sin_quad_constants[2].xy */ i915_emit_arith(p, A0_DP3, tmp, A0_DEST_CHANNEL_X, 0, tmp, swizzle(consts1, X, Y, ZERO, ZERO), 0); /* tmp.x now contains a first approximation (y). Now, weight it * against tmp.y**2 to get closer. */ i915_emit_arith(p, A0_MAX, tmp, A0_DEST_CHANNEL_Y, 0, swizzle(tmp, ZERO, X, ZERO, ZERO), negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0), 0); /* tmp.y = tmp.x * tmp.y - tmp.x; {y, y * abs(y) - y, 0, 0} */ i915_emit_arith(p, A0_MAD, tmp, A0_DEST_CHANNEL_Y, 0, swizzle(tmp, ZERO, X, ZERO, ZERO), swizzle(tmp, ZERO, Y, ZERO, ZERO), negate(swizzle(tmp, ZERO, X, ZERO, ZERO), 0, 1, 0, 0)); /* result = .2225 * tmp.y + tmp.x =.2225(y * abs(y) - y) + y= */ i915_emit_arith(p, A0_MAD, get_result_vector(p, inst), get_result_flags(inst), 0, swizzle(consts1, W, W, W, W), swizzle(tmp, Y, Y, Y, Y), swizzle(tmp, X, X, X, X)); break; case OPCODE_SGE: EMIT_2ARG_ARITH(A0_SGE); break; case OPCODE_SLT: EMIT_2ARG_ARITH(A0_SLT); break; case OPCODE_SSG: dst = get_result_vector(p, inst); flags = get_result_flags(inst); src0 = src_vector(p, &inst->SrcReg[0], program); tmp = i915_get_utemp(p); /* tmp = (src < 0.0) */ i915_emit_arith(p, A0_SLT, tmp, flags, 0, src0, swizzle(src0, ZERO, ZERO, ZERO, ZERO), 0); /* dst = (0.0 < src) */ i915_emit_arith(p, A0_SLT, dst, flags, 0, swizzle(src0, ZERO, ZERO, ZERO, ZERO), src0, 0); /* dst = (src > 0.0) - (src < 0.0) */ i915_emit_arith(p, A0_ADD, dst, flags, 0, dst, negate(tmp, 1, 1, 1, 1), 0); break; case OPCODE_SUB: src0 = src_vector(p, &inst->SrcReg[0], program); src1 = src_vector(p, &inst->SrcReg[1], program); i915_emit_arith(p, A0_ADD, get_result_vector(p, inst), get_result_flags(inst), 0, src0, negate(src1, 1, 1, 1, 1), 0); break; case OPCODE_SWZ: EMIT_1ARG_ARITH(A0_MOV); /* extended swizzle handled natively */ break; case OPCODE_TEX: EMIT_TEX(T0_TEXLD); break; case OPCODE_TXB: EMIT_TEX(T0_TEXLDB); break; case OPCODE_TXP: EMIT_TEX(T0_TEXLDP); break; case OPCODE_XPD: /* Cross product: * result.x = src0.y * src1.z - src0.z * src1.y; * result.y = src0.z * src1.x - src0.x * src1.z; * result.z = src0.x * src1.y - src0.y * src1.x; * result.w = undef; */ src0 = src_vector(p, &inst->SrcReg[0], program); src1 = src_vector(p, &inst->SrcReg[1], program); tmp = i915_get_utemp(p); i915_emit_arith(p, A0_MUL, tmp, A0_DEST_CHANNEL_ALL, 0, swizzle(src0, Z, X, Y, ONE), swizzle(src1, Y, Z, X, ONE), 0); i915_emit_arith(p, A0_MAD, get_result_vector(p, inst), get_result_flags(inst), 0, swizzle(src0, Y, Z, X, ONE), swizzle(src1, Z, X, Y, ONE), negate(tmp, 1, 1, 1, 0)); break; case OPCODE_END: return; case OPCODE_BGNLOOP: case OPCODE_BGNSUB: case OPCODE_BRK: case OPCODE_CAL: case OPCODE_CONT: case OPCODE_DDX: case OPCODE_DDY: case OPCODE_ELSE: case OPCODE_ENDIF: case OPCODE_ENDLOOP: case OPCODE_ENDSUB: case OPCODE_IF: case OPCODE_RET: p->error = 1; i915_program_error(p, "Unsupported opcode: %s", _mesa_opcode_string(inst->Opcode)); return; case OPCODE_EXP: case OPCODE_LOG: /* These opcodes are claimed as GLSL, NV_vp, and ARB_vp in * prog_instruction.h, but apparently GLSL doesn't ever emit them. * Instead, it translates to EX2 or LG2. */ case OPCODE_TXD: case OPCODE_TXL: /* These opcodes are claimed by GLSL in prog_instruction.h, but * only NV_vp/fp appears to emit them. */ default: i915_program_error(p, "bad opcode: %s", _mesa_opcode_string(inst->Opcode)); return; } inst++; i915_release_utemps(p); } } /* Rather than trying to intercept and jiggle depth writes during * emit, just move the value into its correct position at the end of * the program: */ static void fixup_depth_write(struct i915_fragment_program *p) { if (p->depth_written) { GLuint depth = UREG(REG_TYPE_OD, 0); i915_emit_arith(p, A0_MOV, depth, A0_DEST_CHANNEL_W, 0, swizzle(depth, X, Y, Z, Z), 0, 0); } } static void check_texcoord_mapping(struct i915_fragment_program *p) { GLbitfield64 inputs = p->FragProg.info.inputs_read; unsigned unit = 0; for (unsigned i = 0; i < p->ctx->Const.MaxTextureCoordUnits; i++) { if (inputs & VARYING_BIT_TEX(i)) { if (unit >= p->ctx->Const.MaxTextureCoordUnits) { unit++; break; } p->texcoord_mapping[unit++] = i | TEXCOORD_TEX; } if (inputs & VARYING_BIT_VAR(i)) { if (unit >= p->ctx->Const.MaxTextureCoordUnits) { unit++; break; } p->texcoord_mapping[unit++] = i | TEXCOORD_VAR; } } if (unit > p->ctx->Const.MaxTextureCoordUnits) i915_program_error(p, "Too many texcoord units"); } static void check_wpos(struct i915_fragment_program *p) { GLbitfield64 inputs = p->FragProg.info.inputs_read; GLint i; unsigned unit = 0; p->wpos_tex = -1; if ((inputs & VARYING_BIT_POS) == 0) return; for (i = 0; i < p->ctx->Const.MaxTextureCoordUnits; i++) { unit += !!(inputs & VARYING_BIT_TEX(i)); unit += !!(inputs & VARYING_BIT_VAR(i)); } if (unit < p->ctx->Const.MaxTextureCoordUnits) p->wpos_tex = unit; else i915_program_error(p, "No free texcoord for wpos value"); } static void translate_program(struct i915_fragment_program *p) { struct i915_context *i915 = I915_CONTEXT(p->ctx); if (INTEL_DEBUG & DEBUG_WM) { printf("fp:\n"); _mesa_print_program(&p->FragProg); printf("\n"); } i915_init_program(i915, p); check_texcoord_mapping(p); check_wpos(p); upload_program(p); fixup_depth_write(p); i915_fini_program(p); p->translated = 1; } static void track_params(struct i915_fragment_program *p) { GLint i; if (p->nr_params) _mesa_load_state_parameters(p->ctx, p->FragProg.Parameters); for (i = 0; i < p->nr_params; i++) { GLint reg = p->param[i].reg; COPY_4V(p->constant[reg], p->param[i].values); } p->params_uptodate = 1; p->on_hardware = 0; /* overkill */ } static void i915BindProgram(struct gl_context * ctx, GLenum target, struct gl_program *prog) { if (target == GL_FRAGMENT_PROGRAM_ARB) { struct i915_context *i915 = I915_CONTEXT(ctx); struct i915_fragment_program *p = (struct i915_fragment_program *) prog; if (i915->current_program == p) return; if (i915->current_program) { i915->current_program->on_hardware = 0; i915->current_program->params_uptodate = 0; } i915->current_program = p; assert(p->on_hardware == 0); assert(p->params_uptodate == 0); } } static struct gl_program * i915NewProgram(struct gl_context * ctx, GLenum target, GLuint id) { switch (target) { case GL_VERTEX_PROGRAM_ARB: { struct gl_program *prog = rzalloc(NULL, struct gl_program); return _mesa_init_gl_program(prog, target, id); } case GL_FRAGMENT_PROGRAM_ARB:{ struct i915_fragment_program *prog = rzalloc(NULL, struct i915_fragment_program); if (prog) { i915_init_program(I915_CONTEXT(ctx), prog); return _mesa_init_gl_program(&prog->FragProg, target, id); } else return NULL; } default: /* Just fallback: */ return _mesa_new_program(ctx, target, id); } } static void i915DeleteProgram(struct gl_context * ctx, struct gl_program *prog) { if (prog->Target == GL_FRAGMENT_PROGRAM_ARB) { struct i915_context *i915 = I915_CONTEXT(ctx); struct i915_fragment_program *p = (struct i915_fragment_program *) prog; if (i915->current_program == p) i915->current_program = 0; } _mesa_delete_program(ctx, prog); } static GLboolean i915IsProgramNative(struct gl_context * ctx, GLenum target, struct gl_program *prog) { if (target == GL_FRAGMENT_PROGRAM_ARB) { struct i915_fragment_program *p = (struct i915_fragment_program *) prog; if (!p->translated) translate_program(p); return !p->error; } else return true; } static GLboolean i915ProgramStringNotify(struct gl_context * ctx, GLenum target, struct gl_program *prog) { if (target == GL_FRAGMENT_PROGRAM_ARB) { struct i915_fragment_program *p = (struct i915_fragment_program *) prog; p->translated = 0; } (void) _tnl_program_string(ctx, target, prog); /* XXX check if program is legal, within limits */ return true; } static void i915SamplerUniformChange(struct gl_context *ctx, GLenum target, struct gl_program *prog) { i915ProgramStringNotify(ctx, target, prog); } void i915_update_program(struct gl_context *ctx) { struct intel_context *intel = intel_context(ctx); struct i915_context *i915 = i915_context(&intel->ctx); struct i915_fragment_program *fp = (struct i915_fragment_program *) ctx->FragmentProgram._Current; if (i915->current_program != fp) { if (i915->current_program) { i915->current_program->on_hardware = 0; i915->current_program->params_uptodate = 0; } i915->current_program = fp; } if (!fp->translated) translate_program(fp); FALLBACK(&i915->intel, I915_FALLBACK_PROGRAM, fp->error); } void i915ValidateFragmentProgram(struct i915_context *i915) { struct gl_context *ctx = &i915->intel.ctx; struct intel_context *intel = intel_context(ctx); TNLcontext *tnl = TNL_CONTEXT(ctx); struct vertex_buffer *VB = &tnl->vb; struct i915_fragment_program *p = (struct i915_fragment_program *) ctx->FragmentProgram._Current; const GLbitfield64 inputsRead = p->FragProg.info.inputs_read; GLuint s4 = i915->state.Ctx[I915_CTXREG_LIS4] & ~S4_VFMT_MASK; GLuint s2 = S2_TEXCOORD_NONE; int i, offset = 0; /* Important: */ VB->AttribPtr[VERT_ATTRIB_POS] = VB->NdcPtr; if (!p->translated) translate_program(p); intel->vertex_attr_count = 0; intel->wpos_offset = 0; intel->coloroffset = 0; intel->specoffset = 0; if (inputsRead & VARYING_BITS_TEX_ANY || p->wpos_tex != -1) { EMIT_ATTR(_TNL_ATTRIB_POS, EMIT_4F_VIEWPORT, S4_VFMT_XYZW, 16); } else { EMIT_ATTR(_TNL_ATTRIB_POS, EMIT_3F_VIEWPORT, S4_VFMT_XYZ, 12); } /* Handle gl_PointSize builtin var here */ if (ctx->Point._Attenuated || ctx->VertexProgram.PointSizeEnabled) EMIT_ATTR(_TNL_ATTRIB_POINTSIZE, EMIT_1F, S4_VFMT_POINT_WIDTH, 4); if (inputsRead & VARYING_BIT_COL0) { intel->coloroffset = offset / 4; EMIT_ATTR(_TNL_ATTRIB_COLOR0, EMIT_4UB_4F_BGRA, S4_VFMT_COLOR, 4); } if (inputsRead & VARYING_BIT_COL1) { intel->specoffset = offset / 4; EMIT_ATTR(_TNL_ATTRIB_COLOR1, EMIT_4UB_4F_BGRA, S4_VFMT_SPEC_FOG, 4); } if ((inputsRead & VARYING_BIT_FOGC)) { EMIT_ATTR(_TNL_ATTRIB_FOG, EMIT_1F, S4_VFMT_FOG_PARAM, 4); } for (i = 0; i < p->ctx->Const.MaxTextureCoordUnits; i++) { if (inputsRead & VARYING_BIT_TEX(i)) { int unit = get_texcoord_mapping(p, i | TEXCOORD_TEX); int sz = VB->AttribPtr[_TNL_ATTRIB_TEX0 + i]->size; s2 &= ~S2_TEXCOORD_FMT(unit, S2_TEXCOORD_FMT0_MASK); s2 |= S2_TEXCOORD_FMT(unit, SZ_TO_HW(sz)); EMIT_ATTR(_TNL_ATTRIB_TEX0 + i, EMIT_SZ(sz), 0, sz * 4); } if (inputsRead & VARYING_BIT_VAR(i)) { int unit = get_texcoord_mapping(p, i | TEXCOORD_VAR); int sz = VB->AttribPtr[_TNL_ATTRIB_GENERIC0 + i]->size; s2 &= ~S2_TEXCOORD_FMT(unit, S2_TEXCOORD_FMT0_MASK); s2 |= S2_TEXCOORD_FMT(unit, SZ_TO_HW(sz)); EMIT_ATTR(_TNL_ATTRIB_GENERIC0 + i, EMIT_SZ(sz), 0, sz * 4); } if (i == p->wpos_tex) { int wpos_size = 4 * sizeof(float); /* If WPOS is required, duplicate the XYZ position data in an * unused texture coordinate: */ s2 &= ~S2_TEXCOORD_FMT(i, S2_TEXCOORD_FMT0_MASK); s2 |= S2_TEXCOORD_FMT(i, SZ_TO_HW(wpos_size)); intel->wpos_offset = offset; EMIT_PAD(wpos_size); } } if (s2 != i915->state.Ctx[I915_CTXREG_LIS2] || s4 != i915->state.Ctx[I915_CTXREG_LIS4]) { I915_STATECHANGE(i915, I915_UPLOAD_CTX); /* Must do this *after* statechange, so as not to affect * buffered vertices reliant on the old state: */ intel->vertex_size = _tnl_install_attrs(&intel->ctx, intel->vertex_attrs, intel->vertex_attr_count, intel->ViewportMatrix.m, 0); assert(intel->prim.current_offset == intel->prim.start_offset); intel->prim.start_offset = (intel->prim.current_offset + intel->vertex_size-1) / intel->vertex_size * intel->vertex_size; intel->prim.current_offset = intel->prim.start_offset; intel->vertex_size >>= 2; i915->state.Ctx[I915_CTXREG_LIS2] = s2; i915->state.Ctx[I915_CTXREG_LIS4] = s4; assert(intel->vtbl.check_vertex_size(intel, intel->vertex_size)); } if (!p->params_uptodate) track_params(p); if (!p->on_hardware) i915_upload_program(i915, p); if (INTEL_DEBUG & DEBUG_WM) { printf("i915:\n"); i915_disassemble_program(i915->state.Program, i915->state.ProgramSize); } } void i915InitFragProgFuncs(struct dd_function_table *functions) { functions->BindProgram = i915BindProgram; functions->NewProgram = i915NewProgram; functions->DeleteProgram = i915DeleteProgram; functions->IsProgramNative = i915IsProgramNative; functions->ProgramStringNotify = i915ProgramStringNotify; functions->SamplerUniformChange = i915SamplerUniformChange; }